EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION
Geneva, 13 to 17 October 2014

Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccine (inactivated)

Proposed replacement of: TRS 910, Annex 2

NOTE:

This document has been prepared for the purpose of inviting comments and suggestions on the proposals contained therein, which will then be considered by the Expert Committee on Biological Standardization (ECBS). Publication of this draft is intended to provide information about the proposed WHO Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccine (inactivated) to a broad audience and to improve transparency of the consultation process.

The text in its present form does not necessarily represent an agreed formulation of the Expert Committee. Written comments proposing modifications to this text MUST be received by 22 September 2014 in the Comment Form available separately and should be addressed to the World Health Organization, 1211 Geneva 27, Switzerland, attention: Department of Essential Medicines and Health Products (EMP). Comments may also be submitted electronically to the Responsible Officer: Dr TieQun Zhou at email: zhout@who.int.

The outcome of the deliberations of the Expert Committee will be published in the WHO Technical Report Series. The final agreed formulation of the document will be edited to be in conformity with the "WHO style guide" (WHO/IMD/PUB/04.1).

© World Health Organization 2014
All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. The named authors alone are responsible for the views expressed in this publication.

Recommendations and guidelines published by WHO are intended to be scientific and advisory in nature. Each of the following sections constitutes guidance for national regulatory authorities (NRAs) and for manufacturers of biological products. If an NRA so desires, these Guidelines may be adopted as definitive national requirements, or modifications may be justified and made by the NRA. It is recommended that modifications to these Recommendations be made only on condition that modifications ensure that the vaccine is at least as safe and efficacious as that prepared in accordance with the recommendations set out below. The parts of each section printed in small type are comments or examples for additional guidance intended for manufacturers and NRAs, which may benefit from those details.
Contents

1 Introduction ... 5
2 Scope ... 6
3 General considerations .. 7
4 Part A. Manufacturing recommendations .. 12
 A.1 Definitions .. 12
 A.2 General manufacturing recommendations .. 17
 A.3 Control of source materials ... 17
 A.4 Control of vaccine production .. 25
 A.5 Filling and containers ... 42
 A.6 Control tests on the final lot ... 42
 A.7 Records ... 45
 A.8 Retained samples ... 45
 A.9 Labelling .. 45
 A.10 Distribution and shipping ... 46
 A.11 Stability, storage and expiry date ... 46
5 Part B. Nonclinical evaluation of poliomyelitis vaccines (inactivated) ... 47
 B.1 Characterization of poliovirus seed lots derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology) ... 48
 B.2 Antigenic profile .. 48
 B.3 D-antigen content of IPV derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology) .. 49
 B.4 Evaluation of immunogenicity in animal models ... 49
 B.5 Nonclinical safety studies ... 50
6 Part C. Clinical evaluation of poliomyelitis vaccine (inactivated) .. 50
 C.1 General considerations ... 50
 C.2 Immunogenicity studies .. 51
 C.3 Concomitant administration with other vaccines .. 54
 C.4 Pre-licensure safety data ... 55
 C.5 Post-marketing studies and surveillance .. 55
7 Part D. Recommendations for national regulatory authorities .. 56
 D.1 General .. 56
 D.2 Official release and certification ... 56
8 Authors and acknowledgements .. 58
9 References ... 65
Appendix 1 ... 73
Appendix 2 ... 81
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In vivo potency assay of IPV.</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>Appendix 3</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Model summary protocol for manufacture and control of poliomyelitis vaccine (inactivated)</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>Appendix 4</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>Model certificate for the release of poliomyelitis vaccine (inactivated) by national regulatory authorities</td>
<td>106</td>
</tr>
</tbody>
</table>
Introduction

The requirements for inactivated poliomyelitis vaccine (IPV) were first formulated in 1959 (1) and revised in 1965 (2). Following several advances in vaccine production technology, the requirements were further updated in 1981 (3) and amended in 1985 (4). At that time, the introduction of continuous cells for the manufacture of IPV was a novel development. Therefore, when the regulatory control of products manufactured in continuous cells had been standardized, the requirements were again updated in 2000 (5). An addendum was developed in 2003 (6), specifying the measures to be taken to minimize the accidental risk of reintroducing wild-type poliovirus from a vaccine manufacturing facility into the community after global certification of polio eradication.

Since the Recommendations for the production and control of poliomyelitis vaccine (inactivated) were last revised in 2000 (5) and in 2003 (6), there have been several changes in vaccine production, including the use of seed viruses derived from Sabin strains, which make a further revision of the recommendations necessary. To facilitate this process, a meeting to discuss the international specifications for IPV – attended by experts from academia, national regulatory authorities (NRAs)/national control laboratories (NCLs) and industry involved in the research, manufacture, authorization and testing/release of IPV around the world – was convened by WHO on 29 March 2012. During the discussions, critical issues were considered both for the quality control and evaluation of IPV (including Sabin-based IPV, or sIPV) and for the revision of the recommendations described in Annex 2 of WHO Technical Report Series 910 (5). WHO convened an international Technical Working Group meeting in Geneva on 14–15 May 2013 – attended by experts from academia, NRAs/NCLs and industry involved in the development, manufacture, authorization and testing/release of IPV, including sIPV and other new developments of novel IPV – to further discuss and reach consensus on critical issues relevant to the revision of Annex 2 of WHO Technical Report Series 910 (7). WHO organized an informal consultation at its headquarters in Geneva on 25–26 March 2014 – attended by academics, researchers, vaccine manufacturers and regulators involved in IPV development, production, evaluation and regulatory licensure – to review the draft recommendations prepared by the drafting group and to seek consensus on key technical and regulatory issues.

Major issues addressed in this revision include:
WHO/BS/2014.2233
Page 6

- an update of “General considerations” and other sections to reflect the future development of IPV in accordance with global programmatic need (e.g. use of Sabin strains and strains derived by recombinant DNA technology);
- inclusion of a new Appendix 1 to update the history of the different virus seed strains used by manufacturers for IPV production;
- an update of the section on international standards and reference preparations;
- an update of the section on general manufacturing recommendations and control tests;
- updated terminology;
- inclusion of specific tests for sIPV and IPV made from strains derived by recombinant DNA technology;
- an update of the appendices;
- inclusion of new sections on nonclinical and clinical evaluation of IPV.

Additional changes have been made to bring the document into line with other WHO recommendations published since the last revision.

Scope

This document provides guidance to NRAs and manufacturers on the quality and nonclinical and clinical aspects of IPV in order to ensure the quality, safety and efficacy of the vaccines. The scope of the present recommendations encompasses IPV derived from 1) the wild-type strains that have been used in the manufacture of IPV for many years; 2) the attenuated Sabin strains that have been used in the manufacture of oral poliomyelitis vaccine (OPV); and 3) new alternative poliovirus strains currently under development, including those derived by recombinant DNA technology.

This document does not cover vaccines which are based on virus-like particles (VLPs) and replicons. However, some aspects described in the current document may be relevant to these types of seeds and should be taken into consideration during vaccine development using such seeds.

This document should be read in conjunction with the relevant WHO guidelines such as those on nonclinical (8) and clinical evaluation (9) of vaccines.
Among the most significant changes in production has been the increasing use of IPV in combination with other vaccines, such as diphtheria toxoid (D) and tetanus toxoid (T), which raises considerations – such as interaction of the poliovirus antigens with other antigens and/or adjuvants – that do not apply when IPV is used as a stand-alone product. These considerations are dealt with in a separate WHO document (10) but not in the present Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccine (inactivated). However, to provide further guidance on control of the vaccine, key tests that may be influenced by other antigens and/or adjuvants in combined vaccines are identified.

General considerations

Poliomyelitis is an acute communicable disease of humans caused by three distinct poliovirus serotypes – types 1, 2 and 3 – distinguished by neutralization test (11). Poliovirus is classified as a species C human enterovirus of the Picornaviridae family and is composed of a single-stranded, positive-sense RNA genome and a protein capsid.

Where sanitation is poor, faecal-to-oral transmission predominates, whereas oral-to-oral transmission may be more common where standards of sanitation are high. In most settings, mixed patterns of transmission are likely to occur. In the pre-vaccine era, when poliovirus was the leading cause of permanent disability in children, virtually all children became infected by polioviruses. On average, in the absence of protection by humoral or maternal antibody, 1 in 200 susceptible individuals develops paralytic poliomyelitis (11).

Progress in polio control (and, since 1988, polio eradication) has been due mainly to the widespread use of vaccines. An inactivated poliomyelitis vaccine (IPV Salk vaccine, wIPV\(^1\)) was first licensed in 1955; live, attenuated oral poliomyelitis vaccine (OPV, Sabin vaccine) was licensed in the USA in 1961 as a monovalent (mOPV) vaccine, followed by a trivalent OPV (tOPV) licensed for use in 1963 (11). In May 1988, the World Health Assembly resolved to eradicate poliomyelitis globally by the year 2000 and the Global Polio Eradication Initiative (GPEI) was established. Sustained use of polio vaccines worldwide since 1988 has led to a

\(^1\)In this document the use of the abbreviation IPV refers to inactivated poliomyelitis vaccine derived from any strain. wIPV indicates inactivated poliomyelitis vaccine derived from wild-type strains only, and sIPV represents IPV derived from Sabin strains only.
precipitous drop in the global incidence of poliomyelitis by more than 99% \((11)\). Globally, the last case of poliomyelitis caused by naturally circulating wild poliovirus (WPV) type 2 (WPV2) occurred in India in 1999. No case due to WPV type 3 (WPV3) has been detected globally since 10 November 2012. Despite the overall success of the GPEI, in 2014 Afghanistan, Nigeria and Pakistan remain endemic for transmission of WPV type 1 (WPV1). The Horn of Africa, Cameroon, and parts of the Middle East (Egypt, Israel and Syria) also reported WPV1 circulation associated with imported WPV1 in 2013, resulting in clinical cases following a period of elimination \((11)\).

Given the progress towards polio eradication, countries have increasingly switched from using OPV to wIPV in routine immunization programmes, primarily in order to eliminate the burden of vaccine-associated paralytic poliomyelitis (VAPP), a rare adverse event associated with OPV. The incidence of VAPP has been estimated at 2–4 cases per million birth cohort per year in countries using OPV \((11)\). The sole use of wIPV successfully eradicated polio in some countries, notably the Netherlands and Scandinavia. In most of the countries that have introduced wIPV as the only poliomyelitis vaccine over the past decade, there has been no evidence of continued circulation of poliovirus strains, thus indicating that wIPV is able to inhibit community transmission of poliovirus. However, Israel, which switched to an all-IPV routine immunization schedule in 2004, reported detection of WPV1 in sewage samples from February 2013 onwards. However, no clinical cases of paralytic poliomyelitis had been reported in Israel, the West Bank or Gaza as of 31 December 2013 \((11, 12)\).

In addition to VAPP, the live polio strains in OPV, currently predominantly Sabin type 2, can occasionally revert to a transmissible form termed circulating vaccine-derived poliovirus \((cVDPV) (13, 14)\) which acts essentially the same as the wild type in causing poliomyelitis. This is an obvious threat to polio eradication that is not posed by the use of IPV.

The GPEI of WHO, in conjunction with its partners, developed the comprehensive Polio Eradication and Endgame Strategic Plan 2013–2018 with the goal of achieving a polio-free world by 2018 \((15)\). This plan involves detection of poliovirus, the interruption of spread, immunization strengthening, OPV withdrawal, containment, certification and legacy planning, and gives a timetable of events following the identification of the last wild-type poliovirus. Three of the key features of the GPEI strategic plan are the withdrawal of the type 2 OPV strain from
tOPV and the introduction of bivalent (types 1 and 3) OPV (bOPV), the introduction of routine
use of IPV for managing long-term poliovirus risks including type 2 cVDPV, and the cessation
of all OPV use following the global certification of total WPV serotype eradication (15).

Although the last type 2 WPV was detected in 1999, in 2013 eight countries reported cases of
paralytic poliomyelitis associated with cVDPVs, most of them derived from Sabin type 2 (11).
There are 250–500 VAPP cases per year and 40% are due to type 2 Sabin poliovirus. The need to
synchronize OPV cessation was identified in 2008, and withdrawal of the use of type 2 OPV and
the introduction of bOPV began in 2012 (15) in supplementary immunization activities or for
outbreak control. In 2012 the WHO Strategic Advisory Group of Experts on Immunization
(SAGE) recommended that all countries using OPV should introduce at least one dose of IPV in
their routine immunization programmes to mitigate the risks of withdrawal of OPV 2 (16). One
of the prerequisites for OPV 2 cessation is the availability of an affordable IPV option for all
OPV-using countries. This may include full dose, fractional dose and adjuvanted IPV, and the
intradermal use of IPV in addition to intramuscular/subcutaneous administration.

When poliomyelitis due to wild type and cVDPV polioviruses is eradicated (17), laboratories and
manufacturers that store or use wild type, vaccine-derived polioviruses, or any other related
viruses (materials) will become an important potential source of reintroduction of these viruses
into the community. To manage and control this risk, WHO is finalizing a Global Action Plan
that requires the implementation of appropriate primary safeguards of biorisk management with
poliovirus facility containment specifications, secondary safeguards of population immunity in
the country approving manufacturing operations, and tertiary safeguards of facility location in
countries with demonstrated good personal, domestic and environmental hygiene standards,
including closed sewage systems with effective effluent treatment (18).

To mitigate biosafety and biosecurity concerns associated with virulent wild-type viruses used in
the manufacture of wIPV, the use of attenuated strains for IPV production has been proposed
(19). Production of IPV from live-attenuated Sabin poliovirus seeds has been shown to be
technically feasible (20–24), and the first Sabin IPVs have been licensed in Japan in the form of
two combination vaccines. Manufacturers in various countries are establishing the production of
IPV from live-attenuated Sabin strains or IPV using strains derived by recombinant DNA
technology and are at different stages in the development/licensing process. Additional new
manufacturers and IPV manufacturers that currently use wild-type poliovirus strains may wish to consider evaluating the potential offered by a Sabin-based IPV or IPV using strains derived by these alternative means.

Wild-type polioviruses are both transmissible and virulent. They will have to be grown under appropriate and strict containment if they are to be used to produce IPV after the elimination of circulating WPV, according to defined timelines, beginning with type 2 (I8). The Sabin vaccine strains are attenuated, and transmission from vaccine recipients is limited. However, they are unstable on passage in cell culture and the human gut and can revert to give cVDPVs.

Given these uncertainties, assurance is required of the characteristics of the live attenuated Sabin virus before inactivation in order to justify the implementation of containment measures that may be different from those required for wIPV production (I8). Production conditions should be validated by the full range of tests including in vivo and in vitro testing of the master seed and working seed and successive monovalent bulks (with the number to be approved by the NRA), to ensure that the attenuated phenotype of the Sabin strains in monovalent pools is maintained. Subsequently, a limited range of tests, such as mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC), may be applied to a proportion of the monovalent pools produced each year in order to ensure production consistency. The number of pools of each type tested each year should be justified and agreed by the NRA. Furthermore, it is important that, at intervals to be agreed with the NRA, pools should be tested with the full range of tests to ensure that production conditions remain satisfactory.

In addition to the Sabin strains that are used in the manufacture of OPV, alternative attenuation methods utilizing recombinant DNA technology are being investigated (25–29). Strains derived by such methodology may have properties specifically designed to be suitable for the safe production of vaccine (e.g. inability to replicate in the human gut). They should be considered as they become available and may require specific characterization. Biocontainment requirements for such strains will need to be determined on a case-by-case basis. Only virus strains that are approved by the NRA should be used.

An overview of the history of virus seeds that are currently used in IPV production is given in Appendix 1.
The in vivo potency assay in rats has been standardized and shown to have advantages over those previously described in vivo tests for IPV (30). When the in vivo assay is required for routine production batches, it should be performed at the level of the final bulk. The assay in rats is described in detail in this document (Appendix 2). The in vivo assay should be used to characterize the vaccine after substantial changes in the manufacturing process that may influence the quality of the vaccine, unless otherwise justified and agreed by the NRA. The in vivo assay should also be used for stability studies of the vaccine and for establishing consistency of vaccine production. The in vivo potency test described in these recommendations requires the assay of neutralizing antibodies to each of the three poliovirus types. This test requires the use of live poliovirus and, for historical reasons, many laboratories use wild-type strains of poliovirus. The attenuated Sabin strains of poliovirus have been shown to be suitable for the assay of neutralizing antibodies in the in vivo test, in principle, by a collaborative study and should be used (30), but validation of the use of the Sabin strains by each manufacturer should be provided.

Immunization with OPV will cease at some point in the future when poliomyelitis has been eradicated. After that time, the biocontainment levels for use of the Sabin strains for laboratory work will be reviewed. Laboratories are therefore encouraged to investigate the use of alternatives to live viruses for the assay of poliovirus neutralizing antibodies in order to comply with future biocontainment requirements.

The development of transgenic mice that express the human poliovirus receptor (TgPVR mice) (31, 32) has led to the development of an in vivo immunization/challenge model (33, 34) that may be useful for assessing the vaccine efficacy of new poliovirus strains. This test is not proposed for lot release. Any work with transgenic mice should comply with WHO guidelines for the maintenance, containment and transport of transgenic animals (35).

The manufacturer of the final lot must be responsible for ensuring conformity with all the recommendations applicable to the final vaccine (Part A, sections A.5–A.11) even where manufacturing involves only formulating the final bulk from trivalent bulks supplied by another manufacturing establishment and filling the final containers. The manufacturer of the final lot
must also be responsible for any production and control tests performed by an external contract
laboratory, if applicable, with the approval of the NRA.

