RECOMMENDATIONS FOR THE PRODUCTION & CONTROL OF PNEUMOCOCCAL CONJUGATE VACCINES

1. Introduction
2. General Considerations
3. Special Considerations
4. Combination vaccines containing pneumococcal polysaccharide conjugate components

Part A. Manufacturing requirements
1. Definitions
2. General manufacturing requirements
3. Production Control
4. Records
5. Retained samples
6. Labelling
7. Distribution and transport
8. Stability, storage and expiry date

Part B. Requirements for national control authorities
1. General
2. Official lot release and certification
3. Reactivity and immunogenicity of vaccine in man

Authors
References

Recommendations published by the WHO are intended to be scientific and advisory. Each of the following sections constitutes guidance for national control authorities and for manufacturers of biological products. If a national control authority so desires, these Recommendations may be adopted as definitive national requirements, or modifications may be justified and made by the national control authority. It is recommended that modifications to these Recommendations be made only on condition that modifications ensure that the vaccine is at least as safe and efficacious as that prepared in accordance with the recommendations set out below. The parts of each section printed in small type are comments for additional guidance intended for manufacturers and national control authorities, which may benefit from those details.

Adopted by the 54th meeting of the WHO Expert Committee on Biological Standardization, 17-21 November 2003. A definitive version of this document, which will differ from this version in editorial but not scientific detail, will be published in the WHO Technical Report Series.
Introduction

Recommendations (formerly known as Requirements) for pneumococcal polysaccharide vaccines were drafted in 1980 but were never adopted by the WHO Expert Committee on Biological Standardization. Vaccines based on the capsular polysaccharides of the 23 serotypes of *Streptococcus pneumoniae* most commonly associated with human disease have been licensed in many countries. These vaccines have been shown to be efficacious against invasive pneumococcal disease and have proved to be effective for the protection of individuals who are at particular risk of infection. Nevertheless, their inability to elicit protective responses in young infants or to induce good immunological memory has prevented their implementation in national infant immunization schedules.

The development of bacterial capsular polysaccharide-protein conjugates represents a major advance in prophylaxis against bacterial infections. Following the successful introduction of the *Haemophilus influenzae* type b conjugate (Hib) and meningococcal C conjugate (MenC) vaccines into paediatric vaccination schedules, considerable progress has been made in the development of similar conjugate vaccines based on pneumococcal capsular polysaccharides. Glycoconjugate vaccines are both physically and immunobiologically distinct from their unconjugated counterparts, emphasizing the need for recommendations specifically for these products.

General Considerations

Infections caused by *Streptococcus pneumoniae*, the pneumococcus, are responsible for substantial morbidity and mortality, particularly in the very young and in the elderly. Pneumococci are divided into serotypes based upon their chemically and serologically distinct capsular polysaccharides. Of the 90 pneumococcal serotypes, the capsular polysaccharides of the 23 most commonly associated with disease are included in the polysaccharide vaccines produced by various manufacturers. These vaccines are effective in individuals from about two years of age but, as they elicit T-cell independent immunity, they are not effective in younger children. In addition, they fail to induce boostable immunity and have little or no impact on nasopharyngeal carriage. In contrast, polysaccharide-protein conjugates have been shown to be highly immunogenic in infants and induce T-cell dependent immunity. Several pneumococcal conjugate vaccines are now available or at an advanced stage of development. Controlled clinical trials with these vaccines have demonstrated that such conjugates are both safe and highly immunogenic, T-cell dependent antigens. They have been shown to induce high levels of serum antibody and to offer protective immunity against invasive pneumococcal disease. They are effective in young children, induce immunological memory and reduce nasopharyngeal carriage of the pneumococcal serotypes included in the formulation. A 7-valent conjugate, manufactured using diphtheria protein CRM197 as the carrier protein for all seven serotypes, was first licensed in the USA in 2000 and has become increasingly available worldwide.

Protective levels of antibody elicited by the CRM197 conjugated vaccines against invasive pneumococcal disease have been estimated based on data from three clinical efficacy trials: in Northern California; among Navajo Indians and in Soweto, South Africa. The aggregate efficacy for the seven serotypes these vaccines had in common was 93.0% (CI 81.0%, 98.2%). Using the anti-capsular polysaccharide antibody ELISA data from these studies, an estimate of 0.35 µg/ml aggregated across the serotypes was associated with the point estimate of clinical efficacy against invasive disease (see addendum for additional details). This reference value is neither applicable to the determination of the protective status of the individual nor to protection against other disease end-points, e.g. pneumonia, otitis media. Due to practical or ethical
considerations, it may not be possible to perform protective efficacy trials of most new vaccine formulations. Therefore, this reference value will be important for the licensure of future products using data from immunogenicity trials. This reference value is not applicable in the determination of the protection status of an individual.

Differences in the incidence of serotypes causing disease from one continent to another has lead to the development of pneumococcal vaccine formulations consisting of increasing numbers of conjugated components. Recently clinical trials of 7-valent and 9-valent formulations have been completed in Finland and South Africa respectively, while further formulations with potentially greater coverage are under development. From a practical perspective, however, it is evident that there is a limit to the number of serotypes that can be included in such conjugate vaccine formulations and the incidence of disease causing serotypes in the target population should be taken into consideration before vaccine development. Although geographical and temporal factors undoubtedly contribute to differences in the incidence rates between regions, the impact of differences between national epidemiological surveillance systems on case ascertainment may also prove to be a critical factor in the assessment of pneumococcal vaccine coverage. The serotype composition of pneumococcal vaccines should be agreed with the national control authority based on appropriate epidemiological data from the target population. The superiority of a vaccine should not be assumed based on it’s the number of serotypes included unless there is evidence that the inclusion of additional serotypes is likely to enhance its effectiveness in a particular epidemiological setting.

