Role of post-marketing surveillance of blood products:

Jean-Hugues Trouvin, PhD
French Agency for health product safety (AFSSAPS)
Directorate for Evaluation of medicinal products and biologicals
European Medicines Agency (EMEA, London)
Biologicals Working Party
Role of post-marketing surveillance in the safety of blood products:

- Plasma-derived medicinal products
- Blood components for transfusion

Jean-Hugues Trouvin, PhD
French Agency for health product safety (AFSSAPS)
Directorate for Evaluation of medicinal products and biologicals
European Medicines Agency (EMEA, London)
Biologica Working Party
Introduction -1-

✓ Blood and blood products are of biological origin
 • Complex molecules
 • Products of human origin: blood- or tissue-borne viruses or pathogens → no species barrier
 • Complex and fragile products
 → Difficult to handle, process, store, transport, deliver, and use
 → Batch-related or even single donor-related accident / incident

✓ Safety: in the meaning of
 • Microbiological safety: contaminants and transmissible agents
 → Risk of infectious diseases
 • Efficacy: denaturation/degradation
 → risk of loss of efficacy
 • tolerance profile: development of adverse drug reactions
 → mainly immunogenicity
Safety: a global approach and a built-up strategy:
- Several steps contribute to the overall safety of a product
- Each step has its role and importance

To explain the role of the vigilance systems for the safety of blood components and plasma derived medicinal products
Keys for safe products

✓ Quality management of the "production/supply chain"
 • For plasma-derived products: from the plasma pool to the finished product: production process, quality control tests, storage
 • For transfusion products: from the donor to the recipient – Collection chain, storage, distribution chain

✓ Viral safety management

✓ Post-marketing: vigilance system
Viral safety management: the three keys

3 COMPLEMENTARY APPROACHES

✓ Knowledge and adequate quality control of the starting material
 → to diminish the infectious load entering the process

✓ Production process, incorporating steps capable to remove or inactivate the contaminating agent(s) and validation of such steps
 → to diminish further the infectious load in the final product

✓ Control tests performed on intermediates and/or the final product
 → to monitor the quality all along the process
Knowledge and quality control of the starting material

✓ Plasma Master File:
 • Origin of plasma
 ▪ Blood/plasma collection establishments
 ▪ data on epidemiology of infection transmitted by blood:
 o absence of collection in high prevalence areas nor during epidemic
 o permanent reassessment of epidemiological data
 • selection/exclusion criteria according to the recommendations:
 ▪ Council of Europe R (95)15 on preparation, use and quality insurance for blood components,
 ▪ European Directives 98/463/; 2002/98; 2004/33
 • and specifying if donations are remunerated or not
Knowledge and quality control of the starting material

✓ Plasma Master File (contd):
 • screening tests for marker(s) of infection
 • Blood bags
 • Plasma quality criteria
 • storage and transport
 • Plasma pool preparation and specifications
 • Standard contracts

✓ Traceability system (in application to EU Directive)
 • system to trace the path of any donation → start of the traceability chain
Post-Marketing surveillance system

✓ Plasma-derived medicinal products (PDMP)
 • Pharmacovigilance
 • Traceability

✓ Blood components for transfusion
 • Haemovigilance
 • Traceability
Pharmacovigilance

✓ Plasma-derived products are considered as medicinal products (Directive 89/381) and as such are under the pharmacovigilance provisions

✓ French regulation: Decree (May 1995 Art R-5144-23/39) which describes and made mandatory
 • Notification
 • Traceability
Pharmacovigilance → Notification

✓ Obligation of notification

✓ Notification of Side effects to the pharmacovigilance system:
 • is mandatory for all side effects noticed
 • not restricted to severe and/or unexpected
 • is due immediately

✓ Centralisation of the information: any notification has to be copied to the central body (French Agency).
Traceability: European directives

• An adequate system to ensure traceability of whole blood and blood components should be established.

• Traceability should be enforced through:
 ▪ accurate donor, patient, and laboratory identification procedures,
 ▪ record maintenance,
 ▪ an appropriate identification and labelling system.

• Data needed for full traceability in accordance with this Article shall be kept for at least 30 years
Traceability is mandatory and is defined as follows:

• Set of actions taken to quickly retrieve history, use and localisation of a PDMD

• Traceability at each step of the supply chain:
 ▪ from the blood donation,
 ▪ through the production, the distribution, the dispensation
 ▪ Up to the administration

Traceability objectives:

• To allow the retrieval, from a PDMP batch number:
 ▪ of the blood donation numbers that were pooled for this batch preparation,
 ▪ and the recipients of this batch.
Traceability numbering system

Donors

Plasma pool

Product batches

Fractionation process

Patient

Medical records

Pre-ICDRA meeting –Seoul, April 2006
Traceability: ascending

✓ When a recipient develops a disease
 • Pharmacovigilance notification
 • Enquiry to investigate
 ▪ Implicated product(s) → need for batch number(s) recorded in the medical dossier
 ▪ Possible cause related to the product(s) « imputability »
 ▪ Check whether other patients experienced the same event
 o Need for traceability for each batch
 o Need for centralisation of the notifications
 ▪ If deemed necessary,
 o Batch quality testing
 o Quality of the plasma pool (retained samples)
 o Quarantine (during the investigations)
 o Withdrawal and appropriate action vis a vis the other recipient(s)
Traceability: descending

When a donor is found, post donation, as « at risk » (seroconversion, clinical stage of a disease..)