If an immunization schedule combining both IPV and OPV is to be claimed which could
potentially achieve both the high serum antibody levels and the intestinal protection (II), clinical
studies designed to establish such a combination (sequential) schedule should also examine
patterns of virus excretion following poliovirus challenge (with OPV), other than serum
neutralizing antibodies, in different sequential schedules.

Part A. Manufacturing recommendations

A.1 Definitions

A.1.1 International name and proper name
The international name should be poliomyelitis vaccine (inactivated). The proper name should be
equivalent to the international name in the language of the country of origin.

The use of the international name should be limited to vaccines that satisfy the recommendations
formulated below.

A.1.2 Descriptive definition
Poliomyelitis vaccine (inactivated) should consist of a sterile aqueous suspension of poliovirus
types 1, 2 and 3 grown in cell cultures, concentrated, purified and inactivated. The antigen may
be formulated with a suitable adjuvant. The preparation should satisfy all the recommendations
formulated below.

A.1.3 International reference materials
An International Standard of IPV is available for use in in vitro assays to measure the D-antigen
content of IPV containing classical wild-type strains. It is stored frozen in ampoules containing 1
mL of trivalent inactivated poliomyelitis vaccine. This material is for use in calibrating
secondary reference preparations of IPV which are included in each potency test so that
potencies in D-antigen units may be calculated. International standards and reference reagents
for the control of in vivo potency assays are under investigation. The need for an International
Standard for IPV based on the Sabin or other strains is also being investigated.
An International Reference Preparation (IRP) of poliomyelitis vaccine
(inactivated) was established by the WHO Expert Committee on Biological
Standardization in 1963 (36). This preparation was a trivalent blend prepared in
1959 in primary monkey kidney cells from type 1 (Mahoney), type 2 (MEF)
and type 3 (Saukett) strains of poliovirus. After preparation of the IRP,
significant advances in production and control of IPV occurred and vaccines of
increased potency and purity were developed. An enhanced potency IPV
(PU78-02) from one manufacturer, the Rijksinstituut voor Volksgezondheid en
Milieuhygiëne (RIVM), was widely used as a reference preparation for control
purposes. When stocks of this reagent were nearly exhausted, a new reference
material (91/574) was established by the Expert Committee as the second
WHO International Reference Reagent for in vivo and in vitro assays of IPV
(37). Potencies of 430, 95 and 285 D-antigen units per mL were assigned
respectively to poliovirus types 1, 2 and 3 of this preparation. A separate
aliquot of the preparation, established by the European Pharmacopeia
Commission as the Biological Reference Preparation (BRP) batch 1, has an
identical assigned titre (38). Material from a concentrated trivalent bulk from a
commercially available IPV vaccine was established as the BRP batch 2 in
2003, with an assigned potency of 320, 67 and 282 D-antigen units per mL for
types 1, 2 and 3 respectively (39). Following inconsistency in the performance
of some vials of 91/574, the use of this reference was discontinued in 2010. In
2013, the third International Standard for in vitro assays of IPV (12/104) was
established by the Expert Committee using BRP batch 2 as the reference in the
study. A potency of 277, 65 and 248 D-antigen units per mL was assigned to
poliovirus type 1, 2 and 3, respectively.

There are still gaps in the scientific knowledge of biological standardization of
IPV, and some inconsistency has been found in results obtained by different
laboratories and methods. Validation of international references suitable for
vaccines produced from different poliovirus strains will be required.
An International Standard for anti-poliovirus types 1, 2 and 3 antibodies (human) is available for the standardization of neutralizing antibody tests for poliovirus (40).

The International Standards listed above are available from the National Institute for Biological Standards and Control, Potters Bar, United Kingdom.

A.1.4 Terminology

The definitions given below apply to the terms as used in these recommendations. They may have different meanings in other contexts.

Adjuvant: A vaccine adjuvant is a substance, or a combination of substances, that is used in conjunction with a vaccine antigen to enhance (e.g. increase, accelerate, prolong and/or possibly target) the specific immune response to the vaccine antigen and the clinical effectiveness of the vaccine.

Adventitious agents: Contaminating microorganisms of the cell culture, or source materials used in its culture, that may include bacteria, fungi, mycoplasmas, and endogenous and exogenous viruses that have been unintentionally introduced into the manufacturing process.

Cell-culture infective dose 50% (CCID\textsubscript{50}): The quantity of a virus suspension that will infect 50% of cell cultures.

Cell bank: A cell bank is a collection of appropriate containers whose contents are of uniform composition stored under defined conditions. Each container represents an aliquot of a single pool of cells.

The individual containers (e.g. ampoules, vials) should be representative of the pool of cells from which they are taken and should be frozen on the same day by following the same procedure and by using the same equipment and reagents.

Cell seed: A quantity of well-characterized cells derived from a single tissue or cell of human or animal origin and stored frozen in liquid nitrogen in aliquots of uniform composition, one or more of which may be used for the production of a master cell bank.
D-antigen: The term refers to the antigen found in sucrose gradient fraction that contains native virus particles, which are the target of neutralizing antibodies (41). D-antigen units were originally defined on the basis of an agar precipitin test performed with D-antigen-specific polyclonal sera. A vaccine preparation that produced precipitin line at the distance of 25 millimetres from the centre was arbitrarily assigned a value of 600 D-antigen units using a particular antibody at a particular concentration. This test was used in the initial calibration of reference materials. The D-antigen content of IPV is currently determined by an enzyme-linked immunosorbent assay (ELISA) test.

Final bulk: The finished vaccine present in the container from which the final containers are filled. The final bulk may be prepared from one or more trivalent bulks.

Final lot: A collection of sealed final containers of finished vaccine that is homogeneous with respect to the risk of contamination during the filling process. All of the final containers must therefore have been filled from a single vessel of final bulk in one working session.

Inactivated purified monovalent pool: A filtered purified monovalent pool which has been inactivated through the use of a validated method.

Master cell bank (MCB): A quantity of well characterized cells of human or animal origin derived from a cell seed at a specific population doubling level (PDL) or passage level, dispensed into multiple containers, cryopreserved, and stored frozen under defined conditions, such as the vapour or liquid phase of liquid nitrogen in aliquots of uniform composition. The master cell bank is prepared from a single homogeneously mixed pool of cells and is used to derive all working cell banks (WCBs). The testing performed on a replacement master cell bank (derived from the same clone or from an existing master or working cell bank) is the same as for the initial master cell bank, unless a justified exception is made.

Monovalent pool: A pool of a number of single harvests of the same virus type processed at the same time.
Production cell culture: A collection of cell cultures derived from one or more ampoules of the WCB used for the production of IPV.

Purified monovalent pool: A concentrated and purified pool of a number of single harvests of the same virus type processed at the same time.

Single harvest: A quantity of virus suspension of one virus type harvested from cell cultures derived from the same WCB and prepared from a single production run.

sIPV: Inactivated poliomyelitis vaccine derived from Sabin strains only.

Trivalent bulk: A pool of a number of inactivated purified monovalent pools processed at the same time and containing all three virus types, blended to achieve a defined D- antigen content for each type.

Virus master seed lot: A quantity of virus suspension that has been processed at the same time to assure a uniform composition and has been passaged for a specific number of times that does not exceed the maximum approved by the NRA. It has been characterized to the extent that is necessary to support development of the virus working seed lot.

Virus working seed lot: A quantity of virus of uniform composition derived from the virus master seed lot made at the multiplicity of infection, ensuring that cytopathic effect develops within an appropriate time frame and used at a passage level approved by the NRA for the manufacturing of vaccine.

wIPV: Inactivated poliomyelitis vaccine derived from wild-type polio virus strains only.

Working cell bank (WCB): A quantity of cells of uniform composition derived from one or more ampoules of the MCB at a finite passage level, stored frozen at –70 °C or below in aliquots, one or more of which would be used for vaccine production. All containers are treated identically and once removed from storage are not returned to the stock.
A.2 General manufacturing recommendations

The general manufacturing requirements contained in *Good manufacturing practices for pharmaceutical products: main principles* (42) and *Good manufacturing practices for biological products* (43) should apply to establishments manufacturing IPV.

For vaccines prepared using wild-type poliovirus, guidance is provided in WHO’s *Guidelines for the safe production and quality control of IPV manufactured from wild polioviruses* (6). This document also gives some guidance on vaccines produced from attenuated poliovirus strains (such as Sabin strains). In addition, facilities that manufacture IPV should comply with the current global recommendations for poliovirus containment appropriate to the particular poliovirus strains used for production in both the production and the quality control departments (18).

Attenuated strains derived by recombinant DNA technology that are used in IPV production should not be readily transmissible from person to person. Applicable containment conditions will depend on the phenotype and production conditions, and should ensure an acceptable level of phenotypic stability and should be assessed on a case-by-case basis. In any case, any biocontainment arrangement should comply with the global recommendations for poliovirus containment that are current at the time of production (18).

The staff involved in the production and quality control of IPV should be shown to be immune to all three types of polioviruses.

The manufacturer should also be able to demonstrate the availability of appropriate means to respond adequately to and manage an inadvertent release of unfinished product containing live viruses.

A.3 Control of source materials

A.3.1 Virus strains and seed lot system

A.3.1.1 Virus strains

Strains of poliovirus used in the production of IPV should be identified by historical records, which should include information on the strains’ origin and subsequent manipulation (e.g. wild, attenuated or manipulated by recombinant DNA technology). The strain identity should be
determined by infectivity tests and immunological methods. In addition, Sabin strains and strains
derived by recombinant DNA technology should be identified by nucleotide sequence analysis.

Only virus strains that are approved by the NRA and that yield a vaccine complying with the
recommendations set out in the present document should be used.

A.3.1.2 Virus seed lot system
Vaccine production should be based on the virus seed lot system. Unless otherwise justified and
authorized, the virus in the final vaccine should not have undergone more passages from the
virus master seed lot than were used to prepare the vaccine shown to be satisfactory with respect
to safety and efficacy and biocontainment requirements.

If Sabin virus master seeds are supplied by WHO, a virus sub-master seed lot
should be prepared by a single passage from the WHO master seed at a
multiplicity of infection that ensures the development of cytopathic effect
within an appropriate time frame. The virus sub-master seed lot should be
characterized to the extent that is necessary to support the development of the
virus working seed lot. The characterized virus sub-master seed lot is used for
the preparation of virus working seed lots (see section A.3.2.2 and Part B of the
Recommendations to assure the quality, safety and efficacy of live attenuated
poliomyelitis vaccine (oral)(44). The virus sub-master seed lot should be
subject to the same tests as a virus master seed lot.

Virus master and working seed lots should be stored in dedicated temperature-monitored freezers
at a temperature that ensures stability on storage (e.g. ≤−60°C).

A.3.1.3 Tests on virus master and working seed lots
Each virus master and working seed lot used for the production of vaccine batches should be
subjected to the tests listed in this section and certain tests applicable to single harvests listed in
sections A.4.3 (A.4.3.1 Sterility test for bacteria, fungi and mycoplasmas; A.4.3.2 Virus titration;
and A.4.3.3 Identity test).
Each virus master and working seed lot should have been derived from materials that comply with the Recommendations made in sections A.3.2 and A.3.3 and should be approved by the NRA.

A.3.1.3.1 Tests in rabbit kidney cell cultures (only for virus master seeds derived from strains which have previously been passaged on primary monkey kidney cells)

Virus master seeds that have previously been passaged on primary monkey kidney cells should be tested in rabbit kidney cell cultures for the presence of herpes B virus and other viruses. A sample of at least 10 mL of virus seeds should be tested. Serum used in the nutrient medium of the cultures should have been shown to be free from B virus inhibitors using herpes simplex virus as an indicator virus. The pooled fluid should be inoculated into bottles of these cell cultures in such a way that the dilution of the pooled fluid in the nutrient medium does not exceed 1 in 4. The area of the cell sheet should be at least 3 cm² per mL of pooled fluid. At least one bottle of each kind of cell culture should remain uninoculated and should serve as a control.

The inoculated and control cultures should be incubated at a temperature of 37 °C and should be observed at appropriate intervals for a period of at least two weeks.

For the test to be valid, not more than 20% of the culture vessels should have been discarded for nonspecific accidental reasons by the end of the test period. The sensitivity of each batch of rabbit kidney cells should be demonstrated by challenge with a validated amount of herpes simplex virus. The challenge test should be approved by the NRA.

A.3.1.3.2 Tests for adventitious viruses and freedom from detectable SV40 sequences

A.3.1.3.2.1 Tests for adventitious viruses in cell cultures

The virus master and working seed lot used for the production of vaccine batches should be free from adventitious viruses in cell culture assays.

A sample of at least 40 mL of each virus master and working seed lot should be tested for the presence of adventitious agents. The sample should be neutralized against the specific type of poliovirus by a high-titred antiserum.
The Sabin strains may be used as immunizing antigen for the preparation of the antiserum. However, the immunizing antigen used for the preparation of the antiserum should not be the same as the production seed.

The immunizing antigen should be shown to be free from adventitious agents and should be grown in cell cultures free from adventitious microbial agents that might elicit antibodies that could inhibit the growth of any adventitious agents present in the single harvest.

The sample should be tested in primary Cercopithecus sp. kidney cell cultures, or cells that have been demonstrated to be of equal susceptibility to SV40 virus, and in human diploid cells. The tissue cultures should be incubated at 37 °C and observed for two weeks. At the end of this observation period, at least one subculture of supernatant fluid should be made in the same tissue culture system. The sample should be inoculated in such a way that the dilution of the supernatant fluid in the nutrient medium does not exceed 1 in 4. The area of the cell sheet should be at least 3 cm2 per mL of supernatant fluid. At least one bottle of the cell cultures should remain uninoculated and should serve as a control. The cells inoculated with the supernatant fluid and the uninoculated control cultures should be incubated at 37 °C and observed at appropriate intervals for an additional two weeks.

If necessary, serum may be added to the primary cultures at this stage, provided that the serum does not contain SV40 antibody or other inhibitors.

The virus master and working seed virus passes the test if there is no evidence of the presence of adventitious agents. For the test to be valid, not more than 20% of the culture vessels should have been discarded for nonspecific accidental reasons by the end of the observation period.

New molecular methods with broad detection capabilities are being developed for the detection of adventitious agents. These methods include: degenerate nucleic acid amplification technique (NAT) for whole virus families, with analysis of the amplicons by hybridization, sequencing or mass spectrometry; NAT with random primers followed by analysis of the amplicons on large oligonucleotide micro-arrays of conserved viral sequencing or digital
subtraction of expressed sequences; and high throughput sequencing. These methods might be used in the future to supplement existing methods or as alternative methods to both in vivo and in vitro tests after appropriate validation and with the approval of the NRA (45).

The theoretical risk of the presence of potential human, simian, bovine or porcine adventitious agents in the seed lots, which may be derived from the use of bovine serum or porcine trypsin, should be assessed. If necessary, viruses such as bovine polyomavirus, porcine parvovirus or porcine circovirus (PCV) may be screened by using specific assays, such as molecular techniques like NAT (45).

A.3.1.3.2 Tests for freedom from detectable SV40 sequences

The virus master seed lot should be shown to be free from detectable SV40 sequences by using specific validated assays which are approved by the NRA, such as molecular techniques like NAT (45).

DNA of SV40 is widely used as molecular biological reagent, and contamination of polymerase chain reaction (PCR) assays is potentially a major problem. One approach is to identify separate genomic regions of SV40 for amplification, and to use one region for screening purposes and the other for the confirmation of repeatedly positive samples. It is useful if the second genomic region used for confirmation varies between isolates from different sources, as it is then possible to show that it has a unique sequence and that positive results are not due to contamination with laboratory strains of SV40. The sensitivity of the PCR assays should be established for the genomic regions used.

A.3.1.3.3 Additional tests on seeds from Sabin strains and other attenuated strains derived by recombinant DNA technology

If live-attenuated Sabin strains are used for vaccine production, established master seeds should be used and additional tests should be performed. The virus master seed lots used for the
production of vaccine batches should be tested to monitor virus molecular characteristics – e.g. by MAPREC – and should meet the specifications established in agreement with the NRA.

Specifications for OPV based on Sabin strains are described in the Recommendations to assure the quality, safety and efficacy of live attenuated poliomyelitis vaccine (oral) (44). Tests to monitor virus molecular characteristics are described in section A.3.2.4 of those recommendations, while section A.3.2.4.1 deals with in vitro tests and section A.3.2.4.2 covers neurovirulence tests. (See also section A.4.4.2.7 of this document).

Suitable in vitro tests should be performed on the master seed from attenuated strains derived by recombinant DNA technology. The tests may include full genome characterization by nucleotide sequencing or deep sequencing techniques and demonstration of genetic and phenotypic stability on passage under production conditions. Such tests should be validated for this purpose by using appropriate standards and materials, and should be approved by the NRA.

The need for testing virus master seed lots of attenuated strains derived by recombinant DNA technology in in vivo neurovirulence tests should be considered and scientifically justified, in agreement with the NRA.

Any new virus working seed derived from an established master seed, including Sabin strains and other attenuated strains derived by recombinant DNA technology, and at least three consecutive monovalent pools should be analysed in tests to monitor virus molecular characteristics such as MAPREC, when relevant (see section A.4.4.2.7.1).

A.3.2 Cell lines

The general production precautions, as formulated in Good manufacturing practices for biological products (43), should apply to the manufacture of IPV, with additional requirement that, during production, only one type of cell should be introduced or handled in the production area at any one time. Vaccines may be produced in a human diploid cell line or in a continuous cell line.