Special considerations

The production and control of conjugate vaccines are more complex than their unconjugated capsular polysaccharide counterparts. Polysaccharide vaccines consist of defined chemical substances that, if prepared to the same specifications, can reasonably be expected to have comparable potencies. While only the 7-valent conjugate formulation has been licensed to date, experience with H. influenzae type b and meningococcal conjugate vaccines suggests that effective pneumococcal vaccines may be developed that differ both in the nature of the saccharide and the carrier protein employed. Vaccines are under development that utilise carrier proteins other than CRM197 and vaccine formulations could be developed in which more than one carrier is employed. The manufacturer has a choice of possible carrier proteins providing that the resulting vaccine is safe and elicits a T-cell dependent, protective immune response.

Unfortunately, the lack of a suitable animal model for all pneumococcal serotypes makes it impossible to assess the potency of these vaccines for man on the basis of studies in animals. Consequently, it is important that new pneumococcal vaccine formulations are evaluated in man for immunogenicity by monitoring the production of serotype specific IgG. Immune responses to pneumococcal vaccines have been measured using methods that determine either the total amount of antibody binding to capsular polysaccharide or the amount of functional antibody present in serum. Antibody binding is typically evaluated by the use of enzyme linked immunosorbant assays (ELISAs) or radioimmunoassays, while the opsonophagocytic assay is used to measure functional antibodies. Clinical studies of conjugate vaccines have shown a good association between antibody levels measured by ELISA and protection (see Appendix). However, such studies also usually include an analysis of a subset of sera to confirm their functional (eg opsonophagocytic) activity. Whichever assay is used, it should be standardised so as to ensure comparability of data both between laboratories and between different clinical studies. A set of calibration sera are available to help establish comparability between laboratories. As conjugate vaccines should induce a T-cell dependent immune response, this
should also be evaluated during clinical trials. Indicators of T-cell dependent immunity include the production of predominantly high avidity IgG antibody and the demonstration of a good booster response in primed children.

Given the lack of a suitable animal models that will predict the potency of all pneumococcal serotypes, the strategy for the control of the vaccine is dominated by the use of tests for molecular characterisation and purity. These tests focus on physicochemical criteria to ensure each vaccine lot is consistent with the specification of the vaccine lots used in the definitive clinical trials that confirmed their safety and efficacy. The use of animals forms an essential part of the development of these vaccines to provide evidence that they induce T-cell dependent immunity and to characterize the immunogenicity of the vaccine during stability studies. However, an immunogenicity test in animals is not necessary for routine lot release when vaccine consistency has been assured by alternative means.

Combination vaccines containing pneumococcal polysaccharide conjugate components

The introduction of Hib and MenC conjugates as additional elements of infant immunization programmes has served to highlight the need to combine paediatric vaccines for effective vaccine delivery. Vaccine formulations consisting of multiple components that include pneumococcal conjugates are likely to be developed within the next decade. If one or more conjugated pneumococcal components are indicated for coadministration with other vaccines, the possible effects on the clinical performance of each component in the vaccine, including the pneumococcal conjugate components, should be evaluated in terms of their safety and immunogenicity. Similarly, the clinical effect of concomitant administration of a pneumococcal conjugate vaccine with other vaccines at different sites should be evaluated. Because of the problems associated with performing physicochemical analyses on complex vaccine formulations, the manufacturer should consider which batch release tests are appropriate to perform on final bulks of a particular product and which tests on final lots of such vaccines. The tests should be agreed with the national control authority.

Part A. Manufacturing Recommendations

1. **Definitions**

1.1 **Proper Name**

The proper name of the vaccine shall be "pneumococcal conjugate vaccine" translated into the language of the country of use. The serotypes included in the vaccine should be associated with the name of the vaccine and listed in the packaging material. The use of this proper name should be limited to vaccines that satisfy the requirements formulated below.

1.2 **Descriptive definition**

Multivalent pneumococcal conjugate vaccine is a preparation of capsular polysaccharide from specific serotypes of *Streptococcus pneumoniae* that are covalently linked to carrier protein.

1.3 **International Reference Materials**

No formally established international reference materials that would allow the standardization of immune responses to pneumococcal conjugate vaccines are currently available.
The following reagents are available through the courtesy of individuals, manufacturers and national control or reference laboratories:

- C-polysaccharide (Statens Serum Institut, Copenhagen, Denmark)
- Capsular polysaccharides (ATCC, Manassas, Virginia, USA)
- 89-SF reference serum (Dr Carl Frasch, CBER/FDA, Washington DC, USA)
- 96DG secondary reference serum (provided by Dr David Goldblatt and distributed by NIBSC, UK)
- ELISA calibration sera (provided by Dr David Goldblatt and distributed by NIBSC, UK)
- Pneumococcal serotyping reagents (Statens Serum Institut, Copenhagen, Denmark)
- HL-60 cells (ATCC, Manassas, Virginia, USA or ECACC, Porton Down Salisbury, UK)

1.4 Terminology

Master seed lot. A bacterial suspension of *S. pneumoniae* derived from a strain that has been processed as a single lot and is of uniform composition. It is used for the preparation of the working seed lots. Master seed lots shall be maintained in the freeze dried form or be frozen below -45°C.

Working seed lot. A quantity of live *S. pneumoniae* organisms derived from the master seed lot by growing the organisms and maintaining them in aliquots in the freeze-dried form or frozen state at or below -45°C. The working seed lot is used, when applicable, after a fixed number of passages, for the inoculation of production medium.

Single harvest. The material obtained from one batch of cultures that have been inoculated with the working seed lot (or with the inoculum derived from it), harvested and processed together.

Purified polysaccharide. The material obtained after final purification. The lot of purified polysaccharide may be derived from a single harvest or a pool of single harvests processed together.

