Guidelines for the safe development and production of vaccines to human pandemic influenza viruses and viruses with pandemic potential

(Proposed revision of WHO TRS No. 941, Annex 5; H1N1 specific update 2009; and H7N9 update 2013)

NOTE:

This document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). Publication of this draft is to provide information about the proposed Guidelines for the safe development and production of vaccines to human pandemic influenza viruses and viruses with pandemic potential to a broad audience and is intended to improve transparency of the consultation process.

The text in its present form does not necessarily represent the final conclusions of the Expert Committee. Written comments proposing modifications to this text MUST be received by 28 September 2018 entered in the Comment Form (available separately), and should be addressed to the World Health Organization, 1211 Geneva 27, Switzerland, attention: Department of Essential Medicines and Health Products (EMP). Comments may be submitted electronically to the Responsible Officer: Dr Tiequn Zhou at email: zhout@who.int.

The outcome of the deliberations of the ECBS will be published in the WHO Technical Report Series. The final agreed formulation of the document will be edited to be in conformity with the second edition of the WHO style guide (KMS/WHP/13.1).
Contents

1. Introduction
2. Scope
3. Terminology
4. Hazard identification
5. Safety testing of candidate vaccine viruses
6. Risk assessment and management

Authors and acknowledgements
References
Appendix 1. Testing for attenuation of influenza vaccine viruses in ferrets
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSL</td>
<td>Biosafety level</td>
</tr>
<tr>
<td>CVV</td>
<td>Candidate vaccine virus</td>
</tr>
<tr>
<td>EID</td>
<td>Egg infectious dose</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>FFP</td>
<td>Filtering face piece (mask)</td>
</tr>
<tr>
<td>GISRS</td>
<td>(WHO's) Global Influenza Surveillance and Response System</td>
</tr>
<tr>
<td>GMP</td>
<td>Good manufacturing practice</td>
</tr>
<tr>
<td>HA</td>
<td>Haemagglutinin</td>
</tr>
<tr>
<td>HEPA</td>
<td>High-efficiency particulate air (filtration)</td>
</tr>
<tr>
<td>HPAI</td>
<td>High pathogenic avian influenza (virus)</td>
</tr>
<tr>
<td>IVPI</td>
<td>(Chicken) Intravenous pathogenicity index</td>
</tr>
<tr>
<td>IVPP</td>
<td>Influenza viruses with pandemic potential</td>
</tr>
<tr>
<td>LAIV</td>
<td>Live attenuated influenza vaccine</td>
</tr>
<tr>
<td>LPAI</td>
<td>Low pathogenic avian influenza (virus)</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madin Darby Canine Kidney (cells)</td>
</tr>
<tr>
<td>NA</td>
<td>Neuraminidase</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organisation for Animal Health</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque forming unit</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
<tr>
<td>PR8</td>
<td>Influenza A/Puerto Rico/8/34 virus (A/PR/8/34)</td>
</tr>
<tr>
<td>RG</td>
<td>Reverse genetics</td>
</tr>
<tr>
<td>TCID</td>
<td>Tissue culture infectious dose</td>
</tr>
</tbody>
</table>
1. Introduction

Careful risk assessment and strict biosafety and biosecurity precautions are needed in laboratory and manufacturing environments in order to ensure safe handling of human pandemic influenza viruses, candidate vaccine viruses (CVVs) and influenza viruses with pandemic potential (IVPP) since the uncontrolled release of such viruses could have a significant impact on public health. In 2005, WHO developed biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines in response to the pandemic threat posed by the highly pathogenic avian influenza (HPAI) A(H5N1) viruses and the need to begin development of vaccines. The guidance was published in the Fifty-fifth report of the Expert Committee on Biological Standardization (WHO Technical Report Series [TRS], No. 941, Annex 5) (1). Since the initial publication of the guidance, experience with both IVPP and pandemic viruses for the development and production of CVVs has increased globally. This experience includes developing and testing CVVs derived by reverse genetics (RG) from HPAI viruses, which is reflected in this update. Moreover, in response to the pandemic in 2009 caused by A(H1N1)pdm09 subtype virus and the emergence of low-pathogenic avian influenza (LPAI) A(H7N9) viruses that are able to infect humans, causing severe disease with a high case fatality rate, the guidance in Annex 5 of the Fifty-fifth report of the Expert Committee was updated by WHO (2, 3). In addition, several WHO informal consultations – including the WHO Vaccine Composition Meetings, the Global Action Plan for Influenza Vaccines meetings and “Switch” meetings1 on influenza vaccine response at the start of a pandemic – identified testing timelines for CVVs as one of the bottlenecks to rapid vaccine responses (4–7). Industry, regulators and laboratories of the WHO Global Influenza Surveillance and Response System (GISRS) have requested revision of the guidelines.

In response, WHO convened a Working Group meeting on 9–10 May 2017 that was attended by experts, including representatives of WHO collaborating centres, WHO essential regulatory laboratories, national regulatory authorities for vaccine and biosafety regulation, manufacturers, and the World Organisation for Animal Health (OIE). The Working Group reviewed the cumulative experience, discussed the revision of TRS 941, Annex 5, and reached a consensus on the outline and key elements for the revision (8). Subsequently, a draft revision was prepared and posted on the WHO website for public comments. An informal consultation meeting was held by WHO on 23–24 April 2018 to finalize the revision of the TRS 941, Annex 5 (9).

1 Meetings relating to the “switch” from production of seasonal vaccine to pandemic vaccine in an emergency.
This document follows the risk assessment scheme used in the WHO biosafety guidance for pilot-lot vaccine production (10). It also includes considerations relating to the greater scale of production needed to supply large quantities of vaccines rapidly where risks are likely to be different from those for pilot lots. This document takes into account the considerable experience gained from handling HPAI viruses and those classified as low virulence for avian species but highly virulent for humans.

2. Scope

This document provides guidance to CVV-testing laboratories, vaccine manufacturers and national regulatory authorities on the safe development and production of human influenza vaccines in response to the threat of a pandemic. The document describes international biosafety expectations for pilot-scale and large-scale vaccine production and laboratory research work. It is thus relevant to development and manufacturing activities. It also specifies the measures to be taken to prevent or minimize the risk to workers involved in the development and production processes and the release of virus into the environment, including the risk of transmission to animals. Tests required to evaluate the safety of CVVs are also described in this document. The document should be read in conjunction with WHO’s Laboratory biosafety manual (11).

The guidance presented in this document reflects greater knowledge of A(H5N1) subtype viruses (and other subtypes in general) and experience gained in the development and manufacture of vaccines for A(H5N1). Moreover, a great deal has been learned from experience with the A(H1N1)pdm09 viruses, and from the production of vaccines against this pandemic virus. The guidance is also intended to apply to threats from any IVPP (e.g. H2, H9, H7 subtype viruses, etc.), which may be virulent in humans. Manufacturers and laboratories handling HPAI viruses should consult their national regulatory authorities to determine whether additional biosecurity measures are required.

There is a significant diversity in the pathogenicity of viruses used to make CVVs that are used to produce human vaccines and vaccines for other mammals. The transmission and pathogenicity of influenza viruses are multifactorial traits that are not completely understood (12). The haemagglutinin (HA) protein is the major virulence determinant of avian influenza viruses (13). Consequently, A(H5N1) HPAI viruses that cause fatal disease in humans have been used to produce reassortant viruses containing an HA that has been genetically modified to generate viruses of low pathogenicity for poultry. For viruses that are inherently less pathogenic for humans, wild-type virus might be used directly for inactivated vaccine production (14). Thus, both
reassortants derived by classical reassortment and RG (including those using synthetic nucleic acid as starting material, which may or may not be genetically modified) and wild-type viruses are included within the scope of these guidelines.

Embryonated hens’ eggs have traditionally been used for producing most influenza vaccines, but cell culture techniques have also been successfully used for seasonal and pandemic vaccine production (15, 16). This guidance applies to current production technologies using eggs and cell culture.

Both inactivated vaccines and live attenuated influenza vaccines (LAIVs) are covered by these guidelines. To date, most efforts to develop CVVs for pandemic vaccines have targeted inactivated vaccine. However, seasonal LAIVs derived from the A/Ann Arbor/6/60 virus have been licensed in North America and western Europe, while LAIVs derived from the A/Leningrad/134/17/57 virus have been licensed in China, India, Russia and Thailand (17).

Technologies not covered by these guidelines include new generation technology platforms that do not use live influenza vaccine viruses for production (e.g. expressed recombinant proteins, virus-like particles, DNA- and RNA-based vaccines and vectored vaccines), although some general principles may be applicable.