A.3.2.1 Master cell bank (MCB) and working cell bank (WCB)

The use of a cell line for the manufacture of IPV should be based on the cell bank system. The cell seed and cell banks should conform to the Recommendations for the evaluation of animal
cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks (45). The MCB should be approved by the NRA. The maximum number of passages (or population doublings) by which the WCB is derived from the MCB and the maximum number of passages of the production cultures should be established by the manufacturer and approved by the NRA.

Additional tests may include, but are not limited to: examination for the presence of retrovirus and tumorigenicity in an animal test system (45) and propagation of the MCB or WCB cells to or beyond the maximum in vitro passage for production.

The WHO Vero reference cell bank 10-87 is considered suitable for use as a cell seed for generating an MCB (46) and is available to manufacturers on application to the Coordinator, Technologies Standards and Norms, Department of Essential Medicines and Health Products (EMP), Health Systems and Innovation (HIS) Cluster, World Health Organization, Geneva, Switzerland.

A.3.2.2 Identity test

Identity tests on the MCB and WCB are performed in accordance with the WHO Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks (45) and should be approved by the NRA.

The WCB should be identified by means of tests such as biochemical tests (e.g. isoenzyme analysis), immunological tests, cytogenetic marker tests and DNA fingerprinting or sequencing. The tests should be approved by the NRA.

A.3.3 Cell culture medium

Serum used for the propagation of cells should be tested to demonstrate freedom from bacterial, fungal and mycoplasmal contamination – as specified in Part A, sections 5.2 (47) and 5.3 (48) of the General requirements for the sterility of biological substances – and freedom from infectious viruses. Suitable tests for detecting viruses in bovine serum are given in Appendix 1 of the WHO
Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks (45).

Validated molecular tests for bovine viruses may replace the cell culture tests of bovine sera if approved by the NRA. As an additional monitor of quality, sera may be examined for freedom from bacteriophage and endotoxin. Gamma-irradiation may be used to inactivate potential contaminant viruses, recognizing that some viruses are relatively resistant to gamma-irradiation.

The source(s) of animal components used in the culture medium should be approved by the NRA. The components should comply with the current WHO guidelines on transmissible spongiform encephalopathies in relation to biological and pharmaceutical products (49). The serum protein concentration should be reduced by rinsing the cell cultures with serum-free medium and/or purification of the virus harvests.

In some countries, control tests are carried out to detect the residual animal serum content in the final vaccine (see section A.6.6).

Human serum should not be used. If human serum albumin is used at any stage of product manufacture, the NRA should be consulted regarding the requirements, as these may differ from country to country. As a minimum, it should meet the Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives (50). In addition, human albumin and materials of animal origin should comply with current WHO guidelines on transmissible spongiform encephalopathies in relation to biological and pharmaceutical products (49).

Manufacturers are encouraged to explore the possibilities of using serum-free media for the production of IPV.

Penicillin and other beta-lactams should not be used at any stage of manufacture because of their nature as highly sensitizing substances in humans.

Other antibiotics may be used at any stage of manufacture, provided that the quantity present in the final product is acceptable to the NRA.
Nontoxic pH indicators may be added, such as phenol red at a concentration of 0.002%.

Only substances that have been approved by the NRA may be added.

Bovine or porcine trypsin used for preparing cell cultures should be tested and found free of cultivable bacteria, fungi, mycoplasmas and infectious viruses, as appropriate (45). The methods used to ensure this should be approved by the NRA.

In some countries, irradiation is used to inactivate potential contaminant viruses. If irradiation is used, it is important to ensure that a reproducible dose is delivered to all batches and to the component units of each batch. The irradiation dose must be low enough for the biological properties of the reagents to be retained but also high enough to reduce virological risk. Therefore, irradiation cannot be considered a sterilizing process (45).

Recombinant trypsin is available and should be considered; however, it should not be assumed to be free from risk of contamination and should be subject to the usual considerations for any reagent of biological origin (45).

The source(s) of trypsin of bovine origin, if used, should be approved by the NRA and should comply with current WHO guidelines on transmissible spongiform encephalopathies in relation to biological and pharmaceutical products (49).

A.4 Control of vaccine production

A.4.1 Control cell cultures

When human diploid or continuous cell lines are used to prepare cultures for the production of vaccine, a fraction equivalent to at least 5% of the total or 500 mL of cell suspension, or 100 million cells, at the concentration and cell passage level employed for seeding vaccine production cultures, should be used to prepare control cultures.

If bioreactor technology is used, the NRA should determine the size and treatment of the cell sample to be examined.
A.4.1.1 Tests of control cell cultures

The treatment of the cells set aside as control material should be similar to that of the production cell cultures, but they should remain uninoculated for use as control cultures for the detection of any adventitious agents.

These control cell cultures should be incubated under conditions as similar as possible to the inoculated cultures for at least two weeks, and should be tested for the presence of adventitious agents as described below. For the test to be valid, not more than 20% of the control cell cultures should have been discarded for nonspecific accidental reasons.

At the end of the observation period, the control cell cultures should be examined for evidence of degeneration caused by an adventitious agent. If this examination, or any of the tests specified in this section, shows evidence of the presence of any adventitious agent in the control culture, the poliovirus grown in the corresponding inoculated cultures should not be used for vaccine production.

If not tested immediately, samples should be stored at −60 °C or below.

A.4.1.2 Tests for haemadsorbing viruses

At the end of the observation period, at least 25% of the control cells should be tested for the presence of haemadsorbing viruses using guinea pig red blood cells. If the latter cells have been stored, the duration of storage should not have exceeded seven days and the storage temperature should have been in the range of 2–8 °C. In tests for haemadsorbing viruses, calcium and magnesium ions should be absent from the medium.

Some NRAs require, as an additional test for haemadsorbing viruses, that other types of red cells, including cells from humans (blood group IV O), monkeys and chickens (or other avian species), should be used in addition to guinea pig cells.

A reading should be taken after incubation at 2–8 °C for 30 minutes, and again after a further incubation for 30 minutes at 20–25 °C.
If a test with monkey red cells is performed, readings should also be taken after a final incubation for 30 minutes at 34–37 °C.

In some countries the sensitivity of each new batch of red blood cells is demonstrated by titration against a haemagglutin antigen before use in the test for haemadsorbing viruses.

A.4.1.3 Tests for other adventitious agents in cell supernatant fluid

At the end of the observation period, a sample of the pooled supernatant fluid from each group of control cultures should be tested for other adventitious agents. For this purpose, 10 mL of each pool should be tested in the same cells, but not the same batch of cells, as those used for the production of vaccine.

A second indicator cell line should be used to test an additional 10 mL sample of each pool. When a human diploid cell line is used for production, a simian kidney cell line should be used as the second indicator cell line. When a simian kidney cell line is used for production, a human diploid cell line should be used as the second indicator cell line (45).

The pooled fluid should be inoculated into bottles of these cell cultures in such a way that the dilution of the pooled fluid in the nutrient medium does not exceed 1 part in 4. The area of the cell sheet should be at least 3 cm2 per mL of pooled fluid. At least one bottle of each kind of cell culture should remain uninoculated and should serve as a control.

The inoculated cultures should be incubated at a temperature of 35–37 °C and observed at appropriate intervals for a period of at least 14 days.

Some NRAs require that, at the end of this observation period, a subculture is made in the same culture system and observed for at least an additional 14 days. Furthermore, some NRAs require that these cells should be tested for the presence of haemadsorbing viruses.
For the tests to be valid, not more than 20% of the culture vessels should have been discarded for
nonspecific accidental reasons by the end of the test period.

If any cytopathic changes due to adventitious agents occur in any of the cultures, the virus
harvests produced from the batch of cells from which the control cells were taken should be
discarded.

Some selected viruses may be screened by using specific validated assays which are approved by
the NRA, such as molecular techniques (e.g. NAT) (45).

If these tests are not performed immediately, the samples should be kept at a temperature of −60
°C or below.

A.4.1.4 Identity tests
At the production level, the control cells should be identified by means of tests approved by the
NRA.

Suitable methods include, but are not limited to, biochemical tests (e.g. isoenzyme analyses),
immunological tests, cytogenetic tests (e.g. for chromosomal markers) and tests for genetic
markers (e.g. DNA fingerprinting or sequencing).

A.4.2 Control of vaccine production
A.4.2.1 Cell cultures for vaccine production
A.4.2.1.1 Observation of cultures for adventitious agents
On the day of inoculation with the virus working seed lot, each cell culture or a sample from
each culture vessel should be examined visually for degeneration caused by infective agents. If
this examination shows evidence of the presence in a cell culture of any adventitious agent, the
culture should not be used for vaccine production.

If animal serum is used for cell cultures before the inoculation of virus, the medium should be
removed and replaced with serum-free maintenance medium after the cells have been washed
with serum-free medium, if appropriate.
A.4.3 Control of single harvests

After inoculation of the production cells with virus, the culture conditions of inoculated and control cell cultures should be standardized and kept within limits agreed with the NRA.

Samples required for the testing of single harvests should be taken immediately on harvesting.

In some countries, samples are taken after storage and filtration with the agreement of the NRA.

A.4.3.1 Sterility test for bacteria, fungi and mycoplasmas

A volume of at least 10 mL of each virus master and working seed lot (see A.3.1.3) and single harvest should be tested for bacterial, fungal and mycoplasmal contamination by appropriate tests, as specified in Part A, sections 5.2 (47) and 5.3 (48) of General requirements for the sterility of biological substances, or by a method approved by the NRA. If the test is performed outside the production facilities, adequate containment procedures (18) should be used according to the virus strain used for production.

NAT alone or in combination with cell culture, with an appropriate detection method, may be used as an alternative to one or both of the compendial mycoplasma detection methods following suitable validation and the agreement of the NRA (45).

In some countries this test is performed on the purified monovalent harvest instead of on the single harvest.

A.4.3.2 Virus titration

The virus concentration of each virus master and working seed lot (see A.3.1.3) and single harvest should be determined by titration of infectious virus using tissue culture methods. This titration should be carried out in not more than 10-fold dilution steps using 10 cultures per dilution, or by any other arrangement yielding equal precision.
The use of Hep-2C or Vero cells in microtitre plates is suitable for this purpose (44). The same cells should be used for virus titrations on monovalent pools throughout the production process. Information on virus titre will help in selecting single harvests that can be expected to meet potency requirements after inactivation.

In some countries the virus titration may be carried out on the purified, pooled monovalent harvest after demonstration of consistency of production at the stage of the single harvest.

A.4.3.3 Identity test

The poliovirus in each virus master and working seed lot (see A.3.1.3) and single harvest should be tested for serotype and strain identity by neutralization with specific antiserum or molecular methods approved by the NRA.

Care should be taken to ensure that the sera used are monospecific by titrating them against homotypic and heterotypic viruses of known virus titre. Monoclonal antibodies may be useful in this test.

The strain identity of each of the three serotypes may be determined by standard or deep nucleotide sequence analysis or by a suitable molecular technique.

In some countries this test is performed on the purified monovalent harvest instead of on the single harvest.

A.4.4 Control of purified monovalent pools

A.4.4.1 Purification of monovalent pools

Each monovalent pool of virus, consisting of several single harvests of the same serotype, should be purified before inactivation. Removal of host cell protein should be assessed during process validation (45).
An acceptable method is to clarify the virus suspension by filtration, to concentrate the virus by ultrafiltration and, thereafter, to collect the virus peak after passing it through a gel-filtration column. Further purification is achieved by passing the virus through an ion-exchange column. Other purification procedures, such as passing the preparation through an immobilized DNA-ase column, may be used.

A.4.4.2 Tests on purified monovalent pools

A.4.4.2.1 Residual cellular DNA

For viruses grown in continuous cells, the purified monovalent pools should be tested for residual cellular DNA (45). The purification process should be shown by calculation to reduce consistently the level of cellular DNA to less than 10 ng per human dose.

In some countries, IPV produced in mammalian cells is required to contain less than 100 pg DNA per human dose.

This test may be omitted from routine testing, with the agreement of the NRA, if the manufacturing process is validated to achieve this specification (45).

If assessed, the size distribution of the DNA may be considered as a characterization test, taking into account the amount of DNA detectable using appropriate methods, as approved by the NRA (45).

In some countries this test is performed on the trivalent bulk following validation and with the agreement of the NRA.

A.4.4.2.2 Virus titration

The virus concentration of each purified monovalent pool should be determined by titration of infectious virus using tissue culture methods. This titration should be carried out in not more than 10-fold dilution steps using 10 cultures per dilution, or by any other arrangement yielding equal precision.
The use of Hep-2C or Vero cells in microtitre plates is suitable for this purpose (44).

Information on virus titre will help in selecting purified monovalent pools that can be expected to meet potency requirements following inactivation.

A.4.4.2.3 Identity test

The poliovirus in each purified monovalent pool should be tested for serotype and strain identity by neutralization, using specific antiserum or molecular methods approved by the NRA.

Care should be taken to ensure that the sera used are monospecific by titrating them against homotypic and heterotypic viruses of known virus titre. Monoclonal antibodies may be useful in this test.

The strain identity of each of the three serotypes may be determined by nucleotide sequence analysis or a suitable molecular technique.

A.4.4.2.4 D-antigen content

The D-antigen content of each purified monovalent pool should be determined by use of a validated immunochemical method and should be calculated by using a reference vaccine calibrated against the WHO International Standard (see section A.1.3).

A.4.4.2.5 Protein content

The purified monovalent pool should be shown to contain no more than 0.1µg of protein per D-antigen unit of poliovirus or should be within the limits approved for that particular product by the NRA.

A.4.4.2.6 Filtration before inactivation

Each purified monovalent pool should be filtered before inactivation.

Satisfactory results have been reported with several filter types but a final filtration using a 0.22-µm filter should be used.
Filters containing asbestos should not be used.

Inactivation should be initiated as soon as possible and in any case not later than 72 hours after filtration.

It is preferable to start inactivation within 24 hours of filtration. Since the purpose of the filtration step is to remove particulate matter and other interfering substances that may diminish the effectiveness of the inactivation process, and since aggregates tend to increase on standing after filtration, efforts should be made to keep within this time limit.

A sample of the filtered purified monovalent pool should be retained and its virus titre determined as described in A.4.4.2.2.

The main purpose of determining the titre of filtered virus pools destined for inactivation is to provide the starting titre to monitor the kinetics of inactivation.

A.4.4.2.7 Additional tests for purified monovalent pools produced from Sabin vaccine seeds or from other attenuated seeds derived by recombinant DNA technology

Production conditions should be validated by the full range of tests, including in vivo and in vitro testing of the master and working seed and successive monovalent bulks (the number to be approved by the NRA), to ensure that the attenuated phenotype of the Sabin strains in monovalent pools is maintained. Subsequently, a limited range of tests, such as MAPREC, may be applied to a proportion of the monovalent pools produced each year in order to ensure production consistency. The number of pools of each type tested each year should be justified and should be agreed with the NRA. Furthermore, it is important that, at intervals to be agreed with the NRA, pools should be tested with the full range of tests to ensure that production conditions remain satisfactory.

The use of the rct40 test is discouraged as it requires the use of WPV controls.
In vitro tests to monitor virus molecular characteristics (consistency) and in vivo neurovirulence tests which could be used for this purpose are described in A.4.4.2.7.1 and A.4.4.2.7.2 respectively.

Suitable in vitro tests should be performed on purified monovalent pools derived from attenuated strains derived by recombinant DNA technology. Tests may include full genome characterization by nucleotide sequencing or deep sequencing techniques. Such tests should be validated for this purpose by the use of appropriate standards and materials, and should be approved by the NRA.

An in vitro test (described above) for the molecular consistency of production may be performed on single harvests before preparing the purified monovalent pool. If performed, the acceptance/rejection criteria should be updated periodically and should be approved by the NRA.

A.4.4.2.7.1 Tests to monitor virus molecular characteristics (consistency)

In vitro tests such as MAPREC which are used to determine the molecular consistency of production of monovalent pools should meet the specifications for the test used (44).

Results from MAPREC tests should be expressed as ratios relative to the relevant type-specific International Standard for MAPREC analysis of poliovirus (Sabin). The acceptable variation of mutant content from batch to batch should be agreed with the NRA in the light of production and testing experience.

For type 3 (472-C), a purified monovalent pool should be rejected if the level of mutations is more than 1.0% when normalized against the International Standard. The limits for types 1 and 2 should be approved by the NRA.

Levels of mutations obtained by manufacturers who have implemented the test for types 1 and 2 virus have been less than 2.0% for type 1 Sabin (for the sum of both mutations 480-A, 525-C) and 1.5% for type 2 Sabin (481-G) (44, 51).

The test(s) used should be approved by the NRA. The MAPREC assay provides a sensitive and quantitative measure for consistency for monovalent pools derived from Sabin viruses.
A.4.4.2.7.2 Neurovirulence tests

Appropriate in vivo tests which may be used to evaluate the phenotype of virus in monovalent pools produced from the Sabin vaccine strains are described in section A.4.4.7.2 of Recommendations to assure the quality, safety and efficacy of live attenuated poliomyelitis vaccine (oral) (44).

For other attenuated strains derived by recombinant DNA technology, the need for testing purified monovalent virus pools by in vivo neurovirulence tests should be considered and should be scientifically justified with the agreement of the NRA.