Modified polysaccharide. Purified polysaccharide that has been modified by chemical reaction or physical process in preparation for conjugation to the carrier.

Carrier. The protein to which the polysaccharide is covalently linked for the purpose of eliciting a T-cell dependent immune response to the pneumococcal polysaccharide.

Monovalent Bulk Conjugate. A conjugate prepared from a single lot or pool of lots of polysaccharide and a single lot or a pool of lots of protein. This is the parent material from which the final bulk is prepared.

Final Bulk Conjugate. The blend of monovalent conjugates present in a single container from which the final containers are filled, either directly or through one or more intermediate containers derived from the initial single container.

Final Lot. A number of sealed, final containers that are equivalent with respect to the risk of contamination during filling and, when it is performed, freeze-drying. A final lot must therefore have been filled from a single container and freeze-dried in one continuous working session.
2. General manufacturing requirements

The general manufacturing recommendations contained in Good Manufacturing Practices for Pharmaceuticals and Biological Products should be applied to establishments manufacturing pneumococcal conjugate vaccines with the addition of the following:

Details of standard operating procedures for the preparation and testing of pneumococcal conjugate vaccines adopted by the manufacturer together with evidence of appropriate validation of each production step should be submitted for the approval of the national control authority. All assay procedures used for quality control of the conjugate vaccines and vaccine intermediates must be validated. As may be required, proposals for the modification of manufacturing and control methods should also be submitted for approval to the national control authority before they are implemented.

S. pneumoniae is a Biological Safety Level (BSL) 2 pathogen and represents a particular hazard to health through infection by the respiratory route. The organism should be handled under appropriate conditions for this class of pathogen. Standard operating procedures need to be developed for dealing with emergencies arising from the accidental spillage, leakage or other dissemination of pneumococcal organisms. Personnel employed in the production and control facilities should be adequately trained and appropriate protective measures including vaccination with a pneumococcal vaccine licensed for use in adults should be implemented. Adherence to current Good Manufacturing Practices is important to the integrity of the product, to protect workers and to protect the environment.

3. Production Control

3.1 Control of Polysaccharide

3.1.1 Strains of S. pneumoniae

The strains of S. pneumoniae used for preparing the polysaccharide should be agreed with the national control authority. Each strain should have been shown to be capable of producing polysaccharide of the appropriate serotype. Each master seed lot should be identified by a record of its history, including the source from which it was obtained and the tests made to determine the characteristics of the strain.

The cultures may be examined for the following characteristics: 1) microscopically, stained smears from a culture should appear typical of S. pneumoniae; 2) the organism should grow at 37°C, but not at 25°C, and should have characteristic smooth alpha haemolytic colonies; 3) the ability to ferment inulin; 4) the organism should be lysed in the bile solubility test and be sensitive to Optochin; 5) a suspension of the culture should be agglutinated or give a positive Quellung reaction with the appropriate serotyping serum.

Nuclear magnetic resonance spectroscopy (either ¹H or ¹³C) is a suitable method for the confirmation of identity of purified polysaccharide.
3.1.2 Seed lot system

The production of pneumococcal polysaccharide should be based on a working seed lot system. Cultures derived from the working seed lots shall have the same characteristics as the cultures of the strain from which the master seed lot was derived (A3.1.1). If materials of animal origin are used in the medium for seed production, preservation of strain viability for freeze-drying or for frozen storage, then they should comply with the guidance given in the Report of a WHO Consultation on Medical and other Products in Relation to Human and Animal Transmissible Spongiform Encephalopathies and should be approved by the national control authorities.

Manufacturers are encouraged to avoid wherever possible the use of materials of animal origin.

3.1.3 Culture media for the production of pneumococcal polysaccharide

The liquid culture medium used for vaccine production should be free from ingredients that will form a precipitate upon purification of the capsular polysaccharide. If materials of animal origin are used then they should comply with the guidance given in the Report of a WHO Consultation on Medical and other Products in Relation to Human and Animal Transmissible Spongiform Encephalopathies and should be approved by the national control authorities.

Manufacturers are encouraged to avoid wherever possible the use of materials of animal origin.

3.1.4 Single harvests

Consistency of growth of S. pneumoniae should be demonstrated by monitoring growth rate, pH and the final yield of polysaccharide.

3.1.5 Control of bacterial purity

Samples of the culture should be taken before killing and be examined for microbial contamination. The purity of the culture should be verified by suitable methods, which should include inoculation on to appropriate culture media, including plate media that do not support growth of S. pneumoniae. If any contamination is found, the culture or any product derived from it should be discarded. The killing process should similarly be adequately validated.

3.1.6 Purified polysaccharide

Each lot of pneumococcal polysaccharide should be tested for identity, purity and molecular size. A number of approaches to determining polysaccharide identity and purity give complementary but incomplete information, so a combination of methods should be employed to provide all necessary data should be agreed by the national control authority. The purity limits given below are expressed with reference to the polysaccharide in its salt form (sodium or calcium), corrected for moisture. Variations in these specifications that may be appropriate if unusual salt forms are present should be agreed by the national control authority.

Generally, after killing the organism the culture is harvested and the polysaccharide isolated and purified by techniques such as fractional precipitation, chromatography, enzyme treatment and ultrafiltration. The polysaccharide is partially purified by fractional precipitation, washed and dried to a residual moisture content shown to favour the stability of the polysaccharide. Methods used
for the purification of bulk polysaccharide should be approved by the national control authority. Purified pneumococcal polysaccharide and, when necessary partially purified intermediates, are usually stored at or below -20°C to ensure stability.