Furthermore, the guidelines on containment measures in this document should apply to all facilities and laboratories that handle live influenza viruses, including not only the CVV and vaccine manufacturing facilities but also the quality control laboratories of vaccine manufacturers, national control laboratories and other specialist laboratories. The transport of live virus materials within and between these sites must comply with international and national specifications (18).

Finally, risk assessments for vaccine manufacture will vary according to whether production occurs during an interpandemic period or during pandemic alert or pandemic periods (19). The guidelines emphasize steps to identify and minimize risks in vaccine manufacture during the interpandemic period, while indicating modifications that may be appropriate in other periods. It should be noted that a pandemic preparedness approach covering both inactivated influenza vaccines and LAIVs (formerly called “mock-up pandemic vaccines”) during the interpandemic period has been accepted by the European Medicines Agency (EMA) (20).

3. Terminology

The definitions given below apply to the terms used in these guidelines. They may have different meanings in other contexts.
Aerosol: a dispersion of solid or liquid particles of microscopic size in a gaseous medium.

Airlock: areas found at entrances or exits of rooms that limit air in one space from entering another space. Airlocks generally have two interlocked doors and a separate exhaust ventilation system. In some cases, a multiple-chamber airlock consisting of two or more airlocks joined together is used for additional control.

Backbone donor virus: an influenza virus that provides all or some non-glycoprotein internal genes to a reassortant virus. These genes may contain determinants of attenuation and/or confer high growth/high yield properties to the resulting reassortant virus.

Biosafety committee: an institutional/organizational committee comprising individuals versed in the containment and handling of infectious materials.

Biosafety manual: a comprehensive document describing the physical and operational practices of the laboratory facility, with particular reference to infectious materials.

Biosafety officer: a staff member of an institution who has expertise in microbiology and infectious materials and has responsibility for ensuring that the physical and operational practices of various biosafety levels are carried out in accordance with the standard procedures of the institution.

Biosecurity: the protection and control of biological materials within laboratories and production facilities in order to prevent their unauthorized access, loss, theft, misuse, diversion or intentional release.

BSL2, BSL3 or BSL4: the combination of physical and operational requirements that protect personnel, the immediate work environment and the community from exposure to infectious materials during vaccine manufacture and quality control testing. Detailed principles for such facilities are defined in WHO’s Laboratory biosafety manual (11) and in some national regulatory guidelines.

BSL2 or BSL3 enhanced: the use of additional physical and/or operational precautions, above those described for BSL2 or BSL3, based on a local risk assessment in consultation with the competent national authority/regulatory authority.

Bunded (area): an area that has either a permanent or a temporary barrier which is able to contain liquid and prevent leaks and spills from spreading contamination or damaging the facility (bunding).

Decontamination: a process by which influenza viruses are inactivated to prevent adverse health and/or environmental effects.
EID 50: egg infectious dose 50%, a unit for measuring the infectious activity of a biological product or agent that will cause infection in 50% of inoculated chicken embryos.

FFP2: a filtering face-piece mask that provides high-level filtering capability against airborne transmissible microorganisms and generates an effective barrier to both droplets and fine aerosols to 94% efficiency.

FFP3: a filtering face-piece device (face-fitted mask) that provides high-level filtering capability against airborne transmissible microorganisms and generates an effective barrier to both droplets and fine aerosols to 99% efficiency (at 95 L/min air flow).

Fumigation: the process whereby a gaseous chemical is applied to sterilize or disinfect surfaces in an enclosed space.

Good Manufacturing Practice (GMP): that part of quality assurance which ensures that products are produced and controlled consistently to the quality standards appropriate to their intended use and as required by the marketing authorization.

High efficiency particulate air (HEPA) filter: (previously high efficiency particulate absorber of various efficiencies). The filter must be capable of removing at least 99.97% of all airborne particles with a mean aerodynamic diameter of 0.3 microns.

High pathogenic avian influenza (HPAI) virus: avian influenza viruses causing systemic infection and mortality in chickens which, to date, are limited to subtypes H5 and H7 containing a cleavage site in HA with multiple inserted amino acids (also referred to in the literature as a “multibasic” or “polybasic” cleavage site, although other insertions have also been identified). The designation HPAI does not refer to the virulence of these viruses in human or other mammalian hosts.

Inactivation: the process of rendering the influenza virus nonviable by application of heat, chemicals (e.g. formalin, beta-propiolactone), UV irradiation, or other means.

Intravenous pathogenicity index (IVPI): an indicator used to identify an avian influenza virus as HPAI or LPAI on the basis of mortality and morbidity over a 10-day period following intravenous inoculation of chickens with the virus.

Low pathogenic avian influenza (LPAI) virus: avian influenza viruses causing infections in poultry leading to no disease, mild disease or moderate disease (see also IVPI). LPAI viruses typically contain an HA with a single basic amino acid preceding the site of proteolytic cleavage (also referred to as a “monobasic” cleavage site). The designation LPAI does not refer to the virulence of these viruses in human and other mammalian hosts.
N95: a respiratory protective device designed to achieve a very close facial fit and very efficient filtration of airborne particles. The “N95” designation means that the respirator blocks at least 95% of very small (0.3 micron) test particles when fitted correctly.

Primary containment: a system of containment, usually a biological safety cabinet or closed container, which prevents the escape of a biological agent into the work environment.

Respirator hood: a respiratory protective device with an integral perimeter seal, valves and specialized filtration, used to protect the wearer from toxic fumes or particulates.

Risk assessment: a formalized and documented process for evaluating the potential risks that may be involved in a projected activity or undertaking.

TCID50: tissue culture infectious dose 50%. A unit of infectious activity of a biological product or infectious agent that causes infection in 50% of inoculated tissue cultures.

Validation: the documented act of proving that any procedure, process, equipment, material, activity or system leads to the expected results.

4. Hazard identification

Hazards associated with vaccine manufacturing and laboratory testing of CVVs of pandemic viruses and IVPP depend on the type of vaccine virus (reassortant or wild-type), method of production (egg-based, cell culture-based or other), whether it is an inactivated, live (attenuated) virus or a recombinant virus-vectored vaccine, and whether or not there are any deliberate modifications of the virus for attenuation or for enhanced immunogenicity and/or increased yield. Recombinant virus-vectored vaccines (e.g. modified vaccinia Ankara virus, adenovirus, Vesicular stomatitis virus) use replicating recombinant constructs based on viruses other than influenza virus. The nature of their transgene, shedding and the potential for recombination are outside of the scope of this document, but they are important factors that might need to be considered (21, 22).

4.1 Candidate vaccine viruses

CVVs for live attenuated and inactivated influenza vaccines are generally produced through reassortment with well-defined backbone donor viruses (e.g. human viruses A/Puerto Rico/8/34 [PR8], A/Ann Arbor/6/60, or A/Leningrad/134/17/57). Wild-type viruses may also be used for vaccine production. Further, new backbone donor viruses for reassortment are being developed and evaluated to enhance vaccine yields and other desirable properties. It is likely that a high
growth reassortant will provide the basis for future pandemic vaccine development, although it is conceivable that a wild-type virus could be used.

4.1.1. Reassortants

The genome of influenza A virus is composed of eight individual single-stranded RNA segments of negative polarity. Segments 4 and 6 encode the two surface glycoproteins, HA and neuraminidase (NA), respectively. The HA is the major surface antigen of the virus, and antibodies directed against HA can protect from infection by neutralizing the virus. Antibodies to NA can inhibit viral infectivity at different points in the replication cycle and also have a role in protection from disease (23). The remaining six RNA segments ("internal protein genes") encode internal structural and nonstructural viral proteins. The segmented structure of the genome allows for the exchange (reassortment) of the individual RNA segments between influenza viruses upon coinfection of a single cell with two or more influenza viruses.

The classic or conventional method for reassortment involves preparing CVVs by co-inoculation of embryonated hens’ eggs or tissue culture with a WHO recommended wild-type virus and a backbone donor virus with a high growth (yield) or attenuated phenotype. Co-inoculation allows for reassortment of genetic segments between the two viruses. Antiserum against the surface glycoproteins of the backbone donor virus is used to select a reassortant CVV, which must contain the HA gene, but normally contains both the HA and NA genes of the WHO-recommended vaccine virus. Amplification in eggs (or cultured cells) results in positive selection for the optimal combination of internal genes providing a high-yield reassortant virus. Several weeks are usually required for the production, validation and antigenic analysis of the reassortant (7). The use of a CVV in vaccine production requires approval by the national regulatory authority.