A.4.5 Control of inactivated purified monovalent pools

A.4.5.1 Inactivation procedure

The virus in the filtered purified monovalent pools should be inactivated by a method approved by the NRA. Prior to inactivation, the concentration of the filtered monovalent pool, based on viral titre or D-antigen content, should be adjusted to the acceptable range established during the process validation. The acceptable range should be established during validation studies.

Most manufacturers during the past 40–50 years have used formaldehyde as the method for inactivation.

The method of inactivation should be shown to give consistent inactivation for the production of acceptable vaccine. The progress of inactivation should be monitored by suitably spaced determinations of virus titres. The inactivation period should exceed the time taken to reduce the titre of live virus to undetectable amounts by a factor of at least 2.

A second filtration should be made during the process of inactivation.

This step is made after the virus titre has fallen below detectable levels but before the first sample for the safety test is taken.

The kinetics of viral inactivation should be established by each manufacturer and should be approved by the NRA. Adequate data on viral inactivation kinetics should be obtained and consistency of the inactivation process should be monitored. For this purpose, the virus titre and
D-antigen content of each filtered purified monovalent pool before, during and at the end of inactivation should also be determined, as specified in A.4.4.2.2 and A.4.4.2.4 respectively.

A record of consistency (effective inactivation and kinetic of inactivation) should be established by the production of at least five consecutive lots and, if broken, a root cause analysis should be performed and a further five consecutive filtered purified monovalent pools should be prepared and shown to be satisfactory for establishing this record.

A.4.5.2 Test for effective inactivation

Two samples should be taken of a volume equivalent to at least 1500 human doses of each inactivated purified monovalent pool. One sample should be taken at the end of the inactivation period and the other not later than three-quarters of the way through this period. After removal or neutralization of the inactivating agent, the samples should be tested for the absence of infective poliovirus by inoculation into tissue cultures. Kidney cells from some monkey species, for instance those of the genera *Macaca*, *Cercopithecus* and *Papio* spp., appear to be more sensitive than others. If other tissue culture systems, including continuous cell lines (e.g. L20B), are used, they should have been shown to possess at least the same sensitivity to poliovirus as those specified above by inoculating with partially formalin-inactivated virus (as opposed to infectious, untreated virus) as formalin treatment changes biological properties of poliovirus (see below). When primary monkey kidney cells are used for this test, the two samples should be inoculated into bottles of tissue cultures derived from different batches of cells.

The dilution of the sample in the nutrient fluid should not exceed 1 in 4 and the area of the cell sheet should be at least 3 cm2 per mL of sample. One or more bottles of each batch of cultures should be set aside to serve as uninoculated control bottles with the same medium.

The formaldehyde in samples of vaccine for tissue culture tests is generally neutralized at the time of sampling by the addition of bisulfite. Usually, the samples are subsequently dialysed.

It is possible to conduct tissue culture tests on non-dialysed material. However, this is often found to be toxic to cells, even with a dilution of 1 in 4. If in such tests nonspecific degeneration of cells occurs, or if the sensitivity of the tissue
culture system is reduced, the test should be repeated on dialysed material. The virus D-antigen content after dialysis should be determined to ascertain whether any D-antigen was lost during the dialysis process.

The tissue culture bottles should be observed for at least three weeks. Not less than two subcultures should be made from each original bottle. The first subculture from each bottle should be made prior to the first medium change, and the second subculture should be made at the end of the observation period. The subcultures should be observed for at least two weeks.

If infectious poliovirus is detected in samples taken at the end of inactivation, or in the samples taken no later than three-quarters through the inactivation process, the inactivated purified monovalent pool should not be used for further processing. The isolation of live poliovirus from an inactivated purified monovalent pool must be regarded as a break in the manufacturing consistency record and a review of production process and revalidation should be undertaken.

If primary monkey kidney cells are used in this test, they may contain adventitious agents that could interfere with the test result. It is important to demonstrate that each test retains sensitivity to detect partially inactivated polioviruses. At the end of the observation period, the cell culture used for the detection of residual live virus should be challenged with a validated amount of live Sabin virus of the same type as that of the inactivated purified monovalent pool. The details of the challenge procedure should be approved by the NRA.

If other cells, such as continuous cell lines, are used in this test, they must be shown to possess at least the same sensitivity as primary monkey kidney cells or must be challenged as described above. The problem of detecting residual active poliovirus in an inactivated vaccine is not the same as that of measuring infective virus in untreated suspensions. Poliovirus that has been exposed to the action of formaldehyde without becoming inactivated has been shown to require a much longer period to produce cytopathic changes than does untreated virus. For this reason it is desirable that tissue cultures in tests for the presence of residual active virus are observed for as long a time as is technically possible. A satisfactory tissue culture system for this purpose depends, therefore, not only on the sensitivity of the cells used for the preparation of the cultures but also on the nutrient fluid.
The serum added to the nutrient fluid should be tested for inhibitors to poliovirus at serum concentrations up to 50%. Only serum free from inhibitors to all three types of poliovirus should be used.

Maintenance of the cultures in good condition may require frequent changes of culture medium. However, it should be borne in mind that early changes of fluid may result in unadsorbed virus being removed and the validity of the test would thus be impaired. Therefore, the fluid should be changed no earlier than 5–7 days after inoculation.

A.4.5.4 Sterility test for bacteria and fungi
Each inactivated purified monovalent pool should be tested for bacterial and fungal sterility, as specified in Part A, section 5.2 of the General requirements for the sterility of biological substances (47), or by methods approved by the NRA.

A.4.5.5 D-antigen content
The D-antigen content of each inactivated purified monovalent pool should be determined by use of a validated immunochemical method and should be calculated by use of a reference vaccine calibrated against the WHO International Standard (see section A.1.3). The results obtained should be within the required limits established by the NRA.

A.4.6 Control of trivalent bulk
Only those inactivated purified monovalent pools that have been shown to be satisfactory should be blended to form a trivalent bulk.

A.4.6.1 Test for absence of infective poliovirus
A sample of at least 1500 mL or, if purified and concentrated vaccine is prepared, the equivalent of at least 1500 doses of each trivalent bulk should be tested in cell cultures for the absence of infective poliovirus by the procedure described in section A.4.5.2. If infective poliovirus is isolated, this trivalent bulk, or product derived from it, should not be used.

In some countries this test may be omitted on the trivalent bulk if, following a review of manufacturing records, the test for inactivation has been performed
with satisfactory results on the inactivated purified monovalent pool, subject to approval by the NRA.

When a trivalent bulk is supplied by one manufacturer to another, the validation of inactivation may rely on the inactivation tests performed by the bulk supplier.

A.4.6.2 Sterility test for bacteria and fungi

The trivalent bulk should be tested for bacterial and fungal sterility, as specified in Part A, section 5.2 of the General requirements for the sterility of biological substances (47), or by methods approved by the NRA.

A.4.6.3 Residual formaldehyde

The content of free residual formaldehyde in the trivalent bulk should be determined by a method approved by the NRA. The limits should be approved by the NRA.

A.4.6.4 D-antigen content

The D-antigen content of each trivalent bulk should be determined by use of a validated immunochemical method and should be calculated by use of a reference vaccine calibrated against the WHO International Standard (see section A.1.3). The results obtained should be within the required limits established by the NRA.

A.4.7 Control of final bulk

Preservatives, excipients or other substances that might be added to or combined with the trivalent bulk to form the final bulk should have been shown, to the satisfaction of the NRA, to have no deleterious effect on the immunizing potency and the safety profile of the poliovirus antigens.

The operations necessary for preparing the final bulk from trivalent bulk should be conducted in such a manner as to avoid contamination of the product. In preparing the final vaccine bulk, any substances such as diluents, stabilizers or adjuvants that are added to the product should have been shown, to the satisfaction of the NRA, not to impair the safety and efficacy of the vaccine in the concentration used. Until the final bulk is filled into containers, the final vaccine bulk
A suspension should be stored under conditions shown by the manufacturer to retain the desired biological activity.

A.4.7.1 Sterility test for bacteria and fungi

The final bulk should be tested for bacterial and fungal sterility, as specified in Part A, section 5.2 of the General requirements for the sterility of biological substances (47), or by methods approved by the NRA.

A.4.7.2 Potency tests

Each final bulk should be tested in an in vivo assay for immunogenicity by tests approved by the NRA. An in vivo potency assay in rats has been standardized and shown to be a suitable test for IPV (see Appendix 2). Product-specific reference preparations may be used in these tests (see Appendix 2).

The D-antigen content of each final bulk should be determined using a validated immunochemical method and calculated using a reference vaccine calibrated against the WHO International Standard (see section A.1.3). The results obtained should be within the required limits established by the NRA. This test may be omitted on the final bulk if conducted on the final lot.

When consistency of production has been established on a suitable number of consecutive final bulks, the in vivo assay may be omitted with the agreement of the NRA. This can occur once it has been demonstrated that the acceptance criteria for the D-antigen determination are such that the in vitro test yields a comparable result to the in vivo assay in terms of acceptance or rejection of a batch. This demonstration must include testing of subpotent batches, produced experimentally if necessary by heat treatment or other means of diminishing the immunogenic activity.

Where there is a significant change in the manufacturing process of the antigens or in their formulation, the in vivo test should be performed to demonstrate the comparability of the new manufacturing process to the established process. If the process change affects the in vivo test, the need for revalidation should be considered and clinical data may be required for the approval by the NRA.
The in vitro assay that has been found most suitable for measuring the antigen content is the D-antigen ELISA. Although this assay is widely used, particular attention is required for its standardization. Some NRAs accept the use of polyclonal antisera whereas others accept the use of monoclonal antibodies in the test. The use of different antibodies may give different results. The D-antigen specificity of the antibodies should be demonstrated. Whichever types of antisera are used, the validation studies should show that the assay can determine consistency of production. For a D-antigen ELISA to be valid, it should comply with specified criteria of linearity and parallelism. The effect of a change in the method of calculation of the D-antigen content on registered specifications should also be taken into account.

Other validated tests such as multiplex antibody test or plasmon resonance technology (52, 53) may be used subject to the approval of the NRA.

If the use of an adjuvant in the final bulk interferes with the assay, a desorption or treatment step may be necessary before performing the D-antigen ELISA.

If the final bulk is formulated with poliovirus trivalent bulk and with other antigens into a combination vaccine, the suitability of performing the D-antigen ELISA on the final bulk will have to be determined. If the D-antigen ELISA is not suitable for a particular combination, an in vivo assay should be used.

The potency of the final bulk for each virus type should be approved by the NRA.

A.4.7.3 Preservative content

If preservative is added, the content in the final bulk should be determined by a method approved by the NRA. The preservative used and content permitted should be approved by the NRA.

2-Phenoxyethanol has been the only preservative used by IPV manufacturers during the past 50 years as the use of thiomersal can result in loss of D-antigen content.

A.4.7.4 Adjuvant (if applicable)
Each final vaccine bulk should be assayed for the content of adjuvant. This test may be omitted if it is performed on the final lot. Where aluminium compounds are used, the content of aluminium should not be greater than 1.25 mg per single human dose.

A.5 Filling and containers

The requirements concerning filling and containers given in *Good manufacturing practices for biological products* (43) should apply to vaccine filled in the final form.

Single- and multiple-dose containers may be used.

A.6 Control tests on the final lot

Samples should be taken from each final lot for the tests described in the following sections. The following tests should be performed on each final lot of vaccine (i.e. in the final containers). Unless otherwise justified and authorized, the tests should be performed on labeled containers from each final lot by means of validated methods approved by the NRA. The permissible limits for the different parameters listed under this section, unless otherwise specified, should be approved by the NRA.

A.6.1 Inspection of final containers

Every container in each final lot should be inspected visually or mechanically, and those showing abnormalities should be discarded and recorded for each relevant abnormality. A limit should be established for the percentage of rejection.

A.6.1.1 Appearance

The appearance of the vaccine should be described with respect to its form and colour.

A.6.2 Identity test

An identity test should be performed on at least one labelled container from each final lot by an appropriate method.

The potency test described in section A.6.5 may serve as the identity test.

A.6.3 Sterility test for bacteria and fungi
Each final lot should be tested for bacterial and fungal sterility, as specified in Part A, section 5.2 of the *General requirements for the sterility of biological substances* (47), or by methods approved by the NRA.

A.6.4 General safety test

Each final lot should be tested for the absence of abnormal toxicity in mice or guinea pigs using a test approved by the NRA. This test may be omitted for routine release once consistency of production has been established to the satisfaction of the NRA.

A.6.5 Potency test

Each final lot should be tested by a validated immunochemical method for D-antigen content (see sections A.4.5.5 and A.4.7.2) and calculated by use of a reference vaccine calibrated against the WHO International Standard (see A.1.3).

In some countries, this test is omitted provided that the determination of the D-antigen content has been carried out with satisfactory results on the final bulk product and provided that a validation has been performed to demonstrate that there is no loss of potency between the final bulk product and the final lot, subject to approval by the NRA.

If the use of an adjuvant in the final bulk interferes with the assay, a desorption or treatment step may be necessary before performing the D-antigen ELISA. If treatment/desorption is not possible, the interference of the adjuvant should be documented and an in vivo assay should be performed (see A.4.7.2 and Appendix 2).

In general, wIPV that have been formulated to contain 40, 8 and 32 D-antigen units or more per dose for types 1, 2 and 3, respectively, are effective (54). Vaccines with lower D-antigen contents may be acceptable if supported by clinical data. Vaccines in which adjuvants are used, or vaccines produced from other seed viruses (e.g. Sabin viruses), may also be licensed with a different antigenic composition if supported by clinical data.
If the final bulk is formulated from a trivalent bulk and other antigens into a combination vaccine, the suitability of performing the D-antigen ELISA on the final lot will have to be determined. If the D-antigen ELISA is not suitable for a particular combination, an in vivo assay such as that described in Appendix 2 should be used.

The potency of the vaccines for each virus type should be approved by the NRA.

A.6.6 Protein content
Poliomyelitis vaccine (inactivated) should not contain more than 10 µg of protein per human dose. This test may be omitted for routine lot release once consistency of production has been established to the satisfaction of the NRA.

If animal serum is used for the growth of cell cultures, the serum protein concentration (bovine serum albumin) in the final lot should be no more than 50 ng per human dose. The test for bovine serum albumin may be omitted if performed on the trivalent or final bulk, subject to approval by the NRA.

A.6.7 Preservative content
Where appropriate, the preservative content of each final lot should be determined by a method approved by the NRA. The method used and content permitted should be approved by the NRA. This test may be omitted if conducted on the final bulk.

A.6.8 Endotoxin content
The endotoxin content of each final lot should be determined by a method approved by the NRA. Levels should be consistent with levels found to be acceptable in vaccine lots used in pre-licensure clinical trials and approved by the NRA.

A.6.9 Test for residual formaldehyde
The content of free residual formaldehyde in each final lot should be determined by a method approved by the NRA. The limit should be approved by the NRA. This test may be omitted if performed on the trivalent bulk or on the final bulk.
A.6.10 Test for pH
The pH of each final lot should be determined and should be within limits approved by the NRA.

A.6.11 Adjuvant and degree of adsorption (if applicable)
If an adjuvant is used in the formulation, each final lot should be assayed for the content of adjuvant. Where aluminium compounds are used, the content of aluminium should not be greater than 1.25 mg per single human dose. This test may be omitted on the final lot if performed on the final bulk.

The degree of adsorption of the antigen to the aluminium compounds (aluminium hydroxide or hydrated aluminium phosphate) in each final lot should be assessed.

A.6.12 Residual antibiotics (if applicable)
If any antibiotics are added in the vaccine production, the content of the residual antibiotics should be determined and should be within limits approved by the NRA. This test may be omitted for routine lot release once consistency of production has been established to the satisfaction of the NRA.

A.7 Records
The requirements given in Good manufacturing practices for biological products (43) should apply.

A.8 Retained samples
The requirements given in Good manufacturing practices for biological products (43) should apply.

A.9 Labelling
The requirements given in Good manufacturing practices for biological products (43) should apply, and additionally the label on the container or package should include the following information:

- the designation(s) of the strain(s) of poliovirus contained in the vaccine;
- the cell substrate used for the preparation of vaccine;
- the D-antigen content of each poliovirus type;
- the method and inactivating agent used to inactivate the virus;
- the nature and amount of any stabilizer and preservative present in the vaccine;
− the nature and amount of adjuvant, if applicable.

It is desirable for the label to carry the names both of the producer and of the source of the bulk material if the producer of the final vaccine did not prepare it. The nature and amount of the antibiotics present in the vaccine, if any, may be included.

A.10 Distribution and shipping
The requirements given in Good manufacturing practices for biological products (43) should apply. Further guidance is provided in WHO’s Model guidance for the storage and transport of time- and temperature-sensitive pharmaceutical products (55).

A.11 Stability, storage and expiry date
A.11.1 Stability testing
Adequate stability studies form an essential part of vaccine development. Current guidance on the evaluation of vaccine stability is provided in the WHO Guidelines on stability evaluation of vaccines (56). Stability testing should be performed at different stages of production when intermediate product is stored, namely on single harvests, inactivated purified monovalent pool, trivalent bulk, final bulk and final lot. Stability-indicating parameters should be defined or selected appropriately according to the stage of production. During vaccine production a shelf-life should be assigned to all in-process materials – particularly intermediates such as single harvests, inactivated purified monovalent pool, trivalent bulk and final bulk.

The stability of the vaccine in its final containers, maintained at the recommended storage temperature up to the expiry date, should be demonstrated to the satisfaction of the NRA. As a guide, containers from at least three consecutive final lots, and derived from different monovalent pools and different trivalent bulks, may be tested.