3.1.6.1 Polysaccharide Identity

A test should be performed on the purified polysaccharide to verify its identity. In cases where other polysaccharides are produced on the same manufacturing site, the method should be validated to show that it distinguishes the desired polysaccharide from all other polysaccharides produced on that manufacturing site.

A serological method such as countercurrent immunoelectrophoresis and/or nuclear magnetic resonance spectroscopy (either 1H or 13C) provide convenient methods for this purpose22,34. In some cases, the identity of the polysaccharide can be deduced from its composition, if appropriate analytical methods are employed.

3.1.6.2 Polysaccharide Composition

The composition of the polysaccharide provides information on its purity, identity and the amount of specific impurities, such as pneumococcal C-polysaccharide, that are present. Analyses should be based on the dry weight of the polysaccharide. The composition of the polysaccharide can be defined in a number of ways depending on the methodology employed and the salt form present. The specifications used should be agreed by the national control authority.

Chemically, the composition of pneumococcal polysaccharides can be defined by the percentage of total nitrogen, phosphorus, uronic acid, hexosamine, methyl pentose and O-acetyl groups. These are usually determined by a combination of simple wet chemical tests with colorimetric read outs. Typical specifications are tabulated below23.

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Total nitrogen (%)</th>
<th>Phosphorus* (%)</th>
<th>Uronic acid (%)</th>
<th>Hexosamines (%)</th>
<th>Methyl pentose (%)</th>
<th>O-acetyl groups (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.56 (3.5 – 6)</td>
<td>0 (0 – 1.5)</td>
<td>55.17 (≥ 45)</td>
<td>0</td>
<td>0</td>
<td>5.47 (≥ 1.8)</td>
</tr>
<tr>
<td>2</td>
<td>0 (0 – 1)</td>
<td>0 (0 – 1.0)</td>
<td>22.59 (≥15)</td>
<td>0</td>
<td>0</td>
<td>50.58 (≥ 38)</td>
</tr>
<tr>
<td>3</td>
<td>0 (0 – 1)</td>
<td>0 (0 – 1.0)</td>
<td>60.23 (≥ 40)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4.95 (4 – 6)</td>
<td>0 (0 – 1.5)</td>
<td>71.84 (≥ 40)</td>
<td>0</td>
<td>0</td>
<td>19.11 (≥ 10)</td>
</tr>
<tr>
<td>5</td>
<td>3.04 (2.5 – 6)</td>
<td>0 (<2)</td>
<td>44.14 (≥ 20)</td>
<td>35.22 (≥ 25)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6B</td>
<td>0 (0 – 2)</td>
<td>4.38 (2.5 – 5.0)</td>
<td>0</td>
<td>0</td>
<td>22.86 (≥ 15)</td>
<td>0</td>
</tr>
<tr>
<td>7F</td>
<td>2.28 (1.5 – 4.0)</td>
<td>0 (0 – 1.0)</td>
<td>33.09</td>
<td>0</td>
<td>0</td>
<td>3.5 (present)</td>
</tr>
<tr>
<td>8</td>
<td>0 (0 – 1)</td>
<td>0 (0 – 1.0)</td>
<td>31.70 (≥ 25)</td>
<td>0</td>
<td>0</td>
<td>26.40 (≥ 13)</td>
</tr>
<tr>
<td>9N</td>
<td>3.09 (2.2 – 4.0)</td>
<td>0 (0 – 1.0)</td>
<td>23.96 (≥ 20)</td>
<td>44.82 (≥ 28)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9V</td>
<td>1.44 (0.5 – 3)</td>
<td>0 (0 – 1.0)</td>
<td>22.33 (≥ 15)</td>
<td>20.89 (≥ 13)</td>
<td>0</td>
<td>8.85 (present)</td>
</tr>
<tr>
<td>10A</td>
<td>1.12 (0.5 – 3.5)</td>
<td>2.48 (1.5 – 3.5)</td>
<td>0</td>
<td>16.21 (≥ 12)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11A</td>
<td>0 (0 – 2.5)</td>
<td>3.25 (2.0 – 5.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.54 (≥ 9)</td>
</tr>
<tr>
<td>12F</td>
<td>3.82 (3 – 5)</td>
<td>0 (0 – 1.0)</td>
<td>19.37 (≥ 15)</td>
<td>55.36 (≥ 25)</td>
<td>14.73 (≥ 10)</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>2.83 (1.5 – 4)</td>
<td>0 (0 – 1.0)</td>
<td>20.94 (≥ 13)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15B</td>
<td>1.31 (1 – 3)</td>
<td>2.89 (2.0 – 4.5)</td>
<td>0</td>
<td>24.12 (≥ 20)</td>
<td>0</td>
<td>4.01 (present)</td>
</tr>
<tr>
<td>17A</td>
<td>0 (0 – 1.5)</td>
<td>0 (0 – 3.5)</td>
<td>16.16 (≥ 10)</td>
<td>0</td>
<td>24.12 (≥ 20)</td>
<td>3.2 (present)</td>
</tr>
<tr>
<td>17F</td>
<td>0 (0 – 1.5)</td>
<td>3.05 (2.4 – 4.9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.96 (≥ 14)</td>
</tr>
<tr>
<td>18C</td>
<td>0 (0 – 1)</td>
<td>0 (0 – 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.24 (present)</td>
</tr>
</tbody>
</table>
Other methods, such as High Performance anion exchange chromatography (HPAEC) with electrochemical detection, with pulsed amperometric detection (HPAEC-PAD) applied to hydrolysates of the polysaccharide, may be used to define aspects of the quantitative composition of certain polysaccharide types, but the method should be validated for the purpose\(^ {36} \). \(^ {1} \)H nuclear magnetic resonance spectroscopy also provides a convenient approach to quantitatively define the composition of the purified polysaccharide if an internal reference compound is included\(^ {33,34} \). The proportion of pneumococcal C polysaccharide may be determined by a combination of \(^ {1} \)H and \(^ {31} \)P nuclear magnetic resonance spectroscopy\(^ {37,38} \) or HPAEC-PAD\(^ {39} \).