An alternative to the conventional approach to reassortant development is the use of RG methodology to produce a reassortant vaccine virus (24). This process usually incorporates into plasmids the six RNA segments encoding the internal proteins of a backbone donor virus and the two segments encoding the HA and NA from the WHO-recommended vaccine virus. The plasmids are subsequently transfected into cells, with or without additional helper plasmids, in order to generate the CVVs to be used for vaccine manufacturing. RG technology allows for the direct manipulation of the influenza gene segments and can be faster than the use of classic reassortment. Moreover, if an HPAI virus is used in the RG process, the HA gene can be modified to remove the specific amino acid motif at the HA cleavage site that is known to convey high
pathogenicity in poultry (25). The reassortant can thus be specifically designed to serve as a CVV without the capacity to cause high pathogenicity in birds. The RG system has been reported to produce a CVV within 9–12 days (26) but further analysis of the product takes additional time. The distribution and receipt of the WHO-recommended vaccine virus as a source of RNA for constructing RG HA and NA plasmids adds extra time to the reassortment process. These delays can be minimized if the reassorting laboratories use site-directed mutagenesis of existing plasmids to a related virus, or by the use of synthetic DNA (27, 28).

4.1.2 Backbone donor viruses

Reassortant CVVs containing donor genes (except for segments 4 and 6 [HA and NA]) from backbone donor viruses (PR8, A/Ann Arbor/6/60 or A/Leningrad/134/17/57) have been widely used for producing seasonal influenza vaccines and pandemic A(H1N1)pdm09 vaccines. A substantial body of data indicates that reassortant viruses composed of RNA segments coding for HA and NA derived from a pandemic virus or IVPP and the genes coding for the internal protein genes from PR8, A/Ann Arbor/6/60 or A/Leningrad/134/17/57 will have only a low probability of causing harm to human health (10, 24).

PR8 is a common backbone donor virus for generating reassortant vaccine viruses as it replicates to high titre in embryonated hens’ eggs. It was originally used in the late 1960s to produce “high growth reassortants” and the use of such reassortants as vaccine viruses increases vaccine yield many-fold (29–31). Moreover, PR8 has undergone extensive passaging in mice, ferrets and embryonated hens’ eggs. This has resulted in the complete attenuation of the virus, rendering it incapable of replicating in humans (32, 33). Improved backbone donor viruses are being developed in order to enhance yields for CVVs used to manufacture inactivated influenza virus vaccines. These new donor viruses may be derivations of PR8 viruses but they may also have genes from viruses other than PR8, be synthetically generated and/or be optimized for specific HA and NA subtypes (26). Demonstration of adequate attenuation of CVV using new/improved backbone donor viruses will be needed before approval for use (see section 5).

Some countries have licensed live attenuated seasonal influenza vaccines using reassortants with a 6:2 gene constellation based on donor viruses such as the A/Ann Arbor/6/60 and A/Leningrad/134/17/57. The attenuated A/Ann Arbor/6/60 virus has been used as the backbone for 6:2 reassortant LAIVs. Clinical studies of some 30 different vaccine viruses over a period of
more than 40 years demonstrate that A/Ann Arbor/6/60-based as well as the
A/Leningrad/134/17/57 reassortant vaccine viruses are attenuated for humans (34, 35). These
donor viruses might also be used for developing pandemic influenza vaccines and an adequate
level of attenuation has been shown for modified reassortant viruses of various subtypes (36). For
each CVV derived from a new pandemic virus or IVPP, the level of attenuation should be verified
by testing, as described in section 5.1. A(H5N1)-specific LAIVs made from A/Ann Arbor/6/60
reassortants have been licensed for pandemic preparedness purposes in several countries.

4.1.3 Gene segments from wild-type viruses (WHO-recommended vaccines viruses)
The gene constellation of reassortant CVVs derived by traditional co-cultivation methods must be
determined. Reassortants with 6:2 or 5:3 gene constellations containing the HA and NA genes of
the wild-type strain are most common. However, reassortants containing at the minimum the HA
gene could be developed with different gene constellations (e.g. one or more internal genes from
the WHO-recommended vaccine virus). It is also possible that a mutant (non-reassortant) wild-
type virus could be selected that has improved growth characteristics.

Because of their potential association with pathogenicity, the genes from the wild-type virus
(especially the HA and NA genes) require particular attention.

4.1.3.1 Haemagglutinin cleavage site
Most HPAI viruses of the H5 and H7 subtypes contain sequences of basic amino acids at the
cleavage sites separating their HA1 and HA2 domains. Elimination of the HA polybasic cleavage
sites is associated with reduced virulence in mammalian and avian models and a low IVPI.

However, some wild-type LPAI viruses (e.g. A(H7N9) viruses) have caused serious human
disease (37) despite causing few signs of illness in poultry.

For reassortants derived from HPAI H5 and H7 viruses by RG, the HA should be modified so that
the amino acids inserted at the HA cleavage site are reduced to a single basic amino acid;
additional nucleotide substitutions can be introduced in the vicinity of the cleavage site in order to
increase the genetic stability of the created monobasic motif during large-scale vaccine
manufacture. Cleavage site modifications have consistently reduced pathogenicity for avian
embryos and poultry (38). Reassortants used for vaccine production are expected to be of low
pathogenicity in poultry even if based on highly pathogenic wild-type parental viruses (39).

However, modifying the cleavage site does not guarantee low pathogenicity in humans and other
mammalian species because of the presence of other virulence factors (40).
4.1.3.2 Receptor specificity

Preferential binding of the HA to $\alpha_2,6$-linked terminal sialic acid residues is associated with transmissibility of influenza viruses in humans (41, 42). However, viruses that preferentially bind to $\alpha_2,3$-linked terminal sialic acid residues (e.g. A(H7N9) and A(H5N1) viruses) do not transmit well between humans but may on occasion infect humans and cause serious illness (43). While receptor specificity must be considered as a factor in reducing the risk of virus transmissibility and causing harm to human health, modifying it is insufficient for virus attenuation.

The hazards associated with reassortants depend in part on HA receptor specificity. If a reassortant has a preference for avian cell receptors (i.e. $\alpha_2,3$-linked terminal sialic acid), the hazard to humans is considered to be lower; however, if a reassortant has a preference for mammalian cell receptors ($\alpha_2,6$-linkages; e.g. the 1957 A(H2N2) pandemic virus) or possesses both avian and mammalian receptor specificities, there is a greater risk of transmissibility and human infection. For A/goose/Guangdong/1/96-lineage H5 reassortants, it is anticipated that the HA will retain a preference for $\alpha_2,3$-linked terminal sialic acid residues, so their transmissibility between humans should be reduced. However, some HPAI A(H5N1) viruses (e.g. some from Egypt) have been reported to exhibit increased binding to $\alpha_2,6$ linkages while maintaining a preference for $\alpha_2,3$-linked terminal sialic acid residues (44, 45). It is expected that A(H5N1) reassortant viruses derived by RG according to WHO guidance (46) would be attenuated for humans compared to wild-type H5 viruses. Nevertheless, the human lower respiratory tract contains $\alpha_2,3$-linked sialic acid receptors and thus exposure to high doses of A(H5N1) viruses represents a risk of infection. Moreover, humans are immunologically naive to H5 and many other avian subtypes, and this too is an important risk factor.

It should be noted that influenza virus pathogenicity does not depend solely on HA but is a polygenic trait. The 1997 A(H5N1) virus had unusual PB2 and NS1 genes that influenced pathogenicity, whereas 2004 A(H5N1) viruses possessed complex combinations of changes in different gene segments that affected their pathogenicity in ferrets (47, 48). Compared to HA, the NA protein of influenza viruses has a less prominent role as a virulence factor. It is known that a balance of HA (receptor binding) and NA (receptor destruction and virus release) activities is required for efficient viral replication (49, 50). Further, specific adaptations in NA have been identified that facilitate transmission from wild aquatic birds to poultry. However, specific NA determinants for the adaptation to, and virulence for, humans have so far not been found, although
there is some evidence that the NA can mediate HA cleavage in A(H1N1) viruses (51, 52). It is of note that resistance to the viral inhibitors oseltamivir and zanamivir is caused by specific mutations in either NA or HA.

4.1.3.3 Secondary reassortment

It is conceivable that reassortment between a CVV containing HA and NA from an IVPP and a seasonal human wild-type influenza virus could occur during simultaneous infection of humans with both viruses. For secondary reassortants to be generated, several things need to happen, namely:

- infection of a human (e.g. production staff) with the CVV;
- simultaneously infection of the same human with a wild-type seasonal influenza virus;
- a reassortment between the wild-type influenza virus and the reassortant virus.

Such a secondary reassortant may have distinct properties from the seasonal virus and might still be able to replicate in humans and spread from person to person. The likelihood of such secondary reassortment is considered to be low-to-negligible. However, laboratory and production facilities must have biosafety control measures in place to prevent exposure of staff to live reassortant viruses. In a case of accidental exposure, it is unlikely that a CVV would replicate efficiently or transmit to human contacts. In over 40 years of vaccine manufacturing, there have been no reported cases of influenza as a result of secondary reassortment of CVVs.