Where manufacturing involves only formulation of the final bulk from trivalent bulks supplied by another manufacturing establishment and the filling of final containers, stability data on the trivalent bulks in their storage conditions and the shelf-life established until use should be generated by the manufacturer performing the final fill.
The formulation of the vaccine should be stable throughout its shelf-life. Acceptable limits for stability should be agreed with the NRA. Following licensure, ongoing monitoring of vaccine stability is recommended to support shelf-life specifications and to refine the stability profile (56). Data should be provided to the NRA in accordance with local regulatory requirements.

The efficacy of the preservative should be confirmed at the end of shelf-life. In the case of multi-dose presentations, efficacy of the preservative should be confirmed for the period during which the vial can be open, in compliance with the WHO policy on the use of opened multi-dose vials of vaccine in subsequent immunization sessions (57).

The final stability testing programme should be approved by the NRA and should include an agreed set of stability-indicating parameters, procedures for the ongoing collection and sharing of stability data, and criteria for rejecting vaccine(s).

A.11.2 Storage conditions
Poliomyelitis vaccine (inactivated) should be stored at all times at a temperature between 2 °C and 8 °C. For novel vaccines, appropriate storage conditions should be validated and approved by the NRA.

A.11.3 Expiry date
The expiry date should be based on the shelf-life, and should be supported by stability studies and approved by the NRA. The expiry date should relate to the date of blending of the final bulk, the date of filling or the date of the first valid potency test on the final lot, which should be performed in an assay as described in Appendix 2.

Where an in vivo potency test is used, the date of the potency test is the date on which the test animals were inoculated with the final bulk.

Part B. Nonclinical evaluation of poliomyelitis vaccines (inactivated)
The nonclinical evaluation of candidate inactivated poliomyelitis vaccines should be based on the WHO guidelines on nonclinical evaluation of vaccines (8). The following specific issues are
intended for new IPV candidates and should also be referred to when a significant change is made in the manufacturing process or vaccine formulation of a licensed IPV.

B.1 Characterization of poliovirus seed lots derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology)
The virus master and working seed lots derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology) that are used to manufacture a candidate IPV should be extensively characterized, as described in section A.3.1. Ideally, the characterization studies should be performed on seed lots used to prepare the vaccine batches tested in preclinical and clinical studies.

When attenuated poliovirus strains derived by recombinant DNA technology are used to prepare a candidate IPV, the mutations responsible for attenuation should be identified along with the mutations that can revert to partial or full virulence phenotype. The need for testing virus master seed lots of attenuated strains derived by recombinant DNA technology with in vivo neurovirulence tests should be considered and the decision whether to test or not should be scientifically justified. In addition, the genetic stability of the strains derived by recombinant DNA technology should be confirmed at the passage level (or beyond) used to prepare the vaccine. Efforts should also be made to develop an in vitro test to detect reversion to partial and full virulent virus.

B.2 Antigenic profile
The available evidence suggests that there may be significant differences in the antigenic composition of various IPV products developed independently, particularly when comparing sIPV to wIPV. It is likely that antigenic profiles of IPV are influenced by virus strains, cell substrates and process parameters used in manufacture. The antigenic structure of a candidate IPV should ideally be established using monoclonal antibodies of known specificity at the early stage of product development and should be used as a characterization tool for investigating vaccine stability and demonstrating manufacturing consistency during product development.
B.3 D-antigen content of IPV derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology)

The type-specific antigen content of current licensed wIPV is measured using various ELISA procedures (60) and is reported as D-antigen units relative to a reference preparation traceable to the International Standard. When attenuated strains (e.g. Sabin strains and strains derived by recombinant DNA technology) are used to prepare the candidate IPV, an in-house ELISA should be developed and implemented to determine type-specific D-antigen content. An in-house reference standard should be established at the early stage of product development and should be calibrated against the International Standard. A monitoring programme should be put in place to ensure the stability of the in-house reference standard and the comparability of its subsequent replacement. In addition, the ratio between virus titre (per mL) and D-antigen content (per mL) of purified monovalent pools prior to inactivation should also be established for each polio type during product development and should be monitored during commercial production. This provides further assurance that the D-antigen content of commercial lots, throughout the product life cycle, is comparable to lots shown to be safe and immunogenic in clinical studies.

Most licensed wIPV products have been formulated to contain 40, 8 and 32 D-antigen units per human dose. However, the D-antigen unit is not well defined with respect to various poliovirus strains used in manufacture and known to be influenced by the specificity of the antibodies used as ELISA reagents. Therefore, it is not possible to compare directly the D-antigen content of various IPV (e.g. sIPV versus wIPV) measured using different monoclonal or polyclonal antibody-based ELISA procedures (61). It is recognized that IPV derived from attenuated strains or adjuvanted IPV may require different D-antigen content to induce adequate immune responses in humans.

B.4 Evaluation of immunogenicity in animal models

Prior to initiating clinical trials, the immunogenic properties of a candidate IPV should be studied in suitable animal models (e.g. rats). Proof-of-concept nonclinical studies should include the comparison of immunogenicity between a candidate IPV and a currently licensed wIPV based on type-specific serum neutralizing antibody titres against both Sabin and wild-type strains. Those studies may also assist in the selection of D-antigen content to be tested in the dose-finding studies in humans. However, it is important to note that immunogenicity data in animals do not reliably predict the antigen content that might be appropriate for inclusion as a single human dose in the final vaccine formulation. The assay using transgenic mice may be
performed to compare the immune response and protection against virulent challenge induced by a candidate IPV to that induced by a licensed wIPV \((31, 32)\). In vivo tests are also important tools to be used as characterization tests to demonstrate comparable manufacturing processes when major changes are introduced.

When an adjuvant is included in the formulation, manufacturers should provide a rationale and immunogenicity data to support the use of an adjuvant in the vaccine \((62)\).

B.5 Nonclinical safety studies

If a candidate IPV is formulated with a novel adjuvant or excipient (e.g. stabilizer), nonclinical safety studies should be conducted based on WHO’s *Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines* \((62)\). The use of a delivery device as well as alternative administration routes (e.g. intradermal) may affect vaccine potency/immunogenicity, tolerability, toxicity and long-term safety. The design of nonclinical safety studies should follow special considerations outlined in section 5 of the *WHO guidelines on nonclinical evaluation of vaccines* \((8)\).

Part C. Clinical evaluation of poliomyelitis vaccine (inactivated)

Clinical trials should adhere to the principles described in WHO’s *Guidelines for good clinical practice (GCP) for trials on pharmaceutical products* \((63)\) and *Guidelines on clinical evaluation of vaccines: regulatory expectations* \((9)\).

Some of the issues that are specific to the clinical evaluation of IPV are discussed in the following sections, which are applicable to IPV derived from wild-type strains as well as attenuated strains (e.g. Sabin strains and strains derived by recombinant DNA technology).

C.1 General considerations

The global poliomyelitis eradication initiative following the 1998 World Health Assembly resolution led to a dramatic decrease in poliomyelitis cases globally \((11)\). Consequently, clinical efficacy studies to support the licensure of a candidate IPV are no longer feasible, and the clinical evaluation should be based on the comparative assessment of safety and immunogenicity of a candidate vaccine with a licensed vaccine (comparator vaccine). The assessment of
seroconversion should be based on the elicitation of serum neutralizing antibodies, which have been established as the basis of protection (64). The licensure of a candidate IPV should be based on a clear demonstration of non-inferiority in terms of immunogenicity when compared to a comparator vaccine.

C.2 Immunogenicity studies

C.2.1 Assessment of the immune response

A serum neutralizing antibody titre of ≥8 is considered to be a marker of clinical protection against poliomyelitis (65). The demonstration of an immune response to IPV vaccination should be based on the measurement of neutralizing antibody titres at pre- and post-vaccination time points. Seroconversion for polio antigen is defined as:

- for subjects seronegative at the pre-vaccination time point, post-vaccination antibody titres of ≥ 8;
- for subjects seropositive at the pre-vaccination time point, a ≥4-fold rise in antibody titres post-vaccination. In the event that the pre-vaccination titre is due to maternal antibodies, a 4-fold rise above the expected titre of maternal antibodies based on the pre-vaccination titre declining with a half-life of 28 days indicates seroconversion.

It is recommended that the assay used to assess serum neutralizing antibodies should be standardized, as described in WHO’s Manual for the virological investigation of polio (66), particularly with respect to the use of appropriate cell lines, International Standards of anti-poliovirus sera and other important reagents. The level of neutralizing antibody present in a serum sample is expressed as a titre, which is the reciprocal of the highest serum dilution that inhibits the viral cytopathic effect in 50% of cell culture.

For the evaluation of IPV derived from attenuated strains (Sabin strains and strains derived by recombinant DNA technology), serum neutralizing antibody titres against both Sabin and wild-type poliovirus should be determined in order to ensure that the conclusions of clinical studies are applicable to both types of strains. In view of the antigenic differences between the wild-type poliovirus strains, it may be useful to assess the neutralizing antibody titres using both recent wild-type isolates and the conventional strains in a subset of study subjects, if relevant.
The presence of neutralizing antibody against polioviruses is considered a reliable correlate of protection against poliomyelitis. However, immunity induced by one serotype does not provide protection against the other two serotypes.

C.2.2 Immunogenicity studies

A candidate IPV should be directly compared with at least one well established and licensed IPV in prospective controlled studies. In the event that none of the IPV products can be used in the country where the clinical studies are conducted, the use of OPV as a comparator may be acceptable to the NRA, bearing in mind the differences in the route of administration and the types of immune responses generated. However, the use of OPV in clinical studies should be in compliance with the Polio Eradication and Endgame Strategic Plan 2013–2018 (15), and it must be noted that the use of tOPV is time-limited as bOPV will be introduced and will be followed by the complete cessation of all OPV vaccination.

Non-inferiority studies to evaluate immunogenicity after completion of the primary vaccination series in the target population (e.g. naive infants) are required for regulatory approval of a candidate IPV. Persistence of the serum neutralizing antibodies after the primary series should also be investigated to recommend whether and when a booster dose is required. However, data concerning long-term antibody persistence might not be available prior to regulatory approval. Waning of antibodies over time is inevitable and should not be interpreted to indicate the need for a booster dose per se, as available data suggest that persistent immune memory may be sufficient to protect against poliomyelitis (67, 68).

C.2.3 Study population and region

In general, the first clinical study (Phase I) of a candidate IPV should be performed in healthy adults to assess vaccine safety. Due to wide use of IPV and OPV, the immunogenicity of a candidate IPV can be reliably evaluated only in a naive target population, such as infants.

Exposure of study subjects to circulating wild-type or OPV-derived poliovirus may enhance the immune response induced by IPV and, in turn, may affect study conclusions. Therefore, clinical trials to evaluate the immunogenicity of a candidate IPV should ideally be performed in regions where IPV is used exclusively. In the event that a clinical trial is conducted in areas where OPV
is used routinely, special measures should be taken to minimize the potential exposure of study participants to live poliovirus.

C.2.4 Endpoints and analyses

The primary study analysis should be based on the rate of seroconversion (as described in section C.2.1) against both Sabin and wild-type strains measured at approximately 4 weeks following completion of the primary infant immunization. The primary study objectives should be based on the demonstration of the non-inferiority of the seroconversion rates achieved with the candidate IPV versus the comparator vaccine.

The predefined clinical margins of non-inferiority should be justified, and the calculations of the proposed sample size required should be clearly explained in the study protocol. Further guidance on demonstrating non-inferiority trials is described in WHO’s Guidelines on clinical evaluation of vaccines: regulatory expectations (9).

Comparison of geometric mean titres (GMTs) and reverse cumulative distributions of individual titres against both Sabin and wild-type poliovirus at 4 weeks post-primary should also be performed as a secondary analysis. While it may be that the GMT(s) for one or more poliovirus types induced by the candidate IPV derived from attenuated strains is lower than that induced by the comparator, it is not clear if a lower GMT at 4 weeks post-primary affects long-term antibody persistence. Consequently, any significant differences in GMT observed (e.g. not meeting pre-specified criteria) should be carefully considered by the NRA and a decision should be supported by additional studies of antibody persistence (as described in section C.2.2) and commitment to post-marketing studies (described in section C.5).

The minimal D-antigen content required for the candidate vaccine at the end of its shelf-life should be based on the D-antigen content of the clinical lots shown to induce acceptable immune responses in clinical studies (e.g. lots used in the dose-finding study).

C.2.5 Immunization schedule

Different immunization schedules are used for licensed wIPV in various regions and countries. It is common for IPV to be administered according to the same schedule as DTP-containing vaccines in order to achieve a high compliance rate. Clinical trial data have shown that the
immune response induced by licensed wIPV varies according to the immunization schedule used. In general, longer intervals in the primary immunization series (e.g. 2, 4 and 6 months) induce higher neutralizing antibody titres and a better seroconversion rate (69, 70). An immunization schedule should be defined for the targeted country or region wherever possible, and dose-finding and non-inferiority studies for a candidate IPV should be conducted according to this immunization schedule. However, it is not feasible to study a candidate vaccine using every possible schedule in all target regions. Manufacturers should justify the relevance of the clinical data provided to each country in which approval is sought and should discuss the basis for extrapolation of the findings. For example, satisfactory immune responses using a schedule with a short interval between immunizations (e.g. 2, 3 and 4 months) supports an expectation that satisfactory immune responses would also be observed using a schedule with a longer interval (e.g. 2, 4 and 6 months). However, the local and systemic reactogenicity associated with a candidate IPV may also differ between schedules within a specific population so there is still a need to collect some safety data, prior to regulatory approval, for the proposed schedules (e.g. 2, 4 and 6 months).

The use of an IPV that is prepared from attenuated poliovirus strains or that contains a fractional antigen dose in a sequential IPV-OPV immunization schedule should be supported by clinical studies to ensure adequate serum neutralizing antibodies against both wild-type and Sabin poliovirus.

C.3 Concomitant administration with other vaccines

IPV is commonly co-administered with other infant and toddler vaccines. Consequently, it is essential to evaluate the immune responses to a candidate IPV as well as to all other antigens co-administered in all the co-administration situations claimed. Due to the large number of licensed vaccines that may need to be co-administered with IPV in infants and toddlers using a variety of schedules, it is not feasible for manufacturers to study every possible combination. The data on the effects of co-administration that are available at the time of initial licensure may be limited and should be expanded in post-approval studies. If study results indicate that immune responses are lower on co-administration with other vaccine(s), the NRA will need to consider the potential clinical consequences on a case-by-case basis.
C.4 Pre-licensure safety data

The general approach to safety assessment of a candidate IPV during pre-licensure clinical studies should be in accordance with WHO’s Guidelines on clinical evaluation of vaccines: regulatory expectations (9). The safety profile of a candidate IPV derived from attenuated strains is expected to be very similar to that of current licensed wIPV, which is very well tolerated. The NRA may decide that large safety studies are not required. However, if a candidate IPV includes novel adjuvants and/or excipients, or is administered using an alternative route and/or delivery device, a safety database similar in size to that requested for any new vaccine entity might be needed. This should be discussed and approved by the NRA on a case-by-case basis. In addition, it is likely that adverse events at the injection site are more frequent if a candidate IPV contains an adjuvant. This may be acceptable if the incidence of adverse events is comparable to that observed for other licensed adjuvanted vaccines and the benefit clearly outweighs the risks.

An appropriate pharmacovigilance plan should be developed and approved by the NRA prior to licensure.

C.5 Post-marketing studies and surveillance

Post-marketing surveillance should be undertaken during the initial post-approval years in collaboration with the NRA. Manufacturers and health authorities should work in collaboration with the global polio surveillance laboratory network to monitor new vaccines once they are introduced in immunization programmes. The enhanced safety surveillance is particularly important for vaccines which include novel adjuvants and/or excipients. Due to the possibility that the sIPV may induce a lower GMT for one or more poliovirus types, the persistence of antibody and the need for a booster dose should be studied in the post-marketing period.

The total duration of enhanced surveillance should be regularly reviewed by the NRA. If particular issues arise during pre-licensure studies or during post-licensure safety surveillance, it may be necessary to conduct specific post-licensure safety studies.
Part D. Recommendations for national regulatory authorities

D.1 General
The general recommendations for NRAs and NCLs given in the Guidelines for national authorities on quality assurance for biological products (71) and Guidelines for independent lot release of vaccines by regulatory authorities (72) should apply.

The detailed production and control procedures, as well as any significant changes in them that may affect the quality, safety and efficacy of poliomyelitis vaccine (inactivated), should be discussed with and approved by the NRA.

For control purposes, the International Standards that are currently in force should be obtained for the purpose of calibration of the national/regional/working standards (73). The NRA may obtain from the manufacturer the product-specific or working reference to be used for lot release until international/national standard preparation is established.

Consistency of production has been recognized as an essential component in the quality assurance of poliomyelitis vaccine (inactivated). In particular, the NRA should carefully monitor production records and quality control test results for clinical lots as well as for a series of consecutive lots of the vaccine.

D.2 Official release and certification
A vaccine lot should be released only if it fulfils the national requirements and/or satisfies Part A of the present recommendations (72).

A protocol based on the model given in Appendix 3, signed by the responsible official of the manufacturing establishment, should be prepared and submitted to the NRA in support of a request for the release of vaccine for use.