3.1.6.3 Moisture content

If the purified polysaccharide is to be stored as a lyophilised powder the moisture content should be determined by suitable methods approved by the national control authority and shown to be within agreed limits.

3.1.6.4 Protein impurity

The protein content should be determined by the method of Lowry \textit{et al.}, using bovine serum albumin as a reference\(^ {1,40} \), or other suitable validated method. Sufficient polysaccharide should be assayed to detect 1% protein contamination accurately.

Each lot of purified polysaccharide should typically contain not more than 3% by weight of protein. However, this will vary depending upon the serotype and an acceptable level of protein contamination should be agreed with the national control authority.

3.1.6.5 Nucleic acid impurity

Each lot of polysaccharide should contain not more than 2% by weight of nucleic acid as determined by ultraviolet spectroscopy, on the assumption that the absorbance of a 1 g/l nucleic acid solution contained in a cell of 1 cm path length at 260 nm is 20 \(^ {1} \) or by another validated method.

Sufficient polysaccharide shall be assayed to detect 2% nucleic acid contamination accurately.
3.1.6.6 Pyrogen content

The pyrogen content of the purified polysaccharide should be determined and shown to be within acceptable limits agreed by the national control authority.

A recognized pyrogenicity test can be performed in rabbits. Alternatively, the *Limulus* amoebocyte lysate test can be performed.

3.1.6.7 Molecular Size Distribution

The molecular size of each lot of purified polysaccharide provides an indication of the manufacturing consistency. An acceptable level of consistency should be agreed with the national control authority and can be established either by process validation or measurement on each lot.

The distribution constant (K_D) can be determined by measuring the molecular size distribution of the polysaccharide at the main peak of the elution curve obtained by a suitable chromatographic method. The K_D value and/or the mass distribution limits should be established.

Methods such as: i) gel filtration through Sepharose CL-4B or CL-6B (or similar) in a 0.2 molar buffer using either a refractive index detector or colorimetric assay for the detection of the polysaccharide; and ii) high performance size-exclusion chromatography (HPSEC) with refractive index detectors either alone or in combination with light scattering (e.g. Multiple Angle Laser Light Scattering, MALLS) are suitable for this purpose. The methodology and column used should be validated to demonstrate sufficient resolution in the appropriate molecular weight range.

3.1.7 Modified polysaccharide

Modified polysaccharide preparations may be partially depolymerised either before or during the chemical modification. The registered and several candidate pneumococcal conjugate vaccines use polysaccharides and oligosaccharide chains.

3.1.7.1 Chemical modification

Several methods for the chemical modification of polysaccharides prior to conjugation may be satisfactory. The chosen method should be approved by the national control authority.

The current methods used are similar to those employed in the production of conjugate vaccines against *Haemophilus influenzae* type b. For example, polysaccharide may be oxidised with periodate and the periodate activated polysaccharide attached to free amino groups on the carrier protein by reductive amination. Alternatively, the polysaccharide can be randomly activated by cyanogen bromide, or a chemically similar reagent, and a bifunctional linker added, which then allows the polysaccharide to
be attached to the carrier protein directly, or through a secondary linker.

3.1.7.2 Extent of modification of the polysaccharide

The manufacture should demonstrate consistency of the degree of modification of the polysaccharide, either by an assay of each batch of the polysaccharide or by validation of the manufacturing process.

3.1.7.3 Molecular size distribution

The degree of size reduction of the polysaccharide will depend upon the manufacturing process. The average size distribution (degree of polymerization) of the modified polysaccharide should be determined by a suitable method and shown to be consistent. The molecular size distribution should be specified for each serotype, with appropriate limits for consistency, as the size may affect the reproducibility of the conjugation process.

The molecular size may be determined by gel filtration on soft columns or by HPSEC on using refractive index alone, or in combination with laser light scattering (e.g. MALLS) \(^{34,41}\).

3.2 Control of the carrier protein

3.2.1 Microorganisms and culture media for production of carrier protein

Microorganisms to be used for the production of the carrier protein should be grown in media free from substances likely to cause toxic or allergic reactions in humans. If any materials of animal origin are used in seed preparation, or preservation, or in production, they should comply with the guidance given in the Report of a WHO Consultation on Medicinal and Other Products in relation to Human and Animal Transmissible Spongiform Encephalopathies\(^ {31}\) and should be approved by the national control authority.

Production should be based on a seed lot system with the strains identified by a record of their history and of all tests made periodically to verify strain characteristics. Consistency of growth of the microorganisms used should be demonstrated by monitoring the growth rate, pH and final yield of appropriate protein(s).

3.2.2 Characterisation and purity of the carrier protein

Potentially there are many proteins that could be used as carriers in pneumococcal conjugate vaccines. The principal characteristics of the carrier protein should be that it is safe and, in the conjugate, elicits a T-cell dependent immune response against the polysaccharide. Test methods used to characterize such proteins, to ensure that they are non-toxic and to determine their purity and concentration, should be approved by the national control authority.

Proteins and purification methods that might be used include:

1. *Tetanus* or *diptheria toxoid*. This must satisfy the relevant requirements published by WHO \(^ {42}\) and be of high purity\(^ {43}\).

2. *Diphtheria CRM 197 protein*. This is a non-toxic mutant of diphtheria toxin, isolated from cultures of *Corynebacterium*
Protein of purity should be greater than 90% as determined by an appropriate method. When produced in the same facility as diphtheria toxin, methods must be in place to distinguish the CRM 197 protein from the active toxin.