4.1.4 Wild-type HPAI candidate vaccine viruses

The use of wild-type HPAI CVVs has been confined to cell-culture-based production, which for inactivated vaccines uses closed systems under high containment. Stringent biosecurity and biosafety measures are required during production, analytical testing and waste disposal in order to protect staff and prevent release of infectious virus into the environment. CVVs produced by RG and demonstrated to be attenuated, as described in section 5, are preferred.

4.1.5 Other wild-type candidate vaccine viruses

Vaccines may also be produced from other wild-type CVVs (e.g. swine and LPAI viruses). The pathogenicity of these wild-type viruses for humans cannot be predicted; some A(H7N9) viruses that are of low pathogenicity in poultry have caused severe illness in humans (53). Although the transmissibility of wild-type viruses with avian receptor specificity in humans is likely to be low, the transmissibility of wild-type viruses with mammalian receptor specificity
(e.g. swine viruses) is largely unknown and is likely depend on a number of factors, including population immunity.

Appropriate measures should be in place to prevent exposure of staff to the CVV derived from wild-type viruses because of the risk of secondary reassortment with circulating influenza viruses, as described in section 4.1.3.3.

4.1.6 Susceptibility of candidate vaccine viruses to NA inhibitors

Influenza viruses/CVVs that are sensitive to NA inhibitors or other licensed drugs should be used for vaccine production whenever possible. If the relationship between genotype and phenotype is well known, sequence verification may be sufficient to confirm the presence of genetic motifs known to be associated with drug susceptibility. Otherwise, susceptibility should be confirmed by phenotypic testing.

5. Safety testing of candidate vaccine viruses

CVVs can be developed by GISRS laboratories, laboratories associated with GISRS that have been approved by a national regulatory authority, and laboratories of vaccine manufacturers. The following tests and specifications have been developed on the basis of experience gained in evaluating CVVs derived from viruses of various subtypes. The safety testing required for different CVVs and their proposed containment levels are summarized in Table 1. The information summarized in this table should be considered as guidance; changes in the requirements may be determined on a case-by-case basis by WHO and/or national authorities. For CVVs developed from newly emerging IVPP, a WHO expert group will review the data from safety testing and advise WHO. WHO will then provide further guidance on appropriate biocontainment requirements through its expert networks such as GISRS.

The requirement to conduct or complete some or all of these tests prior to the distribution of a CVV may be relaxed on the basis of additional risk assessments. Such assessments should consider the WHO pandemic phase, evolving virological, epidemiological and clinical data in the WHO pandemic phase, as well as national and international regulatory requirements on the shipment and receipt of infectious substances.

5.1 Tests to evaluate pathogenicity of candidate vaccine viruses
The recommended tests to evaluate the pathogenicity of CVVs depend on the parental wild-type viruses (i.e. WHO-recommended vaccine viruses) from which they are derived (Table 1). The nature of the parental viruses and the risks of the procedures involved will also determine the required biocontainment level. The tests required to evaluate CVVs are described in the following sections. Some CVVs may not require complete safety testing if they are genetically similar to a CVV that has already been tested – i.e. they have HAs and NAs derived from the same, or a genetically closely related, wild-type virus and are nominally on the same backbone. For these CVVs, it may be sufficient to confirm sequence and genetic stability as determined by a WHO expert group and/or by competent national authorities.

5.1.1 Attenuation in ferrets

Ferrets have been used extensively as an ideal indicator of influenza virus virulence for humans (54). Typically, seasonal influenza viruses cause mild-to-no clinical signs in ferrets, and virus replication is usually limited to the respiratory tract. PR8 viruses have also been assessed in ferrets and have been found to cause few or no clinical signs, with virus replication limited to the upper respiratory tract (55). However, some wild-type HPAI viruses can cause severe and sometimes lethal infections in ferrets (48, 56). Thus, in the absence of human data, the ferret is generally considered the best model for predicting pathogenicity/attenuation in humans. The mouse is not considered an appropriate model for the safety testing of influenza CVVs.

CVVs should be shown to be attenuated in ferrets in accordance with Table 1, except when virus-specific risk assessments suggest a different approach (e.g. waiving the ferret test where Table 1 requires it). These tests should be conducted in well-characterized and standardized ferret models (e.g. by using common reference viruses, when available, from WHO collaborating centres/essential regulatory laboratories for influenza). Detailed test procedures are described in Appendix 1. One or more laboratories may have ferret pathogenicity data on parental wild-type viruses (i.e. WHO-recommended vaccine viruses) that could be used by all testing laboratories as a further benchmark for comparison. Limiting testing requirements on the wild-type viruses will minimize the time delays associated with export and import of IVPP and/or pandemic viruses. Assessing the transmissibility of CVVs between ferrets is not required because of the difficulties of standardizing this assay across laboratories (57, 58).

5.1.2 Pathogenicity in chickens

For CVVs derived from HPAI H5 or H7 parental viruses, determination of the chicken IVPI is recommended and may also be required by national authorities. The procedure should follow that
described in the OIE guidance. Any virus with an index greater than 1.2, or that causes at least
75% mortality in inoculated chickens, is considered an HPAI virus (59).

5.1.3 The ability of virus to plaque in the presence or absence of added trypsin
HPAI viruses replicate in mammalian cell culture in the absence of added trypsin, whereas LPAI
viruses generally do not. This test is recommended for all CVVs derived from HPAI H5 or H7
parental viruses. It is recommended that the test be established and characterized by the use of
known positive and negative control viruses (60).

5.1.4 Gene sequencing
Gene sequencing is important for confirming virus identity and/or verifying the presence of
attenuating and other phenotypic markers (e.g. markers of cold adaptation and temperature
sensitivity in the case of LAIV CVVs). The extent of sequencing required will depend on the
nature of the backbone donor viruses (e.g. LAIV or PR8).

5.1.5 Genetic stability
Genetic stability of CVVs is generally assessed after 6–10 passages in relevant substrates (i.e.
embryonated hens’ eggs or cultured cells). Subsequent sequence analysis can verify the retention
(stability) of the markers of relevant phenotypic traits, where such markers are known. These tests
should be conducted on all CVVs, including wild-type CVVs, prepared from pandemic viruses
and IVPP. It may be possible to ship viruses to manufacturers prior to fully establishing their
genetic stability.
<table>
<thead>
<tr>
<th>Category of CVV</th>
<th>Tests needed on CVVs(^a)</th>
<th>Proposed containment for(^4) vaccine production(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified reassortant viruses derived from H5 and H7 HPAI viruses(^c)</td>
<td>Ferret (5.1.1), chicken (5.1.2)(^d), plaquing (5.1.3), sequence (5.1.4), genetic stability (5.1.5)(^e)</td>
<td>BSL2 enhanced</td>
</tr>
<tr>
<td>Reassortants and modified viruses derived from H5 and H7 LPAI viruses</td>
<td>Ferret (5.1.1), sequence (5.1.4), genetic stability (5.1.5)(^e)</td>
<td>BSL2 enhanced</td>
</tr>
<tr>
<td>Reassortants and modified viruses derived from non-H5 or -H7 viruses</td>
<td>Ferret (5.1.1), sequence (5.1.4), genetic stability (5.1.5)(^e)</td>
<td>BSL2 enhanced</td>
</tr>
<tr>
<td>Wild-type H5, H7 HPAI viruses</td>
<td>Sequence (5.1.4), genetic stability (5.1.5)(^e), also see footnotes(^d,f)</td>
<td>BSL3 enhanced(^g)</td>
</tr>
<tr>
<td>Wild-type H5, H7 LPAI viruses</td>
<td>Ferret (5.1.1), sequence (5.1.4), genetic stability (5.1.5)(^e), also see footnotes(^d,g)</td>
<td>BSL2 enhanced(^f)</td>
</tr>
<tr>
<td>Wild-type non-H5 or -H7 viruses</td>
<td>Ferret (5.1.1), sequence (5.1.4), genetic stability (5.1.5)(^e), also see footnote(^d)</td>
<td>BSL2 enhanced</td>
</tr>
</tbody>
</table>

\(^a\) Test performed by WHO GISRS or other approved laboratory.

\(^b\) The proposed containment levels may be changed (to higher or lower containment) based on a specific risk assessment.

\(^c\) This category refers to viruses derived by RG technology such that the additional amino acids at the HA cleavage site are removed.

\(^d\) The requirement for performance of the chicken pathogenicity test (IVPI) is dependent on national regulatory requirements which are currently under review in some countries and may change.