A statement signed by the appropriate official of the NRA should be provided to the manufacturing establishment and should certify that the lot of vaccine in question meets all national requirements, as well as Part A of these recommendations. The certificate should provide sufficient information on the vaccine lot. A model certificate is given in Appendix 4.
1 The official national release certificate should be provided to importers of the vaccines. The
2 purpose of the certificate is to facilitate the exchange of vaccines between countries.
Authors and acknowledgements

A pre-draft of this document was prepared by Dr M. Lennon, Horning, England; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China; Dr J. Martin, National Institute for Biological Standards and Control, Potters Bar, England; Dr P. Minor, National Institute for Biological Standards and Control, Potters Bar, England; Dr K. Chumakov, Center for Biologics Evaluation and Research, Rockville, MD, USA; Dr T. Wu, Health Canada, Ottawa, Canada; with support from the WHO Secretariat: Dr T.Q. Zhou, Dr J. Fournier-Caruana, Dr I. Knezevic and Dr D.J. Wood, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Dr H. Okayasu and Dr R. Sutter, Research, Policy and Product Development, World Health Organization, Geneva, Switzerland, taking into considerations the discussions at a Working Group meeting on Technical Specifications for Manufacturing and Evaluating the WHO Recommendations for IPV: TRS No. 910 in Geneva, Switzerland, 27–29 March 2012 attended by: Dr M. Baca-Estrada, Health Canada, Ottawa, Canada; Dr W.A.M. Bakker, National Institute for Public Health and the Environment, Bilthoven, Netherlands; Dr J. Fournier-Caruana, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Mr B.S. Chauhan, Bharat Biotech International Limited, Hyderabad, India; Dr K. Chumakov, Center for Biologics Evaluation and Research, Bethesda, MD, USA; Dr E. Coppens, Sanofi Pasteur, Marcy l’Etoile, France; Dr M. Duchêne, GSK Biologicals, Wavre, Belgium; Ms G. Dunn, National Institute for Biological Standards and Control, Potters Bar, England; Dr D. Felnerova, Crucell, Berne, Switzerland; Dr M. Lennon, Horning, England; Dr L. Fiore, Istituto Superiore di Sanita, Rome, Italy; Mr J.B. González, Laboratorios de Biológicos y Reactivos de México S.A. de C.V., Mexico City, Mexico; Dr M.A. Gonzalez, Federal Commission for the Protection from Sanitary Risks, Ministry of Health, Mexico; Dr V. Grachev, Russian Academy of Medical Sciences, Moscow, Russian Federation; Ms H. Wang, Tiantan Biological Products Co. Ltd., Beijing, China; Mrs T. Jivapaianpong, Ministry of Public Health, Bangkok, Thailand; Dr I. Knezevic, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Dr H. Okayasu, Research, Policy and Product Development, World Health Organization, Geneva, Switzerland; Dr D. Kusmiaty, National Quality Control Laboratory of Drug and Food, Ministry of Health, Jakarta, Indonesia; Dr K. Katayama, National Institute of Infectious Diseases, Tokyo, Japan; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China; Dr J. Martin, National Institute for Biological Standards and Control, Potters Bar, England; Dr. C. Milne,
European Directorate for the Quality of Medicines & HealthCare, Council of Europe, Strasbourg, France; Dr R. Modi, Cadila Pharmaceuticals Limited, Ahmedabad, India; Ms E. Niogret, Sanofi Pasteur, Marcy L’Etoile, France; Dr L.V. Phung, National Institute for Control of Vaccine and Biologicals, Hanoi, Viet Nam; Dr V. Pithon, Agence nationale de sécurité du médicament et des produits de santé, Lyon, France; Dr A. Sinyugina, Russian Academy of Medical Sciences, Moscow, Russian Federation; Dr R. Sutter, Research, Policy and Product Development, World Health Organization, Geneva, Switzerland; Mr D. Ugiyadi, BioFarma, Bandung, Indonesia; Dr G. Waeterloos, Scientific Institute of Public Health, Brussels, Belgium; Dr S. Yamazaki, Japan Poliomyelitis Research Institute, Tokyo, Japan; Dr D.J. Wood, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Mr L. Yi, Institute of Medical Biology, Kunming, China; Dr T.Q. Zhou, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland.

Draft 1 was prepared by Dr M. Lennon, Horning, England; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China; Dr J Martin, National Institute for Biological Standards and Control, Potters Bar, England; Dr P. Minor, National Institute for Biological Standards and Control, Potters Bar, England; Dr K. Chumakov, Center for Biologics Evaluation and Research, Rockville, MD, USA; Dr T. Wu, Health Canada, Ottawa, Canada; with support from the WHO Secretariat: Dr T.Q. Zhou, Dr J. Fournier-Caruana, Dr I. Knezevic and Dr D.J. Wood, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Dr H. Okayasu and Dr H.S. Jafari, Policy and Product Development, World Health Organization, Geneva, Switzerland; taking into considerations the discussions at a Working Group meeting on Technical Specifications for Manufacturing and Evaluating the WHO Recommendations for IPV: TRS No. 910 in Geneva, Switzerland, 14–15 May 2013, attended by Ms P. Agsiri, Ministry of Public Health, Nonthaburi, Thailand; Dr W A.M. Bakker, Institute for Translational Vaccinology, Bilthoven, Netherlands; Dr K. Chumakov, Center for Biologics Evaluation and Research, Rockville, MD, USA; Dr J. Fournier-Caruana, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Dr E. Griffiths, Consultant, Kingston upon Thames, England; Dr I. Hansenne, Scientific Institute of Public Health, Brussels, Belgium; Dr K. Katayama, National Institute of Infectious Diseases, Tokyo, Japan; Dr J. Korimbocus, Agence nationale de sécurité du médicament et des produits de santé, Lyon, France; Dr M. Lennon, Horning, Norfolk, England; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China; Dr J Martin, National Institute for Biological Standards.
and Control, Potters Bar, England; Dr P. Minor, National Institute for Biological Standards and
Control, Potters Bar, England; Mr M. Mitsuki, Pharmaceuticals and Medical Devices Agency,
Tokyo, Japan; Dr P. Neels, Federal Agency for Medicinal and Health Products, Brussels,
Belgium; Dr M. van Oijen, Institute for Translational Vaccinology, Bilthoven, Netherlands; Dr
V.G. Somani, Central Drugs Standard Control Organization, New Delhi, India; Dr T. Wu, Health
Canada, Ottawa, Canada; Professor H. Yin, State Food and Drug Administration, Beijing, China;
Dr N. Benno Chukilizo, Tanzania Food and Drugs Authority, Dar-es-Salaam, United Republic of
Tanzania; Mrs D. Darko, Food and Drugs Board, Accra, Ghana; Dr K. Mahmood, PATH,
Seattle, WA, USA; Dr C. Milne, European Directorate for the Quality of Medicines &
HealthCare, Council of Europe, Strasbourg, France; Dr D-Y. Choi, Lucky Goldstar Life
Sciences, Seoul, Korea; Dr R. Dhere, Serum Institute of India Ltd., Pune, India; Dr S. Konda,
Panacea Biotec Ltd., New Delhi, India; Ms X. Li, National Vaccine and Serum Institute, Beijing,
China; Mr D. Ugiyadi, PT Biofarma, Bandung, Indonesia; Ms H. Wang, Tiantan Biological
Products, Beijing, China; Dr S. de Walque, GlaxoSmithKline Vaccines, Wavre, Belgium; Dr T.
de Rosa, Crucell Switzerland Ltd., Berne, Switzerland; Dr E. Vidor, Sanofi Pasteur, Lyon,
France; Dr Y. Kino, The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan; Dr Q.
Li, Kunming Institute of Medical Biology, Kunming, China; Dr G. Stawski, Statens Serum
Institut, Copenhagen, Denmark; Dr K. Wakabayashi, Japan Poliomyelitis Research
Institute, Tokyo, Japan; Dr D.J. Wood, Department of Essential Medicines and Health Products,
World Health Organization, Geneva, Switzerland.

Draft 2 was prepared by Dr M. Lennon, Horning, England and Dr T.Q. Zhou, Department of
Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
taking into consideration comments from Ms P. Agsiri, Ministry of Public Health, Nonthaburi,
Thailand; Dr W.A.M. Bakker, Institute for Translational Vaccinology, Bilthoven, Netherlands;
Dr J. Fournier-Caruana, Department of Essential Medicines and Health Products, World Health
Organization, Geneva, Switzerland; Dr J. Korimbocus, Agence nationale de sécurité du
médicament et des produits de santé, Lyon, France; Dr C. Li, National Institutes for Food and
Drug Control, Beijing, China; Dr J. Martin, National Institute for Biological Standards and
Control, Potters Bar, England; Dr P. Minor, National Institute for Biological Standards and
Control, Potters Bar, England; Dr M. van Oijen, Institute for Translational Vaccinology,
Bilthoven, Netherlands; Dr T. Wu, Health Canada, Ottawa, Canada; Dr K. Mahmood, PATH,
Seattle, WA, USA; Dr C. Milne, European Directorate for the Quality of Medicines &
HealthCare, Council of Europe, Strasbourg, France; Dr S. Konda, Panacea Biotec Ltd., New
Delhi, India; Dr E. Vidor, Sanofi Pasteur, Lyon, France; Dr Y. Kino, The Chemo-Sero-
Therapeutic Research Institute, Kumamoto, Japan; Dr Q. Li, Kunming Institute of Medical
Biology, Kunming, China; Dr K. Wakabayashi, Japan Poliomyelitis Research Institute, Tokyo,
Japan.

Draft 3 was prepared Dr M. Lennon, Horning, Norfolk, England and Dr T.Q. Zhou, Department
of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
and the drafting group: Dr K. Chumakov, Center for Biologics Evaluation and Research,
Rockville, MD, USA; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China;
Dr J. Martin, National Institute for Biological Standards and Control, Potters Bar, England; Dr P.
Minor, National Institute for Biological Standards and Control, Potters Bar, England; Dr T. Wu,
Health Canada, Ottawa, Canada; with support from the WHO Secretariat: Dr J. Fournier-
Caruana, Dr I. Knezevic and Dr D.J. Wood, Department of Essential Medicines and Health
Products, World Health Organization, Geneva, Switzerland; Dr H. Okayasu and Dr R. Sutter,
Research, Policy and Product Development, World Health Organization, Geneva, Switzerland;
and Dr N. Previsani, Global Polio Eradication Initiative, World Health Organization, Geneva,
Switzerland, following a first round public consultation of the second draft document on the
WHO Biologicals website during December 2013–January 2014, taking into consideration
comments provided by Dr S. Abe and Dr S. Yamazaki, Japan Poliomyelitis Research Institute,
Tokyo, Japan; Professor Y Che, and Professor S Jiang, and Professor Q Li, Chinese Academy of
Medical Sciences, Kunming, China; Dr Y-K. Lee, Ministry of Food & Drug Safety, Cheongwon-
gun, Republic of Korea; Dr R. Lundquist, Center for Biologics Evaluation and Research,
Bethesda, MD, USA; Dr C. Milne, European Directorate for the Quality of Medicines &
HealthCare, Council of Europe, Strasbourg, France; Dr M. Li, China Food and Drug
Administration, Beijing, China; Dr S. Morgeaux, Agence Nationale de Sécurité du Médicament
et des Produits de Santé, Lyon, France; Dr M. van Oijen, Institute for Translational Vaccinology,
Bilthoven, Netherlands; Dr E. Vidor, Sanofi Pasteur, Lyon, France; Dr K. Wakabayashi, Japan
Poliomyelitis Research Institute, Tokyo, Japan; Dr S. de Walque, GlaxoSmithKline Vaccines,
Wavre, Belgium; Dr K. Mahmood, PATH, Seattle, WA, USA; Ms P. Agsiri, Ministry of Public
Health, Bangkok, Thailand; Dr J. Prakash, Indian Pharmacopoeia Commission, Ghaziabad,
India.

Draft 4 was prepared Dr M. Lennon, Horning, England and Dr T.Q. Zhou, Department of
Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland and
the drafting group: Dr K. Chumakov, Center for Biologics Evaluation and Research, Food & Drug
Administration, Rockville, MD, USA; Dr C. Li, National Institutes for Food and Drug Control,
Beijing, China; Dr J. Martin, National Institute for Biological Standards and Control, Potters Bar, England; Dr P. Minor, National Institute for Biological Standards and Control, Potters Bar, England; Dr T. Wu, Health Canada, Ottawa, Canada; with support from the WHO Secretariat: Dr J. Fournier-Caruana, Dr I. Knezevic and Dr D.J. Wood, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland; Dr H. Okayasu, Research, Policy and Product Development, World Health Organization, Geneva, Switzerland; Dr N. Previsani, Surveillance, Monitoring and Information, World Health Organization, Geneva, Switzerland; and Dr M.R. Balakrishan, Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland, taking into consideration the discussions at an Informal Consultation on the WHO Recommendations to assure the quality, safety and efficacy of poliomyelitis (inactivated) in Geneva, Switzerland on 14–15 May 2013 attended by Dr R. Arora, Indian Council of Medical Research, New Delhi, India; Ms P. Agsiri, Ministry of Public Health, Nonthaburi, Thailand; Dr W.A.M. Bakker, Institute for Translational Vaccinology, Bilthoven, Netherlands; Dr J.J. Bergers, Medicines Evaluation Board, Utrecht, Netherlands; Ms Juliati Dahlan, National Agency of Drug and Food Control, Jakarta, Indonesia; Dr L. Fiore, Istituto Superiore di Sanita, Rome, Italy; Dr M. Ayala Gonzalez, Federal Commission for the Protection from Sanitary Risks, Mexico City, Mexico; Dr E. Griffiths, Consultant, Kingston upon Thames, England; Dr K. Katayama, National Institute of Infectious Diseases, Tokyo, Japan; Ms Y-K. Lee, Ministry of Food and Drug Safety, Seoul, Republic of Korea; Dr M. Mitsuki, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan; Dr M. van Oijen, Institute for Translational Vaccinology, Bilthoven, Netherlands; Dr S. Pakzad, Food and Drug Control Laboratory, Tehran, Iran; Dr V. Pithon, Agence nationale de sécurité du médicament et des produits de santé, Lyon, France; Dr A. Utami, National Agency of Drug and Food Control, Jakarta, Indonesia; Dr G. Waeterloos, Scientific Institute of Public Health, Brussels, Belgium; Dr R. Wagner, Paul-Ehrlich-Institut, Langen, Germany; Dr B. Voordouw, Medicines Evaluation Board, Utrecht, Netherlands; Professor H. Yang, China Food and Drug Administration, Beijing, China; Professor H. Yin, China Food and Drug Administration, Beijing, China; Dr A.F. Nkayamba, Tanzania Food and Drugs Authority, United Republic of Tanzania; Dr K. Mahmood, PATH, Seattle, WA, USA; Dr C. Milne, European Directorate for the Quality of Medicines & Healthcare, Council of Europe, Strasbourg, France; Representatives of Developing Countries Vaccine Manufacturers Network: Mr B. Alirezaie, Razi Vaccine and Serum Research Institute, Alborz, Iran; Mr B. Ballabh Baluni, Panacea Biotec Ltd., New Delhi, India; Dr C. Breda, BE Vaccines SAS, Nantes, France; Dr S.
WHO/BS/2014.2233
Page 63

Gairola, Serum Institute of India Ltd., Pune, India; Professor X. Li, National Vaccine and Serum
Institute, Beijing, China; Dr W. Meng, Sinovac, Beijing, China; Mr D. Ugiyadi, PT Biofarma,
Bandung, Indonesia; Representatives of International Federation of Pharmaceutical
Manufacturers & Associations: Dr S. de Walque, GlaxoSmithKline Vaccines, Wavre, Belgium;
Dr L. Mallet, Sanofi Pasteur, Lyon, France; Dr E. Vidor, Sanofi Pasteur, Lyon, France.
Representatives of other industries: Dr M. de Bruijn, Bilthoven Biologicals B.V., Netherlands; Dr
Y. Kino, The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan; Dr H. Ogawa,
Research Foundation for Microbial Diseases of Osaka University, Kagawa, Japan; Mr K.
Wakabayashi, Japan Poliomyelitis Research Institute, Tokyo, Japan. WHO secretariat: Dr M.R.
Balakrishan, Dr J. Fournier-Caruana, Dr I. Knezevic, Dr D.J. Wood and Dr T.Q. Zhou,
Department of Essential Medicines and Health Products, World Health Organization, Geneva,
Switzerland; Dr H. Okayasu, Dr N. Previsani, Polio Eradication Initiative, World Health
Organization, Geneva, Switzerland.