The protein carrier should also be characterized. The identity may be determined serologically. Physico-chemical methods that may be used to characterize protein include SDS-PAGE, isoelectric focusing, HPLC, amino acid analysis, amino acid sequencing, circular dichroism, fluorescence spectroscopy, peptide mapping and mass spectrometry as appropriate.

3.3 Control of monovalent bulk conjugates

There are a number of possible conjugation methods that might be used for vaccine manufacture; all involve multi-step processes. Both the method and the control procedures used to ensure the reproducibility, stability, and safety of the conjugate should be established for licensing. The derivatization and conjugation process should be monitored by analysis for unique reaction products or by other suitable means. The conditions used in the conjugation chemistry may affect the structure of the polysaccharide chain by causing the loss of labile substituents. Unless the combination of tests used to characterize the bulk monovalent conjugate provide this information, an explicit identity test on the polysaccharide present should be performed.

Residual activated functional groups potentially capable of reacting in vivo may be present following the conjugation process. The manufacturing process should be validated to show that the activated functional groups do not remain at the conclusion of the manufacturing process are inferior to a limit approved by the NRA.

After the conjugate has been purified, the tests described below should be performed in order to assess consistency of manufacture. The tests are critical for assuring lot-to-lot consistency.

3.3.1 Identity

A test should be performed on the monovalent bulk to verify its identity. The method should be validated to show that it distinguishes the desired monovalent material from all other polysaccharides and conjugates produced on that manufacturing site.

3.3.2 Residual reagents

The conjugate purification procedures should remove residual reagents used for conjugation and capping. The removal of reagents and reaction by-products such as cyanide, 1-ethyl-3,3-(3-dimethylaminopropyl)-carbodiimide (EDAC and others, depending on the conjugation chemistry, should be confirmed by suitable tests or by validation of the purification process.

3.3.3 Polysaccharide-protein ratio and conjugation markers.

For each batch of the bulk conjugate of each serotype the ratio of polysaccharide to carrier protein should be determined as a marker of the consistency of the conjugation chemistry. For each conjugate, the ratio should be within the range approved for that particular
conjugate by the national control laboratory and should be consistent with vaccine shown to be effective in clinical trials.

Typically for pneumococcal conjugate vaccines the ratio is in the range of 0.3 to 3.0 but varies with the serotype. The ratio can be determined either by independent measurement of the amounts of protein and polysaccharide present (corrected for unbound protein and unbound polysaccharide), or by methods which give a direct measure of the ratio. Methods include 1H nuclear magnetic resonance spectroscopy or the use of HPSEC with dual monitoring (eg. refractive index and UV, for total material and protein content respectively).

If the chemistry of conjugation results in the creation of a unique linkage marker (eg. a unique amino acid), each batch of the bulk conjugate of that serotype should be assessed to quantify the extent of degree of substitution of the carrier protein by covalent reaction of the pneumococcal polysaccharide with the carrier protein.

The structural complexity and structural differences between the pneumococcal serotypes are such that in most cases a simple conjugation marker will not be able to be identified.

3.3.4 Capping markers

Each batch should be shown to be free of activated functional groups on either the chemically modified polysaccharide or carrier protein. Alternatively, the product of the capping reaction can be monitored or the capping reaction can be validated to show removal of unreacted functional groups. Validation of the manufacturing process during vaccine development can eliminate the need to perform this analysis for routine control.

3.3.5 Conjugated and Unbound (free) polysaccharide

Only the pneumococcal polysaccharide that is covalently bound to the carrier protein, i.e. conjugated polysaccharide, is immunologically important for clinical protection. Each batch of conjugate should be tested for unbound or free polysaccharide in order to ensure that the amount present in the purified bulk is within the limits agreed by the national control authority based on lots shown to be clinically safe and efficacious.

Methods that have been used to separate unbound polysaccharide prior to assay, and potentially applicable to pneumococcal conjugates, include hydrophobic chromatography, acid precipitation, precipitation with carrier protein-specific antibodies, gel filtration and ultrafiltration. The amount of unbound polysaccharide can be determined by specific chemical or immunological tests, or by HPAEC after hydrolysis.

3.3.6 Protein content

The protein content of the conjugate should be determined by means of an appropriate validated assay and comply with limits for the particular product. Each batch should be tested for conjugated and unbound protein.
If possible, the unconjugated protein should also be measured. Appropriate methods for the determination of conjugated and unconjugated protein include HPLC or capillary electrophoresis.

3.3.7 Molecular size distribution

The molecular size of the polysaccharide-protein conjugate is an important parameter in establishing consistency of production and in studying stability during storage.

The relative molecular size of the polysaccharide-protein conjugate should be determined for each bulk, using a gel matrix appropriate to the size of the conjugate. The method should be validated with an emphasis on specificity to distinguish the polysaccharide-protein conjugate from other components that may be present, e.g. unbound protein or polysaccharide. The size distribution specifications will be vaccine specific and should be consistent with lots shown to be immunogenic in clinical trials.

Typically the size may be examined by gel filtration on Sepharose CL-2B, or by HPSEC on an appropriate column. Since the saccharide-protein ratio is an average value, characterisation of this ratio over the size distribution (e.g. by dual monitoring of the column eluent) can be used to provide further proof of manufacturing consistency.

3.3.8 Sterility

The bulk purified conjugate should be tested for bacterial and mycotic sterility in accordance with the requirements of Part A, sections 5.1 and 5.2, of the revised Requirements for Biological Substances or by a method approved by the national control authority. If a preservative has been added to the product, appropriate measures should be taken to prevent it from interfering with the test.

3.3.9 Specific toxicity of carrier protein

The bulk conjugate should be tested for the absence of specific toxicity of the carrier protein where appropriate (e.g. when tetanus or diphtheria toxoids have been used). Absence of specific toxicity of the carrier protein may also be assessed through validation of the production process.