\(^e\) Genetic stability testing should be performed. However, it should not delay the distribution and use of the CVV by manufacturers and can be performed subsequently.
6. Risk assessment and management

6.1 Nature of the work

Influenza vaccine production in embryonated hens’ eggs or cell culture requires the propagation of live virus. In most cases, the generation of CVVs will result in viruses that are expected to be attenuated in humans (10, 24). Several steps in the manufacturing process have the potential to generate aerosols containing live virus. The virus concentration in aerosols will depend on the specific production step; it is highest during the harvest of infectious allantoic fluid and much lower during seed virus preparation and egg inoculation, both of which use small amounts of liquid containing virus or very dilute virus suspensions. Appropriate biosecurity and biosafety measures (e.g. the use of laminar air flows, biological safety cabinets with HEPA filtration, cleaning and decontamination of equipment, waste management and spill kits) must be in place to prevent accidental exposure in the work environment and the release of virus into the general environment.

6.2 Health protection

6.2.1 Likelihood of harm to human health

Wild-type influenza viruses are able to infect humans and cause serious illness; however, many of the viruses used for producing vaccines are CVVs in an attenuating donor backbone (e.g. A/PR/8/34, A/Ann Arbor/6/60 or A/Leningrad/134/17/57) and so the resulting CVV will have a low probability of causing harm to human health.

Vaccine manufacture requires adherence to both GMP and appropriate biosafety requirements for biological products, as well as related national regulations, technical standards and guidelines. GMP protects the product from the operator, and protects the operator and the environment from the infectious agent, thus reducing the risk of any hazard associated with production. Reassortants derived from PR8 backbone donor viruses have been used routinely for producing inactivated
influenza vaccines for over 40 years. This work usually requires thousands of litres of infectious egg allantoic fluid, which can create substantial aerosols of reassortant virus within manufacturing plants. Although manufacturing staff may be susceptible to infection with these virus aerosols, there have been no anecdotal or documented cases of work-related human illness resulting from occupational exposure to the reassortant viruses described above. Similarly, reassortants derived from the A/Ann Arbor/6/60 and A/Leningrad/134/17/57 viruses have been used for the production of LAIV for many years, yet no anecdotal or documented cases of work-related human illness related to these viruses have been reported. While no study has yet been undertaken to detect asymptomatic infections caused by either PR8-derived or live-attenuated viruses, the attenuation status of these CVVs continues to be supported by their excellent safety record.

The use of pandemic CVVs that express avian influenza genes may lead to potential consequences for agricultural systems. For instance, if influenza A H5 or H7 viruses or any influenza A virus with an IVPI greater than 1.2 are introduced into poultry (61), OIE must be notified of the presence of infection and this could lead to the implementation of biosecurity measures aimed at preventing the spread of disease (59, 61). Moreover, infection of birds other than poultry (including wild birds) with influenza A viruses of high pathogenicity must also be reported to OIE.

6.2.2 Vaccine production in eggs

Influenza vaccine has been produced in embryonated hens’ eggs since the early 1940s. Much experience has been gained since then; some facilities are capable of handling large numbers of eggs on a daily basis with the aid of mechanized egg handling, inoculation and harvesting machines.

Hazards may occur during production stages and/or laboratory quality control activities prior to virus inactivation. During egg inoculation the virus used is dilute and relatively small in volume. When the eggs are opened to harvest the allantoic fluid, the open nature of this operation may result in hazardous exposure to aerosols and spills. Afterwards the allantoic fluid is handled in closed vessels and so the hazards arising from live virus during subsequent processing and virus inactivation (if used) are less than during virus harvest. Collection and disposal of egg waste is potentially a significant environmental hazard. Safe disposal of the waste from egg-grown vaccines, both within the plant and outside, is therefore critical.
6.2.3 Vaccine production in cell culture

For pandemic influenza vaccines produced on cell cultures, the biosafety risks associated with manufacturing will depend primarily on the nature of the cell culture system. Closed systems such as bioreactors usually present little or no opportunity for exposure to live virus during normal operation; however, additional safety measures must be taken during procedures for adding samples to the bioreactor or removing them from it. Virus production in roller bottles and cell culture flasks may allow for exposure to live virus through aerosols, spills and other operations. Additional risks can be associated with the inactivation and disposal of the large quantities of contaminated liquid and solid waste, including cellular debris, generated by this method.

During passage in mammalian cells, it is possible that genetic mutations may be selected in pandemic and IVPP CVVs that render them more adapted to humans. These changes are most likely to occur within or close to the receptor-binding domain of the HA glycoprotein. Sequence analysis may detect such changes, but whether these changes affect the ability of a mutant virus to cause infection in humans is not well established. Beare et al. (32) tried to de-attenuate a PR8 virus by multiple passage in organ cultures of human tissue but failed. Another study, with Madin Darby Canine Kidney (MDCK) cells, showed that human viruses that had retained α2,6 receptor (human-like) specificity were likely to mutate to an α2,3 specificity (avian-like) upon passage as this provided a replicative advantage over MDCK cells (62). Overall, the hazards arising from the inherent properties of a reassortant or wild-type virus are likely to be greater than the probability of the virus adapting to a more human-like phenotype in cell culture.

6.2.4 Hazards from the vaccine

Inactivated pandemic influenza vaccines present no biosafety risks beyond the manufacturing process, provided that the results of the inactivation steps show complete virus inactivation, rendering the virus incapable of replication.

In an interpandemic or pandemic alert period, pilot-scale live attenuated pandemic influenza vaccines may be developed for clinical evaluation. The biosafety risks associated with virus shedding or other unintentional release of virus into the environment following vaccination should be carefully assessed. Based on this risk assessment, subjects participating in clinical trials in the interpandemic or pandemic alert phases should be kept in clinical isolation. If this is not done, indirect hazards for humans could arise.
While it is very unlikely that a LAIV will be harmful to humans, an indirect potential hazard may exist through secondary reassortment with a human or animal influenza virus, as discussed in section 4.1.3.3.

Evidence to date indicates that the probability of generating secondary reassortants is very low (63). Moreover, containment procedures have significantly improved over the last 40 years and production staff can be vaccinated to reduce the chances of acquiring an infection with a circulating wild-type seasonal virus, thus minimizing the risk of secondary reassortment. In addition, appropriate personal protective equipment (PPE) can also be provided.

6.3 Environmental protection
6.3.1 Environmental considerations

Influenza A viruses are enzootic or epizootic in some farm animals (poultry, pigs and horses) and some populations of wild birds – particularly birds of the families Anseriformes (ducks, geese and swans) and Charadriiformes (shorebirds) (64).

Several avian influenza A viruses (especially H5 and H7) can be highly pathogenic in poultry. In addition, sporadic infections by influenza A viruses have been reported in other species, including farmed mink, wild whales, seals, captive populations of wild cats (tigers and leopards) (65) and domestic cats (66) and dogs (67). In big cats, infection has been reported following the consumption of dead chickens infected with A(H5N1) viruses.

It is expected that many IVPP will have avian receptor specificity and thus birds would theoretically be most susceptible. Many studies indicate that viruses with PR8 backbones are attenuated in chickens. For instance, a reassortant containing an HA with a single basic amino acid at the cleavage site, an NA from the 1997 Hong Kong A(H5N1) virus and the genes coding for the internal protein genes of a PR8 virus, was barely able to replicate in chickens and was not lethal (68). Similarly, a 6:2 PR8 reassortant that contained a 2003 Hong Kong A(H5N1) HA did not replicate or cause signs of disease in chickens (55). The removal of the multiple basic amino acids at the HA cleavage site in these H5/PR8 reassortants probably played a major role in reducing the risk for chickens.
It is likely that the temperature-sensitive phenotype of cold-adapted vaccine viruses would limit replication of these viruses in avian species due to the elevated body temperature of birds. Pigs, however, have both α2,3 and α2,6-linked sialic acid receptors in abundance (69) and, in the absence of direct evidence to the contrary, must be considered susceptible to most influenza A viruses, including LAIV and PR8 reassortants.

6.4 Assignment of containment level

Definition of containment conditions must be based on an activity-based risk assessment, taking into account the scale of manipulations, the titres of live virus and whether an activity involves virus amplification. Biosafety control measures must be reconciled with rules and regulations governing the manufacture and testing of medicinal products under GMP (70). It should be noted that biosafety control measures apply to manipulations involving live virus; such measures no longer apply once a virus has been inactivated by a validated process.

The generation of reassortant CVVs from HPAI viruses typically takes place in BSL3 enhanced (or BSL4) facilities, as advised by WHO (70) or competent national authorities. Special consideration should be given to the hazards associated with cell culture production and quality control of vaccines made from HPAI wild-type CVVs. In view of the open nature of large-scale egg-based vaccine production, it is not feasible to operate in BSL3 enhanced conditions. Therefore, egg-based vaccine production from HPAI wild-type viruses is not recommended.