Draft 5 was prepared by Dr M. Lennon, Horning, England and Dr T.Q. Zhou, Department of
Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland and
the drafting group: Dr K. Chumakov, Center for Biologics Evaluation and Research, Rockville,
MD, USA; Dr C. Li, National Institutes for Food and Drug Control, Beijing, China; Dr J. Martin,
National Institute for Biological Standards and Control, Potters Bar, England; Dr P. Minor,
National Institute for Biological Standards and Control, Potters Bar, England; Dr T. Wu, Health
Canada, Ottawa, Canada; with support from the WHO Secretariat: Dr J. Fournier-Caruana and Dr
I. Knezevic, Department of Essential Medicines and Health Products, World Health Organization,
Geneva, Switzerland and Dr N. Previsani, Global Polio Eradication Initiative, World Health
Organization, Geneva, Switzerland; following comments received on the fourth draft from Ms P.
Agsiri, Ministry of Public Health, Nonthaburi, Thailand; Dr W.A.M. Bakker, Institute for
Translational Vaccinology, Bilthoven, Netherlands; Mr B. Ballabhb Baluni, Panacea Biotec Ltd.,
New Delhi, India; Dr Y. Li, Chinese Academy of Medical Sciences, Kunming, China; Dr K.
Mahmood, PATH, Seattle, WA, USA; Dr L. Mallet, Sanofi Pasteur, Lyon, France; Dr W. Meng,
Sinovac, Beijing, China; Dr C. Milne, European Directorate for the Quality of Medicines &
HealthCare, Council of Europe, Strasbourg, France; Dr V. Pithon, Agence nationale de sécurité du
médicament et des produits de santé, Lyon, France; Dr E. Vidor, Sanofi Pasteur, Lyon, France; Dr
G. Waeterloos, Scientific Institute of Public Health, Brussels, Belgium; Dr R. Wagner, Paul-
The following experts provided responses to a WHO survey on IPV seeds and quality control information conducted during 2012–2013:

S. Yamazaki and S. Abe, Japan Poliomyelitis Research Institute, Tokyo, Japan; R.M. Dhere, L.R. Yeolekar and S. Gairola, Serum Institute of India Ltd., India; M.B. Sun, G.Y. Liao and Y. Li, Chinese Academy of Medical Sciences, Kunming, China; H. Wang, Beijing TianTan Biological Products Co. Ltd., Beijing, China; G. Stawski, Statens Serum Institut, Copenhagen, Denmark; M. van Oijen and W. Bakker, Institute for Translational Vaccinology, Bilthoven, Netherlands; D. Ugiyadi, PT Bio Farma (Persero), Bandung, Indonesia; R.K. Suri, H.S. Mali and D. Rastogi, Panacea Biotec Ltd., New Delhi, India; E. Niogret, Sanofi Pasteur, Marcy L'Etoile, France; X. Bouwstra, Bilthoven Biologicals B.V., Netherlands; M. Duchéne and C. Sailléz, GlaxoSmithKline Vaccines, Wavre, Belgium; D. Rudert-Dolby, Sanofi Pasteur, Toronto, Canada.
References

7. WHO Technical Working Group meeting on revision of the WHO recommendations for

1. Meeting of the Strategic Advisory Group of Experts on Immunization, November 2012–
conclusions and recommendations. Weekly Epidemiological Record. 2013;88:1–16
2. Aylward RB, Hull HF, Cochi SL, Sutter RW, Olive JM, Melgaard B. Disease eradication
as a public health strategy: a case study of poliomyelitis eradication. Bull World Health
3. WHO global action plan to minimize poliovirus facility-associated risk. (GAP III,
currently being updated).
Containment of polioviruses after eradication and OPV cessation: characterizing risks to
5. Doi Y, Abe S, Yamamoto H, Horie H, Ohyama H, Satoh K et al. Progress with inactivated
poliovirus vaccine made from Sabin strains: a phase II, randomized, positive-controlled
LC et al. Inactivated polio vaccine development for technology transfer using attenuated
8. Verdijk P, Rots NY, Bakker WA. Clinical development of a novel inactivated
2011;10:635–44.
studies of diphtheria-tetanus-acellular pertussis vaccine containing inactivated polio
design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes:
poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within
27. Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of
29. Vignuzzi M, Wendt E, Andino R. Engineering attenuated virus vaccines by controlling
30. Wood DJ, Heath AB. Collaborative study for the establishment of a rat bioassay for
31. Ren R, Costantini F, Gorgacz EI, Lee II, Racaniello VR. Transgenic mice expressing a
32. Koike S, Taya C, Kurata T, Abe W, Ise I, Yonekawa H et al. Transgenic mice susceptible
33. Taffs RE, Chernokhvostova YV, Dragunsky EM, Nomura T, Hioki K, Beuvery EC et al.
Inactivated poliovirus vaccine protects transgenic poliovirus receptor mice against type 3
34. Martin J, Crossland G, Wood DJ, Minor PD. Characterisation of formaldehyde-
35. Maintenance and distribution of transgenic mice susceptible to human viruses:
Health Organization; 1963 (WHO Technical Report Series, No. 259;
37. Wood DJ, Heath AB, Kersten GF, Hazendonk T, Lantinga M, Beuvery EC. A new WHO
International Reference Reagent for use in potency assays of inactivated poliomyelitis
38 Tummers B. Collaborative study for establishment of a biological reference preparation for
39 Fuchs F, Minor P, Daas A, Milne C. Establishment of European Pharmacopoeia BRP
batch 2 for inactivated poliomyelitis vaccine for in vitro D antigen assay. Pharmeuropa
40. Wood DJ, Heath AB. The second International Standard for anti-poliovirus sera types 1, 2

Appendix 1

Overview of the virus seeds used in IPV production

This appendix gives an overview of the history of virus seeds that are currently used in production or may be used in the future. They include the wild strains used in current production of inactivated poliomyelitis vaccine (IPV) and the attenuated Sabin strains which are considered to pose a lower risk and are being developed as alternative seeds. Novel strains intended to be safer for use in production are also in development.

1. IPV made from virulent strains

Both classic IPV, which was developed by Jonas Salk and others and was licensed in 1955, and the enhanced-potency IPV which was introduced in the late 1980s, are prepared from wild (virulent) polioviruses of three serotypes. The strains selected by Salk were Mahoney, MEF-1, and Saukett, representing types 1, 2 and 3, respectively. The Mahoney strain was isolated in 1941 by Drs Thomas Francis and Walter Mack from the pooled faeces of three healthy children in Cleveland, Ohio, USA (1). It was subsequently passaged by Salk, including 14 times in living monkeys and twice in monkey testicular cultures (2). The MEF-1 strain was isolated by inoculation of monkeys in Egypt in 1940 (3) during a polio outbreak among allied troops of the Mediterranean Expeditionary Force (hence the name MEF). It was adapted by Schlesinger and Olitsky to growth in mice (4), and then transferred by Salk from the spinal cord of a paralysed mouse to tissue culture (2). The original Saukett strain was isolated by Salk in 1950 by direct inoculation of tissue culture with a faecal specimen from a paralysed patient (2). Seed stocks of the viruses were provided by Salk to most manufacturers and were used to establish their virus master seeds. An alternative strain of type 1 poliovirus (Brunhilde) is used by the Statens Serum Institute (SSI) in Denmark. The strain was isolated in 1939 by David Bodian from a pool of stool specimens from seven patients in Maryland (5). The strain was provided to the laboratory of Dr. John Enders at Harvard Medical School in Boston, MA, USA, and from there to Dr. Arne Svedmyr’s laboratory in Stockholm, Sweden. Dr Svedmyr supplied SSI with the virus. Table 1 summarizes the history of isolation and early passaging of these viruses.
Table 1. History of isolation and early passaging of wild polioviruses used in the production of IPV

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Source of isolation</th>
<th>Location</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahoney</td>
<td>Stool of 3 healthy children</td>
<td>Cleveland, Ohio, USA</td>
<td>1941</td>
<td>Francis & Mack. See Sabin AB, Boulger LR, 1973 (1)</td>
</tr>
<tr>
<td>MEF-1</td>
<td>CNS of a paralysed patient</td>
<td>Egypt</td>
<td>1941</td>
<td>van Rooyen CE, Morgan AD, 1943 (3)</td>
</tr>
<tr>
<td>Saukett</td>
<td>Stool of a paralysed patient</td>
<td>USA</td>
<td>1950</td>
<td>Salk JE, 1953 (2)</td>
</tr>
<tr>
<td>Brunhilde</td>
<td>Stool of 7 patients</td>
<td>Maryland</td>
<td>1939</td>
<td>Howe HA, Bodian D, 1941 (5)</td>
</tr>
</tbody>
</table>

Subsequent studies raised questions regarding these strains. The nucleotide sequence of MEF-1 was found to be very close to the sequence of another type-2 strain (Lansing, isolated in 1937 in Michigan, USA), with only 17 nucleotide and 2 amino acid differences (6). Since the strains were isolated four years apart in the Middle East and USA, it is unlikely that the similarity represents a natural relatedness. MEF-1 from the spinal cords of monkeys was adapted to growth in mice (4) and was found in this early study to be indistinguishable in pathogenicity and immunological properties from Lansing, which was also adapted to growth in mice. A plausible explanation is that the Lansing strain used as a reference strain in Schlesinger and Olitsky’s laboratory was inadvertently substituted for MEF-1, and all subsequent stocks of MEF-1 are derivatives of the Lansing strain. In addition, two common variants of MEF-1, differing by a few nucleotides, are in use in different laboratories and production facilities.

The Saukett strains obtained from different laboratories and manufacturers differ significantly (7, 8) and the degree of diversity (~10% nucleotide substitutions) demonstrates that they are different strains. Some of the differences were observed in antigenic sites and could affect immunogenicity, suggesting that better characterization of vaccines in the future may need to include determination of the exact nucleotide sequences of virus master seed lots used by manufacturers.
The flow diagrams in Figures 1, 2 and 3 show the history of the seed virus used to prepare the respective master seed lots claimed to be used by the manufacturers of IPV from types 1, 2 and 3 strains respectively. The full names of manufacturers shown on the charts are given in Table 2.

The figures provide only an overview of the use of different seeds. They were based on a written survey conducted in 2012 by WHO among vaccine manufacturers and on information obtained from subsequent consultations. They do not indicate any WHO qualification or approval of the strains or the vaccines in the context of this document.

Table 2. Proper names of manufacturers shown on the charts are:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVM</td>
<td>National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands</td>
</tr>
<tr>
<td>BBio</td>
<td>Bilthoven Biologicals B.V. (BBio, former NVI), Bilthoven, Netherlands</td>
</tr>
<tr>
<td>SSI</td>
<td>Statens Serum Institute (SSI), Copenhagen, Denmark</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline Vaccines, Wavre, Belgium</td>
</tr>
<tr>
<td>Sanofi Pasteur (France)</td>
<td>Sanofi Pasteur SP, Marcy L’Etoile, France</td>
</tr>
<tr>
<td>Sanofi Pasteur (Canada)</td>
<td>Sanofi Pasteur Ltd. SP, Canada</td>
</tr>
</tbody>
</table>

2. IPV made from attenuated strains (Sabin)

Once circulation of wild-type polio viruses is eliminated, IPV manufacturing establishments will be the biggest potential source of virulent viruses which must therefore be stringently contained to prevent their reintroduction into the environment. The Sabin vaccine strains used to manufacture oral polio vaccine (OPV) are less virulent than the wild strains and have been proposed as less hazardous seeds for IPV production in order to mitigate the risks of potential inadvertent release from production facilities. Sabin strains are known to be genetically unstable in infected humans and, to some extent, in production. To retain the attenuated phenotype the Sabin strains must be propagated under defined and well-controlled conditions. In addition, in the manufacture of OPV each harvest is tested to monitor the molecular consistency – e.g. by mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC) – and each monovalent bulk is tested for neurovirulence to be sure that the attenuated phenotype is retained. As the IPV product is inactivated, full characterization on every batch is not necessary
but some assurance of consistent production is required. Sabin strains are considered less transmissible than the wild type so that, should they escape from the production facility and start to circulate within communities, they would pose a lesser risk. However, they can revert and may give rise to circulating vaccine-derived strains that are both transmissible and capable of causing outbreaks. Therefore, the use of Sabin strains in the manufacture of IPV may reduce biosecurity concerns compared to manufacture from virulent wild strains but does not eliminate the concerns entirely. Some testing or process validation will be required to show that the product is consistent and that the attenuated phenotype is retained in order to justify the level of containment used (see also General considerations and Part A of this document). Two sIPV-containing combination products based on attenuated Sabin strains have been licensed in Japan, and other sIPV vaccines are undergoing clinical evaluation in some countries. The derivation of Sabin strains was described in the literature (1) and the detailed origin of seed viruses made from them can be found in Appendix 1 of the Recommendations to assure the quality, safety and efficacy of live attenuated poliomyelitis vaccine (oral), revised 2012 (9).

3. Other strains in development

Alternative attenuated strains of poliovirus, such as strains derived from recombinant DNA technology, are under development. They are intended to be both attenuated and genetically stable and also to possess low or no infectivity for humans, thus being of negligible transmissibility. Such strains should pose a lower risk of inadvertent release from production facilities or of infecting production workers. They may include strains in which known attenuation determinants are stabilized by targeted genetic changes, strains with alterations in codon usage in order to introduce multiple mutations to reduce virus replication efficiency, or viruses produced by other strategies. The phenotypes and the stability of these strains will require confirmation.
Figure 1. History of seed virus used to produce type 1 IPV
Figure 2. History of seed virus used to produce type 2 IPV
Figure 3. History of seed virus used to produce type 3 IPV

References

6. Dragunsky EM, Ivanov AP, Wells VR, Ivshina AV, RezapkinGV, Abe S et al. Evaluation of immunogenicity and protective properties of inactivated poliovirus...

2004;190:1404–12.

Appendix 2

In vivo potency assay of IPV

Tests for evaluating the potency of inactivated polio vaccines include an in vivo assay for immune response. An appropriate WHO International Standard should be used to validate the assay. Because of the diversity in the reactivity of vaccines, it is unlikely that an International Standard will be suitable for the standardization of in vivo assays of vaccines from all manufacturers. If this is shown to be the case, manufacturers should establish a product-specific reference preparation which is traceable to a lot of vaccine shown to be efficacious in clinical trials. The NRA should approve the reference preparation used and should agree with the potency limits applied. The performance of this reference vaccine should be monitored by trend analysis using relevant test parameters and it should be replaced when necessary.

In recent investigations the in vivo potency assay in rats has been standardized (1) and has been shown to have advantages over previously described in vivo tests for IPV (2).

A suitable in vivo assay method consists of intramuscular injection into the hind limb(s) of rats of four dilutions of the vaccine to be examined and a reference vaccine, using for each dilution a group of not fewer than 10 rats of a suitable strain and which are specific pathogen-free. The number of animals used should enable the calculation of potency with 95% confidence limits within the 25–400% range. The number of dilutions and the number of animals used per dilution may differ from that specified here, provided that any alternative scheme gives at least the same sensitivity in the test. For each dilution, the weight of the individual animals should not vary by more than 20% from the group mean. An inoculum of 0.5 mL is used per rat. The dose range is chosen so that a dose response to all three poliovirus types is obtained. The animals are bled after 20–22 days. Neutralizing titres against all three poliovirus types are measured separately using 100 CCID\(_{50}\) of the Sabin strains as challenge viruses, Vero or Hep-2C as indicator cells, and neutralization conditions of 3 hours at 35–37 °C followed by 18 hours at 2–8 °C. Results should be read after fixation and staining after 7 days of incubation at 35 °C. For the antibody assay to be valid, the titre of each challenge virus must be shown to be within the range of 30–300 CCID\(_{50}\) and the neutralizing antibody titre of a control serum must be within two 2-fold dilutions of its geometric mean titre. The potency is calculated by comparing the proportions of animals defined as responders to the test vaccine and to the reference vaccine by the probit method. To
define an animal as a responder, it is necessary to establish a cut-off neutralizing antibody titre for each poliovirus type. Owing to inter-laboratory variation, it is not possible to define cut-off values that could be applied by all laboratories. Instead, the cut-off values should be determined by each laboratory on the basis of a minimum series of three tests with the reference vaccine. The mid-point on a log$_2$ scale of the minimum and maximum geometric mean titres of the series of three or more tests is used as the cut-off value. For each of the three poliovirus types, the potency of the vaccine should not be statistically significantly less than that of the reference preparation. The test is not valid unless:

- the median effective dose (ED$_{50}$) for both the test and reference vaccines lies between the smallest and the largest doses given to the animals;
- the statistical analysis shows no significant deviation from linearity or parallelism;
- the confidence limits of the estimated relative potency fall between 25% and 400% of the estimated potency.

Laboratories that have established the parallel line method of analysis of antibody titres for the rat test may use it instead of converting titres to proportions of responders as in the probit method of analysis.

Laboratories are encouraged to validate alternative methods for the assay of neutralizing antibody to reduce the use of live polioviruses in laboratories. If IPV is formulated with other antigens into a combination vaccine, then the suitability of performing the rat immunogenicity test will have to be determined. If the immunogenicity test is performed, the potency of the final bulk for each virus type should be approved by the NCL.

The development of transgenic mice that express the human poliovirus receptor (TgPVR mice) ($3, 4, 5$) has led to the development of an immunization/challenge model that may be useful for assessment of vaccine efficacy. This test is not proposed for lot release. Any work with transgenic mice should comply with WHO guidelines (6).

References

Appendix 3

Model summary protocol for manufacture and control of poliomyelitis vaccine (inactivated)

The following protocol is intended for guidance. It indicates the type of information that should be provided as a minimum by the manufacturer to the NRA. Information and tests may be added or omitted as necessary, with the authorization of the NRA.

It is possible that a protocol for a specific product may differ in detail from the model provided. The essential point is that all relevant details demonstrating compliance with the licence and with the relevant WHO recommendations for a particular product should be given in the protocol submitted.

The section concerning the final product must be accompanied by a sample of the label and a copy of the leaflet that will accompany the vaccine container. If the protocol is being submitted in support of a request to permit importation, it should also be accompanied by a lot release certificate from the NRA or from the NCL of the country where the vaccine was produced or released stating that the product meets the national requirements as well as the recommendations in Part A of this document.