3.3.10 Endotoxin content

To ensure an acceptable level of endotoxin in the final product, the endotoxin content of the monovalent bulk may be determined and shown to be within acceptable limits agreed by the national control authority.

3.4 Final bulk

3.4.1 Preparation

To formulate the final bulk, monovalent conjugate bulks may be mixed together and an adjuvant, a preservative and/or stabiliser is added before final dilution. Alternatively, the monovalent conjugate bulks may also be adsorbed to adjuvant individually before mixing them to formulate the final vaccine.
3.4.2 Sterility

Each final bulk should be tested for bacterial and mycotic sterility as indicated in section 3.3.7.

3.5 Filling and containers

The recommendations concerning filling and containers given in Good Manufacturing Practices for Biological Products (39, Annex 1, Section 4) should be applied."^29."

3.6 Control tests on final product

3.6.1 Identity

An identity test should be performed which demonstrates that all of the intended pneumococcal polysaccharide serotypes are present in the final product, unless this test has been performed on the final bulk.

A serological test, using antibodies specific for the purified polysaccharide may be used."

3.6.2 Sterility

The contents of final containers should be tested for bacterial and mycotic sterility as indicated in section 3.3.7.

3.6.3 Pneumococcal polysaccharide content

The amount of each pneumococcal polysaccharide in the final containers should be determined, and shown to be within the specifications agreed by the national control authority.

The conjugate vaccines produced by different manufacturers differ in formulation. A quantitative assay for each the pneumococcal polysaccharides in the final container should be carried out. The assays used are likely to be product specific and might include chromatographic or serological methods. Immunological assays such as rate nephelometry48 or ELISA inhibition may be used.

3.6.4 Residual Moisture

If the vaccine is freeze-dried, the average moisture content should be determined by methods accepted by the national control authority. Values should be within limits of the preparations shown to be adequately stable in the stability studies of the vaccine.

The test should be performed on 1 vial per 1000 up to a maximum of 10 vials but on no less than 5 vials taken at random from throughout the final lot. The average residual moisture content should generally be no greater than 2.5% and no vial should be found to have a residual moisture content of 3% or greater.
3.6.5 **Endotoxin content**

The vaccine in the final container should be tested for endotoxin content by a *Limulus* amoebocyte lysate test (LAL). Endotoxin content or pyrogenic activity should be consistent with levels found to be acceptable in vaccine lots used in clinical trials and approved by the national control authority.

3.6.6 **Adjuvant content**

If an adjuvant has been added to the vaccine, its content should be determined by a method approved by the national control authority. The amount and nature of the adjuvant should be agreed with the national control authority. If aluminium compounds are used as adjuvants, the amount of aluminium should not exceed 1.25 mg per single human dose.

3.6.7 **Preservative content**

The manufacturer has a choice of possible preservatives. Consideration should be given to the stability of the chosen preservative and possible interactions between the vaccine components and the preservative. If a preservative has been added to the vaccine, the content of preservative should be determined by a method approved by the national control authority. The amount of preservative in the vaccine dose should be shown not to have any deleterious effect on the antigen nor impair the safety of the product in humans. The preservative and its concentration should be approved by the national control authority.

3.6.8 **General Safety Test (Innocuity)**

The requirement to test lots of pneumococcal conjugate vaccine for unexpected toxicity (abnormal toxicity) should be agreed with the national control authority.

Such a test may be omitted for routine lot release once consistency of production has been well established to the satisfaction of the national control authority and when Good Manufacturing Practice is in place.

3.6.9 **pH**

If the vaccine is a liquid preparation, the pH of each final lot should be tested and shown to be within the range of values found for vaccine lots shown to be safe and effective in the clinical trials and in stability studies. For a lyophilized preparation, the pH should be measured after reconstitution with the appropriate diluent.

3.6.10 **Inspection of final containers**

Each container in each final lot should be inspected visually (manually or with automatic inspection systems), and those showing abnormalities such as improper sealing, lack of integrity and, if applicable, clumping or the presence of particles should be discarded.

Records

The recommendations in Section 8 of Good Manufacturing Practices for Biological Products 39, Annex 1) should be applied.
Retained samples

The recommendations in Section 9.5 of Good Manufacturing Practices for Biological Products (39, Annex 1) should be applied29.

Labelling

The recommendations in Section 7 of Good Manufacturing Practices for Biological Products (39, Annex 1) should be applied with the addition of the following29.

The label on the carton or the leaflet accompanying the container should indicate:
- the pneumococcal serotype and carrier protein present in each single human dose;
- the amount of each conjugate present in a single human dose;
- the temperature recommended during storage and transport;
- if the vaccine is freeze-dried, that after its reconstitution it should be used immediately unless data have been provided to the licensing authority that it may be stored for a limited time;
- the volume and nature of the diluent to be added in order to reconstitute a freeze-dried vaccine, specifying that the diluent should be supplied by the manufacturer and approved by the national control authority.

Distribution and transport

The recommendations in Section 8 of Good Manufacturing practices for Biological Products (39, Annex 1) should be applied29.

Stability, storage and expiry date

8.1 Stability testing

Adequate stability studies form an essential part of the vaccine development studies. The stability of the vaccine in its final form and at the recommended storage temperatures should be demonstrated to the satisfaction of the national control authority with final containers from at least three lots of final product made from different independent bulk conjugates.

Given the complexity of these multivalent vaccines, other approaches may be used, with the approval of the national regulatory authority.

The polysaccharide component of conjugate vaccines may be subject to gradual hydrolysis at a rate which may vary depending upon the type of conjugate, the type of formulation or adjuvant, the type of excipients and conditions of storage. The hydrolysis may result in reduced molecular size of the pneumococcal polysaccharide component, a reduction in the amount of the polysaccharide bound to the protein carrier and in a reduced molecular size of the conjugate.