Because of the hazards associated with egg- and cell-culture vaccine production and quality control associated with classic or RG-derived reassortant CVVs that are known to be attenuated (see section 5.1), the production facility should have a BSL2 enhanced containment level, as specified in section 6.5.1. Under defined circumstances, CVVs for which safety testing has not yet been completed may be used in production facilities that comply with containment level BSL2 enhanced production facilities with additional controls, as specified in section 6.5.2, with the approval of the national regulatory authority. The parts of the facility where such work (both production and quality control) is carried out should meet national and OIE requirements for containment, which include biosafety and biosecurity requirements and environmental controls that limit the introduction into, and spread within, animal populations (59). This should be agreed with the WHO expert committee and competent national authorities (71, 72). This applies
to both pilot-scale and large-scale production during the interpandemic phase and pandemic alert
periods (71). Any subsequent relaxation of the containment level to the standard used for
seasonal vaccine production must be authorized by the competent national authorities on a case-
by-case basis after evaluating the risks.

6.5 Environmental control measures
Containment measures to prevent the release of live virus into the environment should be
established on the basis of a risk assessment specific to the virus, the production system and
relevant biosafety guidelines – either those of national regulatory authorities or of WHO.

Local biosafety/biosecurity regulations provide guidance on the disposal of potentially infectious
waste. In particular, contaminated waste from production facilities may reach very high virus
titres. All decontamination methods must be validated. If possible, decontamination of waste
should take place on site. Where this is not possible, it is the responsibility of the manufacturer to
contain material safely during transport prior to off-site decontamination. Guidance on regulations
for the transport of infectious substances is available from WHO (18) and from competent national
authorities. In all cases the procedures must be validated to ensure that they function at the scale of
manufacturing. Stringent measures to control rodents, other mammals and birds must also be in
place.

Each manufacturer should also assess the risk of contaminating birds, horses, pigs or other
susceptible animals if they are likely to be in the vicinity of the manufacturing plant. Following
occupational exposure, staff or other personnel entering an area potentially exposed to live virus
should avoid visiting pig, horse or bird facilities (e.g. farms, equestrian events, bird sanctuaries)
for at least 14 days following exposure. If conjunctivitis or respiratory signs and symptoms
suggest that influenza might develop during this 14-day period, the quarantine period should last
for 14 days (twice the expected time for virus shedding) after the signs and symptoms have
resolved (73).

6.5.1 Specifications for BSL2 enhanced production facilities
In addition to the principles for BSL2 facilities that are specified in WHO’s Laboratory biosafety
manual (11), specifications for BSL2 enhanced facilities include those described below.
6.5.1.1 Facility

The facility should be designed and operated to protect the recipients of the vaccine, the staff producing and testing the vaccine, the environment and the population at large. Different solutions may be needed according to the risks inherent in the operation(s) conducted in the area.

Specialized engineering solutions will be required that may include:

- use of relative negative pressure biosafety cabinets;
- use of high-efficiency particulate air (HEPA) filtration of air prior to its exhaust into public areas or the environment;
- room pressure cascades designed to contain live virus safely while also protecting the product (A net negative pressure between the atmosphere and areas where live virus is handled can be separated by an area of positive pressure (barrier) higher than the pressure in the atmosphere and areas where live virus is handled. Alternatively, a negative pressure barrier can be built where live virus is trapped before it escapes into the atmosphere and is removed from the trap with the air flow through HEPA filters.

In addition, the following decontamination procedures should take place:

- decontamination of all waste from BSL2 enhanced (pandemic influenza vaccine) areas;
- decontamination of all potentially contaminated areas at the end of a production campaign through cleaning and validated decontamination (e.g. fumigation).

6.5.1.2 Personal protection

A range of personal protection measures should be in place, including the following:

- Full-body protective laboratory clothing (e.g. Tyvek® disposable overalls) should be available.
- If activities cannot be contained by primary containment and open activities are being conducted, the use of respiratory protective equipment which can be checked for close facial fit, such as FFP2 (e.g. N95), FFP3 (75) respirators, is required. Minimal specifications for the filtering/absorbing capacity of such equipment should be met and masks, if used, must be fitted properly and the correctness of fit tested.
- All personnel, including support staff and others who may enter the production or quality control areas where CVVs, pandemic viruses and IVPP are handled, should sign a written document in which they agree not to have any contact with susceptible animals (e.g. ferrets or farm animals, especially birds, horses and pigs) for 14 days after leaving the facility where vaccine has been produced. If conjunctivitis or respiratory signs and symptoms suggesting
influenza develop during this 14-day period, the period should be extended to 14 days after the
signs and symptoms have resolved (59). Currently the risks involved in contact with household
dogs and cats are not considered to be significant, but the scientific evidence on this risk is
sparse.

- It is strongly recommended that staff should be vaccinated with seasonal influenza vaccines.
- If vaccines targeting the virus in production are available and marketing authorization has been
received, vaccination with these vaccines is recommended for staff before large-scale vaccine
production commences.
- A medical surveillance programme of staff should be established prior to manufacturing
activities. Antiviral medicines should always be available in case of accidental exposure.
Where these medicines are available only on prescription, access to prescribing
doctors/hospitals and to stocks of medication should be ensured.

6.5.1.3 Monitoring of decontamination

Cleaning and decontamination methods must be validated and reviewed periodically as part of a
master plan to demonstrate that the protocols, reagents and equipment used are effective in
inactivating pandemic influenza virus on all surfaces, garments of personnel, waste materials and
storage containers. Once decontamination protocols for influenza virus have been fully described
and validated, there is no need to repeat a validation study for each new influenza virus.
Validation studies using influenza viruses may be supplemented by studies with biological (e.g.
bacterial) markers selected to be more difficult to inactivate than influenza virus.

6.5.2 Specifications for BSL2 enhanced production facilities with additional controls

It is assumed that ferret pathogenicity testing will be conducted on all CVVs of unknown
pathogenicity, even given the assumptions above (section 5.1) regarding the low probability that a
PR8 reassortant virus or LAIV is pathogenic for humans. This assumption is based on current
experience related to reassortants of HA subtypes other than H1 and H3 (i.e. H5, H7 and H9). A
facility must meet requirements for protecting personnel who handle potentially dangerous micro-
organisms. WHO’s *Laboratory biosafety manual (11)* includes a risk survey that can be
undertaken prior to rating a laboratory space as either BSL1, BSL2 or BSL3. Similar requirements
can be found in the European Directive 2000/54/EC (2007) (72) on the protection of workers from
risks related to exposure to biological agents at work, and the United States Biosafety in microbiological and biomedical laboratories guide (fifth edition 5) (74).

Large-scale vaccine manufacturing using a CVV before its safety testing is complete can be considered if justified by evolving virological, epidemiological and clinical data as well as national and international regulatory requirements regarding the shipment, receipt and handling of infectious substances.

Following review of the requirements for Biosafety at BSL3, a facility that meets the criteria detailed below and that has the noted operator protection in place could be considered suitable to manufacture vaccine at large scale using a CVV prepared by RG or classical reassortant methodology, before safety testing is complete and with the approval of the national regulatory authority.

6.5.2.1 Facility

The facility should be designed and operated to meet the demands of protecting the recipient of the vaccine, the staff producing and testing the vaccine, and the environment. This will require specialized engineering solutions that may include the following:

- Appropriate signage and labelling must be in place regarding the activities being carried out when a virus is in use while the safety testing is being completed.

- The facility must be designed and constructed as a contained GMP space. The surfaces and finishes must comply with GMP requirements (70) that ensure they can be sealed and easily cleaned and decontaminated.

- The air cascades within the facility should be such that any live virus can be contained within the work zones in which it is being used. All work with infectious virus must be conducted within these contained zones.

- Access to the contained areas must be via double-door entry airlocks. The airlocks should operate at a pressure that is either lower or higher than that on either side. In this way the airlocks become either a “sink” or a pressure barrier, containing the flow of air within the facility. In the case where the airlocks provide a low-pressure sink, the entry and exit doors should be interlocked or fitted with a suitable delay or alarm system to prevent both being opened at the same time. It is also acceptable if the airlocks are part of a series of increasing negative pressure. The air pressure cascade within the negative-pressure contained zone should comply with GMP (i.e. higher pressures in cleanest zones) requirements for clean rooms.
• All supply and exhaust air must be passed through HEPA filtration while maintaining all required containment and GMP conditions. Air-handling systems within the facility must be rigorously assessed to ensure that they protect against potential failure. Fail-safe systems must be installed wherever necessary. The facility should be constantly monitored to ensure that appropriate room pressure differentials are maintained.