Summary information on finished product (final lot)

<table>
<thead>
<tr>
<th>International name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade name/commercial name:</td>
</tr>
<tr>
<td>Product licence (marketing</td>
</tr>
<tr>
<td>authorization) number:</td>
</tr>
<tr>
<td>Country:</td>
</tr>
<tr>
<td>Name and address of manufacturer:</td>
</tr>
<tr>
<td>Name and address of licence holder if different:</td>
</tr>
<tr>
<td>Virus strain:</td>
</tr>
<tr>
<td>Origin and short history:</td>
</tr>
</tbody>
</table>
Finished product (final lot)

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch number:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final bulk:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of container:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of doses per container:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of filled containers in this final lot:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of single human dose:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition (D-antigen unit) of a single human dose:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk numbers of monovalent pool suspensions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site of manufacture of each monovalent pool:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of manufacture of each monovalent pool:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of manufacture of trivalent bulk (blending):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of manufacture of final bulk:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of manufacture (filling) of final lot:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date on which last determination of potency was started, or date of start of period of validity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelf-life approved (months):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expiry date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage conditions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature and concentration of stabilizer:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature of any antibiotics present in vaccine and amount per human dose:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release date:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Starting materials

The information requested below is to be presented on each submission. Full details on master and working seed lots should be provided upon first submission only and whenever a change has been introduced.

The following sections are intended for recording the results of the tests performed during the production of the vaccine, so that the complete document will provide evidence of consistency of production. If any test has to be repeated, this must be indicated. Any abnormal result must be recorded on a separate sheet.

If any cell lot or virus harvest intended for production was rejected during the control testing, this should also be recorded either in the following sections or on a separate sheet.

Control of source materials (Section A.3)

Virus seed (every submission) (Section A.3.1)
Vaccine virus strain(s) and serotype(s): __

Substrates used for preparing seed lots: __

Origin and short history: __

Authority that approved the virus strains: _______________________________________

Date of approval: __

Information on seed lot preparation (every submission) (Section A.3.1.3)
Virus master seed (VMS) and virus working seed (VWS) (to be provided upon first submission only and whenever a change has been introduced)
Strain used: ___

Source of VMS: ___

VMS and VWS lot number: ___

Name and address of manufacturer: __

VWS passage level from VMS: ___

Dates of inoculation: ___
Dates of harvest:
Number of containers:
Conditions of storage:
Dates of preparation:
Maximum passage levels authorized:

Tests on virus master seed (VMS) and virus working seed (VWS) (first submission only)

Tests for bacteria, fungi and mycoplasmas

Tests for bacteria and fungi

Method used:

Number of vials tested:

Volume of inoculum per vial:

Volume of medium per vial:

Observation period (specification):

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>30–36 °C</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Negative control</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Test for mycoplasma</td>
<td>Method used:</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

Volume tested:

Media used:

Temperature of incubation:

Observation period (specification):

Positive controls (list of species used and results):

Subcultures at day 3 | Date of start of test | Date of end of test | Results |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Indicator cell-culture method (if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell substrate used:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoculum:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passage number:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative control:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive controls:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of staining:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus titration:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference batch number:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method used:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of start of test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of end of test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test in rabbit kidney cell cultures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cell cultures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total volume inoculated:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period of observation:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Result: __

Test for adventitious agents
Date(s) of satisfactory test(s) for freedom from adventitious agent:

Volume of virus seed samples for neutralization and testing:
Batch number of antisera used for neutralization virus seed:
Method used:

Date of start of test:

Date of end of test:
Result:
Absence of SV40
Method used:

Date of start of test:
Date of end of test:
Results:

Tests for neurovirulence (if applicable)
In vitro tests: MAPREC test for attenuated strains (if applicable)
MAPREC
Date of test:

Type 1
Ratio of % of the sum of both mutations 480-A and 525-C of bulk sample to the International Standard, or level of mutations:
Result of test of consistency of production:

Result of test of comparison with the International Standard:
Type 2
Ratio of % of 481-G of bulk sample to the International Standard, or level of mutations:

Result of test of consistency of production:

Result of test of comparison with the International Standard:

Type 3

Ratio of % of 472-C of bulk sample to the International Standard, or level of mutations:

Result of test of consistency of production:

Result of test of comparison with the International Standard:

In vivo tests for neurovirulence (if applicable)

Neurovirulence test in monkeys:

Result of blood serum test in monkeys prior to inoculation:

Number and species of monkeys inoculated:

Quantity (CCID_{50}) inoculated in each test monkey:

Number of "valid" monkeys inoculated with test sample:

Number of positive monkeys observed inoculated with test sample or with reference:

Reference preparation:

Number of "valid" monkeys inoculated with reference:

Number of positive monkeys observed:

Mean lesion score of test sample:

Mean lesion score of reference:

(see also attached forms giving
details of histological observations and assessment:

CI constant value:

Neurovirulence test in transgenic mice for attenuated strains (if applicable):

Strain of mice inoculated:

For each dose of the seed sample:

Number of mice inoculated:

Number of mice excluded from evaluation:

Number of mice paralysed:

Results of validity tests for each dose of the reference virus:

Number of mice inoculated:

Number of mice excluded from evaluation:

Number of mice paralysed:

Virus assay results for each dose inoculated (residual inoculums):

Paralysis rates for test vaccine at each dose:

Paralysis rates for reference virus at each dose:

Results:

Log odds ratio:

L1 and L2 values:

Pass/fail decision:

Cell banks (Section A.3.2) (every submission)

Information on cell banking system
Name and identification of substrate:
Origin and short history:

Authority that approved the cell bank:

Master cell bank (MCB) and working cell bank (WCB) lot numbers and date of preparation:
Date MCB and WCB were established:

Date of approval by NRA:

Total number of ampoules stored:

Passage level (or number of population doublings) of cell bank:
Maximum passage approved:

Storage conditions:

Method of preparation of cell bank in terms of number of freezes and efforts made to ensure that a homogeneous population is dispersed into the ampoules:

Tests on MCB and WCB (Section A.3.2) (first submission only)
Percentage of total cell-bank ampoules tested:

Identity test:

Method:

Specification:

Date of test:

Result:

Growth characteristics:

Morphological characteristics:

Immunological marker:
Cytogenetic data:

Biochemical data:

Results of other identity tests:

Tests for adventitious agents:
Method used:

Number of vials tested:

Volume of inoculum per vial:

Date of start of test

Date of end of test

Freedom from bacteria, fungi and mycoplasmas
Tests for bacteria and fungi
Method used:

Number of vials tested:

Volume of inoculum per vial:

Volume of medium per vial:

Observation period (specification):

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>______</td>
</tr>
<tr>
<td>30–36 °C</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>______</td>
</tr>
<tr>
<td>Negative control</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>______</td>
</tr>
</tbody>
</table>

Test for mycoplasma
Method used:

Volume tested:

Media used:

Temperature of incubation:

Observation period (specification):
Positive controls (list of species used and results):

<table>
<thead>
<tr>
<th></th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcultures at day 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcultures at day 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcultures at day 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcultures at day 21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicator cell culture method (if applicable)

Cell substrate used:

Inoculum:

Date of test:

Passage number:

Negative control:

Positive controls:

Date of staining:

Results:

Control of vaccine production (Section A.4.1)

Virus type (1, 2 or 3) (*A separate protocol should be completed for each type.*)

Control of production cell cultures

Lot number of MCB:

Lot number of WCB:

Date of thawing of ampoule of WCB:

Passage number of production cells:

Date of preparation of control cell cultures:

Results of microscopic observation:

Tests on control cell cultures
(Provide information on control cells corresponding to each single harvest.)
Ratio of control to production cell cultures:

Incubation conditions:

Period of observation of cultures:

Dates observation started/ended:

Ratio or proportion of cultures discarded for nonspecific reasons:

Results of observation:

Tests for haemadsorbing viruses

Quantity of cell tested:

Method used:

Date of start of test:

Date of end of test:

Results:

Tests for adventitious agents on supernatant culture fluids

Method used:

Date of start of test:

Date of end of test:

Result:

Identity test

Method used:

Date of start of test:

Date of end of test:

Result:
Control of vaccine production
Control of production cell cultures
Observation of cultures for adventitious agents on day of inoculation
Results of microscopic observation: __

Control of single harvests (Section A.4.3)

Batch number(s) and virus type: ___

Date of inoculation: ___

Date(s) of harvest: ___

Volume(s), storage temperature, storage time and approved storage period:

Freedom from bacteria, fungi and mycoplasmas
Tests for bacteria and fungi
Method used: __

Number of vials tested: ___

Volume of inoculum per vial: __

Volume of medium per vial: ___

Observation period (specification):
Date of start of test	Date of end of test	Result
20–25 °C | _______ | _______ | _______ | _______ | _______
30–36 °C | _______ | _______ | _______ | _______ | _______
Negative control | _______ | _______ | _______ | _______ | _______

Test for mycoplasmas
Method used: __

Volume tested: __

Media used: ___
Temperature of incubation: __

Observation period (specification): ______________________________________

Positive controls (list of species used and results): ____________________________

<table>
<thead>
<tr>
<th>Subcultures at day 3</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subcultures at day 7</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subcultures at day 14</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subcultures at day 21</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicator cell culture method (if applicable)

Cell substrate used: __

Inoculum: __

Date of test: __

Passage number: __

Negative control: ___

Positive controls: ___

Date of staining: __

Results: __

Virus titration

Date of test: __

Reference batch number: ___

Date of test: __

Result: ___

Identity test

Method used: __

Date of start of test: ___
Date of end of test:

Result:

Purified monovalent pools before inactivation (Section A4.4)
Batch number(s) and virus type:

Date of inoculation:

Date(s) of harvest:

Volume(s), storage temperature, storage time and approved storage period:

Test for residual cellular DNA
Method used:

Date of start of test:

Date of end of test:

Virus titration
Date of test:

Reference batch number:

Date of test:

Result:

Identity test
Method used:

Date of start of test:

Date of end of test:

Result:

D-antigen content
Reference used:
Method used:

Date of test:

Result: _______________________________________

Protein content
Method used: _______________________________________

Date of start of test: _______________________________________

Date of end of test: _______________________________________

Result: _______________________________________

Details of filtration and/or clarification and/or purification (if applied)
Date: _______________________________________

Additional tests on monovalent pools produced from Sabin vaccine seeds or from seeds derived by recombinant DNA technology: e.g. in vitro tests (such as MAPREC test) for attenuated strains, or in vivo neurovirulence test in transgenic mice for attenuated strains (if applicable)
(See above in tests on virus seeds) _______________________________________

Inactivation of monovalent product
(Section A.4.5):

Agent(s) and concentration at the beginning and end of inactivation: _______________________________________

Temperature of inactivation: _______________________________________

Date of start of inactivation: _______________________________________

D-antigen units at start of inactivation: _______________________________________

Date of taking first sample: _______________________________________

Date of completion of inactivation: _______________________________________

D-antigen units at end of inactivation: _______________________________________

Test for effective inactivation (after removal/neutralization of inactivating agent) _______________________________________

Sample size tested: _______________________________________
Date of first sample: ___

Date of second sample: ___

Details of testing procedure: ___

Period of observation of cell cultures: ___

Period of observation of subcultures: ___

Result ___

Result of challenge of used culture with live virus: ___

Tests for bacteria, fungi and mycoplasmas
Tests for bacteria and fungi
Method used: ___

Number of vials tested: ___

Volume of inoculum per vial: ___

Volume of medium per vial: ___

Observation period (specification): ___

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–36 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-antigen content
Method used: ___
Reference used: ___

Date of test: ___

Result: ___

Trivalent bulk product
(monovalent pools incorporated)
Date of preparation: ___
Preservative (if added, type and concentration):

Tests on trivalent bulk (Section A.4.6)

Test for absence of infective poliovirus

Sample size tested:

Details of testing procedure:

Period of observation of cell cultures:

Period of observation of subcultures:

Result:

Tests for bacteria and fungi

Method used:

Number of vials tested:

Volume of inoculum per vial:

Volume of medium per vial:

Observation period (specification):

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td>__________</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>30–36 °C</td>
<td>__________</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Negative control</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Residual formaldehyde</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

Result:

D-antigen content

Method used and acceptance limits for test results:

Reference used:

Date of test:
Control of final bulk (Section A.4.7)
Tests for bacteria and fungi:
Method used:

Number of vials tested:

Volume of inoculum per vial:

Volume of medium per vial:

Observation period (specification):

<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>30–36 °C</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Negative control</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Potency tests

D- antigen test

Method used and acceptance limits for test results:

Reference used:

Date of test:

Result:

Results (and date) of in vivo tests (in rats), if performed:
Preservative content (if applicable):
Date of test:

Method used:

Result:

Adjuvant (if applicable):
Date of test:
Method used: __

Result: __

Filling and containers (Section A.5)

Final lot number: __

Total volume for final filling: ________________________________

Date of filling: __

Number of vials after inspection: ____________________________

Number of vials filled: _____________________________________

Control tests on final lot (Section A.6)

Inspection of final containers

Date of test: __

Results: ___

Appearance: __

Date of test: __

Results: ___

Identity test

Method used: __

Date of start of test: _____________________________________

Date of end of test: _______________________________________

Result: ___

Tests for bacteria and fungi

Method used: ___

Number of vials tested: _________________________________

Volume of inoculum per vial: ______________________________

Volume of medium per vial: _______________________________

Observation period (specification): __________________________
<table>
<thead>
<tr>
<th>Incubation</th>
<th>Media used</th>
<th>Inoculum</th>
<th>Date of start of test</th>
<th>Date of end of test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–25 °C</td>
<td>_________</td>
<td>_______</td>
<td>________</td>
<td>________</td>
<td>______</td>
</tr>
<tr>
<td>30–36 °C</td>
<td>_________</td>
<td>_______</td>
<td>________</td>
<td>________</td>
<td>______</td>
</tr>
<tr>
<td>Negative control</td>
<td>_________</td>
<td>_______</td>
<td>________</td>
<td>________</td>
<td>______</td>
</tr>
</tbody>
</table>

General safety test (if applicable)

<table>
<thead>
<tr>
<th>Date of start of test:</th>
<th>______________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of end of test:</td>
<td>______________________________________</td>
</tr>
<tr>
<td>Result:</td>
<td>______________________________________</td>
</tr>
</tbody>
</table>

Potency test(s):

D- antigen test

<table>
<thead>
<tr>
<th>Method used and acceptance limits for test results:</th>
<th>______________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference used:</td>
<td>______________________________________</td>
</tr>
<tr>
<td>Date of test:</td>
<td>______________________________________</td>
</tr>
<tr>
<td>Result:</td>
<td>______________________________________</td>
</tr>
</tbody>
</table>

Results (and date) of in vivo tests (in rats), if performed:

| ______________________________________ |

Protein content:

| Content of protein in mg per human dose: | ______________________________________ |

Serum protein tests (if applicable)

| Result: | ______________________________________ |

Preservative content (if applicable)

<table>
<thead>
<tr>
<th>Date of test:</th>
<th>______________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method used:</td>
<td>______________________________________</td>
</tr>
<tr>
<td>Result:</td>
<td>______________________________________</td>
</tr>
</tbody>
</table>

Endotoxin content:

| Date of test: | ______________________________________ |
Method used: ___
Result: ___
Test for residual formaldehyde
Date of test: ___
Method used: ___
Result: ___

pH
Date of test: ___
Result: ___

Adjuvant (if applicable)
Date of test: ___
Method used: ___
Result: ___
Residual antibiotics (if applicable)
Date of test: ___
Method used: ___
Result: ___

Certification by the manufacturer
Name of the manufacturer____________________________________
Name of head of production (typed) ____________________________

Certification by the person from the control laboratory of the manufacturing company taking responsibility for the production and control of the vaccine

I certify that lot no. __________ of trivalent poliomyelitis vaccine (inactivated), whose number appears on the label of the final container, meets all national requirements and/or satisfies Part A of WHO’s Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccine (inactivated) (WHO Technical Report Series, No. XXXX).

Signature: ___
Name (typed): ___
Date: _______________
Appendix 4

Model certificate for the release of poliomyelitis vaccine (inactivated) by national regulatory authorities

Lot release certificate

Certificate no. ______________________

The following lot(s) of poliomyelitis vaccine (inactivated) produced by ______________________¹ in ________________² whose numbers appear on the labels of the final containers, comply with the relevant specification in the marketing authorization³ and provisions for the release of biological products and Part A⁴ of WHO’s Recommendations to assure the quality, safety and efficacy of poliomyelitis vaccines (inactivated) (_____)⁵ and comply with Good manufacturing practices for pharmaceutical products⁶, Good manufacturing practices for biological products⁷ and Guidelines for independent lot release of vaccines by regulatory authorities⁸. The release decision is based on ____________________________⁹.

The certificate may include the following information:

- Name and address of manufacturer
- Site(s) of manufacturing
- Trade name and/common name of product
- Marketing authorization number
- Lot number(s) (including sub-lot numbers, packaging lot numbers if necessary)
- Type of container
- Number of doses per container
- Number of containers/lot size
- Date of start of period of validity (e.g. manufacturing date) and/or expiry date
- Storage condition
- Signature and function of the authorized person and authorized agent to issue the certificate
- Date of issue of certificate
Certificate number.

The director of the National Regulatory Authority (or control authority, as appropriate):
Name (typed) __
Signature __
Date ___

Footnote
1 Name of manufacturer.
2 Country of origin.
3 If any national requirements are not met, specify which one(s) and indicate why release
of the lot(s) has nevertheless been authorized by the NRA.
4 With the exception of provisions on distribution and shipping, which the NRA may not be
in a position to assess.
9 Evaluation of summary protocol, independent laboratory testing, and/or specific
procedures laid down in defined document etc., as appropriate.

= = =