- Blood collection establishment is notified
- Enquiry to investigate
 - Fate of the donation(s) → need for a numbering system for any donation
 - Identification of the concerned plasma pool(s)
 - Identification of the concerned plasma-derived product batch(es)
- Quantitative risk analysis (depends on the original risk identified, the process(es) and the resulting products)
- Action taken depending on the results of the risk analysis
- Action could envisage recall of batches and information of the recipients …
Traceability examples -1-

☑️ HIV seroconversion post donation
 • Identification, by chance, few months post donation (donation tested by serology)
 • Plasma pool retested by PCR → negative
 • Quantitative risk analysis: risk is deemed minimal
 • No further action

☑️ HCV seroconversion in an Ig-IV treated patient
 • Patient found HCV-antibody positive
 • Other risk factors (blood transfusion)
 • No other reports with the concerned batch
 • No further action deemed necessary
Traceability examples -2-

✓ vCJD clinical symptoms in a donor, four years post donation
 • Risk is theoretical but
 • Identification of all past donation (10 years)
 • Identification of all plasma pools concerned and resulting batches of medicinal products
 • For in-date products still on the market, withdrawal and information of the patients who had stocks at home
Application to blood components: haemovigilance

- More simple chain as compared to plasma products, but more « weak » points
 - Direct from the donor to the patient
 - No « process »
 - to standardised the product (no pool effect)
 - To remove, inactivate pathogens
 - No holding time (to be use in less than 5 days)

- Essentially rely on
 - The donor selection
 - The follow-up and monitoring of the donor and of the recipients → need for an haemovigilance system and traceability
Traceability/Notification in transfusion

✓ Directive 2002/98: setting standards of quality and safety for the collection, testing, processing, storage and distribution of human blood and blood components and amending:
 • Traceability
 • Notification system

✓ Directive 2005/61: specifies the traceability and notification system to be put in place in blood collection establishment
Haemovigilance

✓ Directive 2002/98:
✓ ‘haemovigilance’ shall mean a set of organised surveillance procedures relating to
 - serious adverse or unexpected events or reactions
 - in donors or recipients,
 - and the epidemiological follow-up of donors

✓ Haemovigilance is not only for recipients
Traceability numbering system

✓ Donor identification – donation number
✓ Identification (coding system, numbering) of the obtained blood components:
 • Red blood cells
 • Platelets
 • Plasma (fresh frozen, for fractionation)
✓ Distribution chain → to trace any blood component distributed in an health care establishment
✓ Patient:
 • Blood component received are recorded in the medical dossier
 • Information on the recipient is sent back to the blood Collection establishment
✓ Traceability is mandatory but should not be a breach in confidentiality of the data
Usefulness of traceability
Recent examples

✓ vCJD and blood donation
 • In France, 17 suspected or confirmed vCJD cases, 3 were blood donors
 • Traceability allowed to trace back all their donations (30 within 15 years) and corresponding transfused patients
 • Information and counselling of the alive recipients

✓ Chikungunia epidemic in La Reunion
 • No screening test available at the start of epidemic
 • Asymptomatic donors may have donated while viremic
 • Suspected cases of chikungunya symptoms in platelet-transfused patients
 • Retained samples tested using PCR and found negative
 • Further evaluation undertaken and decision was made to stop blood collection at La Reunion, during the epidemic, except for platelet concentrates (supply problems) which should however be
 ▪ PCR tested
 ▪ Put through an inactivation treatment
Key role of the various actors in the Vigilance system

✔ **Donor**: to refer back to the collection center in case anything wrong after donation

✔ **Recipient (patient)**: if he(she) detects something wrong with the medication

✔ **Physician or health care professionals**: to notify the relevant hemo- or pharmaco-vigilance system so as to trigger any further action

✔ **Need for well structured and reactive system**,
 - To identify, as early as possible a signal
 - To treat it accordingly: → evaluation and decision-making process

Pre-ICDRA meeting – Seoul, April 2006
Safety of blood / blood products

✔ To be built-up

✔ To be evaluated

✔ To be monitored

✔ To be built-up considering
 • The product of origin
 • The possible method(s) of obtention
 • The intended use

Pre-ICDRA meeting – Seoul, April 2006
Safety of blood / blood products

- To be built-up
- To be evaluated
- To be monitored

- To be evaluated
 - Process description and validation data (consistency)
 - Collection description
 - Viral inactivation steps
 - Viral safety level (should be assessed before going to human clinical trials)
Safety of blood / blood products

- To be built-up
- To be evaluated
- To be monitored

- Safety profile monitoring
 - Ponctual accident may occur, due to individual factors
 - Donor
 - Process
 - Supply and storage chain
 - New emerging risks (particularly infectious agents)
 - New technology are developed
 - Inactivation techniques
 - Screening tests
The safety loop

Product

Development

Characteristics specification

Evaluation

Authorisation

Use

PATIENT

Surveillance

Re-assessment Corrective action

Importance of Traceability Notification

Additional information
New findings
Conclusion

✓ Safety is achieved as the result of a multi-approach system
✓ Safety should be monitored permanently
✓ Pharmacovigilance and haemovigilance are part of the tools to ensuring safety, but
• Need for a well structured notification system
• need for a well standardised and operating traceability (up-and backward) system