• All reusable equipment should be cleaned in place, decontaminated by means of autoclaving, or otherwise cleaned and decontaminated by validated, dedicated systems prior to reuse.

• Areas of potential liquid spill, including waste treatment plants and processes, should be assessed and bunded to ensure that any spill is contained. Procedures must be in place to ensure that spills are contained, areas are cleaned and contaminated materials are properly disposed of in order not to compromise the integrity of the facility.

• The entry of materials into contained zones should be via separately HEPA-filtered, interlocked, double-ended “pass-through cabinets” or double-ended autoclaves.

• All facility waste, including egg waste, should be discarded via validated on-site waste effluent systems or by autoclaving. Any items which pass from the external environment to the manufacturing process and are later returned to the external environment (e.g. egg trays) must receive special attention. Dedicated washing and decontamination of equipment and/or procedures must be provided and fully validated.

6.5.2.2 Personal protection

• All clothing worn outside the facility should be replaced by manufacturing-facility garments on entry into the facility.

• Gowning in areas in which live virus is handled should always include full suit, overshoes, eye protection and double gloves.

• Suitable PPE (full hood powered air-purifying respirators based on the risk assessment) should be provided for all personnel working in containment areas within the manufacturing facility. The hoods are to be worn at all times when the facility is in operation under these enhanced biosafety requirements.

• All facility clothing is to be removed on exit, with soiled clothing removed from the facility via a decontamination autoclave or similar method. The surfaces of respirator hoods should be decontaminated.
• Specific procedures should be developed and implemented for operation of the facility under enhanced biosecurity conditions.

• It is strongly recommended that staff are vaccinated with a seasonal influenza vaccine. In the case of pandemic viruses and IVPP and before large-scale vaccine production is attempted, pilot lots of vaccine may already have been produced. If they are available and if marketing authorization has been received, vaccination of staff against the virus being produced is recommended before large-scale production begins.

• Procedures should be in place to provide antiviral treatment whenever warranted (e.g. accidental exposure).

• On-site occupational health and safety and medical support should be maximized by providing medical consultation and training in recognizing influenza-like symptoms plus out-of-hours referral to medical facilities with quarantine capabilities.

• It is recommended staff should take showers on exiting the facility. Showers are mandatory for staff who may have been accidently exposed to vaccine virus.

• All personnel who enter production or quality control areas where live pandemic viruses and IVPP may be handled should sign their agreement to a written instruction not to have contact with susceptible animals (including poultry, pigs, horses, ferrets and non-human primates) for 14 days following departure from the facility where vaccine has been produced. If conjunctivitis or respiratory signs and symptoms indicating the possibility of influenza develop during this 14-day period, this period should be extended to 14 days after the signs and symptoms resolve. The risks involved in contact with domestic dogs and cats are not significant, but scientific evidence on this is sparse.

6.6 Biosafety management and implementation within a vaccine production facility

6.6.1 Management structure

Implementation of these guidelines requires that the institution employs a biosafety officer who is knowledgeable about large-scale virus production and containment but whose reporting responsibilities are independent of the production unit. The biosafety officer is responsible for overseeing the implementation of biosafety practices, policies and emergency procedures within the company or organization and should report directly to the highest management level. A biosafety officer is needed in addition to a qualified person who, in some countries, has overall responsibility for a medicinal product.
A Biosafety Committee that includes representatives of the virus production and quality control units should be responsible for reviewing the biosafety status of the company and for coordinating preventive and corrective measures. The institutional biosafety officer must be a member of the committee. The committee chairperson should be independent of both the production and quality control units. The Biosafety Committee should report to the executive management of the manufacturing company to ensure that adequate priority is given and resources are available to implement the required measures.

6.6.2 Medical surveillance

Manufacturers of vaccines to protect against human pandemic influenza viruses and IVPP should provide training to their occupational health professionals in recognizing the clinical signs and symptoms of influenza. Company physicians, nurses and vaccine manufacturing supervisors and staff must make decisions on the health of personnel who are associated with manufacturing and testing of these vaccines. Local medical practitioners caring for personnel from the manufacturing site should receive special training in the diagnosis and management of pandemic influenza infection and should have access to rapid influenza diagnostic kits and a laboratory that performs molecular diagnosis (e.g. real-time PCR) of influenza. Any manufacturer starting large-scale production should have documented procedures – including diagnostic procedures and prescribed treatment protocols – for dealing with influenza-like illness affecting the staff and their family members. Manufacturers should ensure that staff understand their obligation to seek medical attention for any influenza-like illness and to report it to the occupational health department or equivalent. Manufacturers should ensure that antiviral treatment is available if warranted (e.g. in the case of accidental exposure) and should have defined arrangements for advising staff with any influenza-like illness.

6.6.3 Implementation

A comprehensive risk analysis should be conducted to define possible sources of contamination of personnel or the environment that may arise from the production or testing of live influenza virus. The analysis should take into account the concentration, volume and stability of the virus at the site, the potential for inhalation or injection that could result from accidents, and the potential consequences of a major or minor system failure. The procedural and technical measures
necessary to reduce the risk to workers and to the environment should be considered as part of this
analysis, and the results should be documented.

A comprehensive biosafety manual or equivalent document must be published and implemented.
The manual should fully describe the biosafety aspects of the production process and the quality
control activities. It should define such items as emergency procedures, waste disposal, and the
safety practices and procedures that have been identified in the risk analysis. The manual must be
made available to all staff of the production and quality control units, and at least one copy must
be present in the containment area(s). The manual should be reviewed and updated when changes
occur and in and in any case at least every two years.

Comprehensive guidelines outlining the response to biosafety emergencies, spills and accidents
should be prepared and should be made available to key personnel both for information and for
coordination with emergency response units. Rehearsals of emergency response procedures are
helpful. The guidelines should be reviewed and updated at a defined frequency (e.g. annually).

The implementation of the appropriate biosafety level status in the production and testing facilities
should be verified through an independent assessment. National requirements concerning
verification mechanisms should be in place and must be followed.

Authors and acknowledgements

The first draft was prepared by Dr G. Grohmann, University of Sydney, Australia and Dr T. Zhou,
World Health Organization, Switzerland with critical input from Dr O.G. Engelhardt, National
Institutes for Biological Standards and Control, Medicines and Healthcare Products Regulatory
Agency, United Kingdom; Dr J.M. Katz, Centers for Disease Control and Prevention, USA; Dr R.
Webby, University of Tennessee, USA and Dr J. Weir, Food and Drug Administration, USA
based on input from the participants of the Working Group Meeting on Revision of WHO TRS
941, Annex 5: WHO Biosafety Risk Assessment and Guidelines for the Production and Quality
Control of Human Influenza Pandemic Vaccines, held on 9–10 May 2017:

Othmar G Engelhardt, National Institute for Biological Standards and Control, Medicines and
Healthcare products Regulatory Agency, Potters Bar, United Kingdom; Glen Gifford; World
Organisation for Animal Health (OIE), France; Shigeyuki Itamura, Centre for Influenza Virus
Acknowledgments are due to the following experts/institutes who provided written comments in response to the posting of the first draft document on the WHO Biologicals website during November 2017 - February 2018 for the first round of public consultation:

Dr J. Southern, MCC South Africa; Mr D. Laframboise, Public Health Agency of Canada, Canada; PT Bio Farma (Persero), Indonesia; Dr T.M. Tumpey, Centers for Disease Control and Prevention, USA; Dr R. Shivji, European Medicines Agency, United Kingdom; International Federation of Pharmaceutical Manufacturers & Associations comments provided by Ms P. Barbosa; Dr C. Thompson and Dr M. Zambon, Public Health England, United Kingdom;
Comments collected by Dr R. Donis, Biomedical Advanced Research and Development Authority, USA, including comments from Mr M. Sharkey, Aveshka, Inc., Rober Fisher, USA; Dr L.R. Yeolekar, Serum Institute of India; comments provided by WHO Vaccines Assessment Group in Prequalification Team, Department of Essential Medicines and Health Products; and Dr K. Kojima, Biosafety Group, World Health Organization, Switzerland.

A second draft was prepared by Dr G. Grohmann, University of Sydney, Australia and Dr T. Zhou, World Health Organization, Switzerland with critical input from Dr O.G. Engelhardt, National Institutes for Biological Standards and Control, United Kingdom; Dr J.M. Katz, Centers for Disease Control and Prevention, USA; Dr R. Webby, University of Tennessee, USA and Dr J. Weir, Food and Drug Administration, USA taking into consideration the outcomes of the WHO meeting “Informal consultation on WHO biosafety risk assessment and guidelines for the production and quality control of novel human influenza candidate vaccine viruses and pandemic vaccines”, Geneva, Switzerland 23–24 April 2018. Acknowledgements are due to input from the following participants: Mr P. Akarapanon, Ministry of Public Health, Thailand; Dr D. Bucher, New York Medical College, USA; Dr O.G. Engelhardt, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, United Kingdom; Dr G. Grohmann, University of Sydney, Australia; Dr S. Gupta, National Centre for Disease Control, India; Dr S. Itamura, National Institute of Infectious Diseases, Japan; Mr D. Laframboise, Public Health Agency of Canada, Canada; Dr J. McCauley, The Francis Crick Institute, United Kingdom; Dr G. Pavade, World Organisation for Animal Health, France; Dr M. Sergeeva, Ministry of Health of Russia, Russian Federation; Dr N.T.T. Thuy, Drug Registration Division, Viet Nam; Dr R. Wagner, Paul-Ehrlich-Institut, Germany; Dr D. Wang, Chinese Center for Disease Control and Prevention, China; Dr R. Webby, University of Tennessee, USA; Dr J. Weir, Food and Drug Administration, USA; Dr J. Yoon, Ministry of Food and Drug Safety, Republic of Korea; Dr M. Zambon, Public Health England, United Kingdom. Representatives of the International Federation of Pharmaceutical Manufacturers & Associations: Dr M. Downham, AstraZeneca/Medimmune, United Kingdom; Dr L. Gerentes, Sanofi Pasteur, France; Dr E. Neumeier, GSK Vaccines, Germany; Dr B. Taylor, Seqirus, United Kingdom. Representatives of Developing Countries Vaccine Manufacturers Network (including WHO pandemic influenza Global Action Plan manufacturers): Dr L. Yeolekar, Serum Institute of India, India; Dr I.G. Setiadi, Biofarma, Indonesia; Ms V. Fongaro Botosso, Instituto Butantan, Brazil; Dr D. Huu Thai, Institute of Vaccines and Medical Biologicals, Viet Nam; Dr K. Kojima, World Health Organization, Switzerland; Dr I. Knezevic, World Health Organization, Switzerland; Dr J. Shin,
References

73. lau ll, cowling bj, fang vj, chan kh, lau eh, lipsitch m. viral shedding and clinical illness in naturally acquired influenza virus infections. j infect dis. 2010;201(10):1509–16.

Appendix 1

Testing for attenuation of influenza CVVs in ferrets

Laboratories testing for attenuation of CVVs in ferrets should make use of a panel of standard/reference viruses (“pathogenicity standards” in the following section) with defined experimental outcomes for pathogenicity testing. The pathogenicity standards (to be established by WHO laboratories) serve as benchmarks for the pathogenicity test in ferrets and delineate the expected outcomes. The use of these standards will ensure that attenuation of CVVs is being measured against common parameters independently of subtype. The CVV to be tested must show parameters of pathogenicity that are below the predefined values of a high pathogenicity standard and are in line with the values of an attenuation standard in order to be designated as attenuated. Comparative attenuation with the parental wild-type virus is not necessary in this case. However, laboratories that have the capacity to evaluate attenuation of a CVV compared with the parental wild-type virus can continue to do so. To account for the expected experimental variability of results across different laboratories, the pathogenicity standards can be tested in ferrets at each testing laboratory according to the experimental protocol shown below when establishing the ferret model for pathogenicity testing and at regular intervals thereafter. The outcomes of these tests should fall within the limits described for the pathogenicity standards. In cases of discrepancy, a review of the ferret model should be conducted and advice should be sought from experienced WHO laboratories.

Test virus

The 50% egg or tissue culture infectious dose (e.g. EID\(_{50}\), TCID\(_{50}\)) or plaque-forming units (PFU) of the reassortant CVV or pathogenicity standard will be determined. The infectivity titres of viruses should be sufficiently high to allow infection with \(10^7\) to \(10^6\) EID\(_{50}\), TCID\(_{50}\) or PFU of virus and diluted not less than 1:10. Where possible, the pathogenic properties of the donor PR8 should be characterized thoroughly in each laboratory.

Laboratory facility

Animal studies with the CVV and the pathogenicity standards should be conducted in animal containment facilities in accordance with the proposed containment levels shown in Table 1. For untested CVVs, the biocontainment level to be used for the ferret safety test is the one shown for the respective wild-type virus. In specific cases, such as for CVVs derived from synthetic DNA
representing H5 and H7 HPAI viruses, the containment level may be lowered based on a virus-specific risk assessment. An appropriate occupational health policy should be in place.

Experimental procedure

Outbred ferrets 4–12 months of age that are serologically negative for currently circulating influenza A and B viruses and the test virus strain are anaesthetized by either intramuscular administration of a mixture of sedatives (e.g. ketamine [25 mg/kg] and xylazine [2 mg/kg] and atropine [0.05 mg/kg]) or by suitable inhalant anaesthetics. A standard virus dose of 10^7 to 10^6 EID₅₀ (or TCID₅₀ or PFU) in 0.5–1 mL of phosphate-buffered saline is used to inoculate animals. The dose should be the same as that used for pathogenicity studies with the wild-type parental virus, if used, or the pathogenicity standards previously characterized and regularly assessed in the laboratory. The virus is slowly administered into the nares of the sedated animals, reducing the risk of virus being swallowed or expelled. A group of 4–6 ferrets should be inoculated. One group of 2–3 animals should be euthanized on day 3 or day 4 after inoculation and samples should be collected for estimation of virus replication from the following organs: spleen, intestine, lungs (samples from each lobe and pooled), brain (anterior and posterior sections sampled and pooled), olfactory bulb of the brain, and nasal turbinates. If gross pathology demonstrates lung lesions similar to those observed in wild-type viruses or established standards, it is recommended that additional lung samples be collected and processed with haematoxylin and eosin staining for histopathological evaluation. The remaining brain tissue should be collected for histopathological evaluation in the event that infectious virus is detected in this tissue. The remaining animals are observed for clinical signs, which may include weight loss, lethargy (based on a previously published index) (1), respiratory and neurological signs and increased body temperature. Collection of nasal washes from animals anaesthetized as indicated above should be performed to determine the level of virus replication in the upper airways on alternate days after inoculation for up to seven days. At the termination of the experiment on day 14 after inoculation, a necropsy should be performed on at least two animals and organs should be collected. If signs of substantial gross pathology are observed (e.g. lung lesions), the organ samples should be processed as described above for histopathology.

Expected outcome

Clinical signs of disease, such as lethargy and/or weight loss, should be within the predefined ranges of acceptable pathogenicity defined by the pathogenicity standards, and histopathology of
the lungs should demonstrate attenuation when compared to wild-type viruses or established standards. Viral titres of the vaccine strain in respiratory samples should be within the ranges of acceptable virus replication defined by the pathogenicity standards. Replication of the CVV should be restricted to the respiratory tract. Virus isolation from the brain is not expected. However, detection of virus in the brain has been reported for some seasonal A(H3N2) viruses (2) where virus was detected in the olfactory bulb. Consequently, if virus is detected in the anterior or posterior regions of the brain (excluding the olfactory bulb) the significance of such a finding may be confirmed by performing immunohistochemistry to detect viral antigen and/or histopathological analysis of brain tissue collected on day 3 or day 4 and on day 14 after inoculation. The detection of viral antigen and/or neurological lesions in brain tissue would confirm virus replication in the brain. The presence of neurological signs and confirmatory viral antigen and/or histopathology in brain tissue would indicate a lack of suitable attenuation of the CVV.

A model table for reporting results of ferret tests is provided below (Table 1) with the intention of harmonizing the data reporting between CVV testing laboratories.
<table>
<thead>
<tr>
<th>Virus</th>
<th>Dose (EID$_{50}$)*</th>
<th>Number of animals</th>
<th>Number of animals with clinical signs to day 14 post-inoculation</th>
<th>Mean maximum % weight loss</th>
<th>Respiratory tract viral titers (log${10}$EID${50}$/mL or TCID$_{50}$)**</th>
<th>Lung lesions (day 3/4),d</th>
<th>Lung lesions (day 14),d</th>
<th>Detection of virus in other organ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference virus(es)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Indicate whether dose is expressed as EID$_{50}$, TCID$_{50}$ or PFU.

b Indicate whether respiratory viral titres are expressed as EID$_{50}$, TCID$_{50}$ or PFU per mL or g. Give lower limit of detection.

c Score gross pathological lung lesions as -, + (≤20%), ++ (>20 and < 70%), +++ (>70%).

d Indicate outcome of any histopathology evaluation.

e Indicate organ or not detected.

References for Appendix 1