The structural stability of the oligosaccharide chains and of the protein carrier vary between different conjugate vaccines.

Tests shall be conducted before licensing to determine the extent to which the stability of the product has been maintained throughout the proposed validity period. The vaccine should meet the specifications for final product up to the expiry date.
Molecular sizing of the final product may be carried out to ensure the integrity of the conjugate. The antigen content of each serotype conjugate may be determined by a quantitative serological assay.

The desorption of antigen from aluminium-based adjuvants, if used, may take place over time. The level of adsorption should be shown to be within limits agreed by the national control authority, unless data are available to show that the immunogenicity of the final product is not dependent upon adsorption of the antigen to the adjuvant.

Accelerated stability studies may provide additional supporting evidence of the stability of the product but cannot replace real-time studies.

When any changes are made in the production procedure that may affect the stability of the product, the vaccine produced by the new method should be shown to be stable.

The statements concerning storage temperature and expiry date appearing on the label should be based on experimental evidence, which should be submitted for approval to the national control authority.

8.2 Storage conditions

Storage conditions should be based on stability studies and approved by the national control authority.

Storage of both liquid and freeze-dried vaccines at a temperature of 2–8°C has been found to be satisfactory. The stability of pneumococcal conjugate components varies with serotype of the capsular polysaccharide.

8.3 Expiry date

The expiry date should be approved by the national control authority and based on the stability of the final product as well as the results of the stability tests referred to in section 8.1.

Part B. Requirements for national control authorities

General

The general recommendations for control laboratories contained in the Guidelines for National Authorities on Quality Assurance for Biological Products should be applied.

Official release and certification

A vaccine lot should be released only if it fulfils national requirements and/or Part A of these Recommendations.

A statement signed by the appropriate official of the national control authority should be provided at the request of the manufacturing establishments and should certify that the lot of vaccine in question satisfies all national requirements as well as Part A of these Requirements. The certificate should state the number under which the lot was released by the national controller, and the number appearing on the labels of the containers. Importers of pneumococcal
conjugate vaccines should be given a copy of the official national release document. The purpose of the certificates is to facilitate the exchange of vaccines between countries.

Reactogenicity and immunogenicity of vaccine in man

The national control authority should satisfy itself that adequate control of the pneumococcal conjugate vaccine has been achieved. Clinical data supporting consistency of vaccine production should be obtained prior to registration of the product. Several different lots of the product should be used during the clinical studies and shown to give similar immune responses. Such studies may need to be repeated if changes in production are made, or when the pneumococcal conjugate is part of a new combination vaccine formulation. The national control authority should ensure that the studies are performed in an adequate number of subjects to obtain statistically valid data on reactivity and immunogenicity. The pneumococcal conjugate vaccines are manufactured from purified components by a clearly defined chemical process. Any changes in production or formulation of the vaccine should be reported to the national control authority, which will review whether additional clinical data are required on a case-by-case basis. Such a review should take into account the likelihood of such changes affecting the quality, the consistency, the structural integrity and the immunogenicity of the product, and consider the possible cumulative effect of multiple modifications that individually may be regarded as minor.

Authors

The first draft of these Recommendations was prepared by:-

Dr I. Feavers, Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Herts. EN6 3QG, UK
Dr C. Frasch, Laboratory for Bacterial Polysaccharides, Center for Biologic Evaluation and Research, FDA, Rockville, Maryland 20852, USA
Dr C. Jones, Laboratory of Molecular Structure, National Institute for Biological Standards and Control, Potters Bar, Herts. EN6 3QG, UK
Dr N. Ravenscroft, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

A second draft was prepared after a WHO Informal Consultation held in Geneva, 4-5 June 2003 and attended by the following participants:

Dr I. Feavers, Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Herts. EN6 3QG, UK
Dr C. Frasch, Laboratory for Bacterial Polysaccharides, Center for Biologic Evaluation and Research, FDA, Rockville, Maryland 20852, USA
Dr C. Jones, Laboratory of Molecular Structure, National Institute for Biological Standards and Control, Potters Bar, Herts. EN6 3QG, UK
Dr G. Carlone, Respiratory Diseases Branch, Division of Bacterial and Mycotic Disease, National Center for Infectious Diseases, Atlanta, GA 30333, USA
Dr N. Cauwenberghs, Regulatory Affairs Paediatric Vaccines, GlaxoSmithKlines Biologicals, Rixensart B-1330, Belgium
Dr C. Ceccarini, Via di Catignano 10, Loc. Pianella, Castelnuovo Berardenga, 35010 Siena, Italy
Dr E.C. Leal, Fundação Oswaldo Cruz, National Institute for Quality Control, Manguinhos, Rio de Janeiro, Brazil
Dr R. Dagan, Soroka Medical Center, Paediatric Infectious Disease Unit, Beer Sheva 84101, Israel
Acknowledgements are due to the following experts for their comments on the second draft:
Reference List

Appendix

Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants

The lack of a definitive serological correlate of protection and the multiplicity of antigens involved, especially since the clinical efficacy of several of the individual serotypes represented in the only licensed vaccine has not been established, have been an obstacle for licensure of new formulations or combinations of pneumococcal conjugate vaccines. Indeed, the clinical efficacy of several of the individual serotypes represented in the only licensed vaccine has not been established.

W.H.O. undertook a series of consultations to develop serological criteria for the evaluation and licensure of new formulations/combinations or different vaccination schedules of pneumococcal conjugate vaccines. At a consultation held in Alaska in May 2002, preliminary analysis of data from the efficacy trial in northern California were presented. The results of the analysis showed that a threshold antibody concentration for protection against invasive disease could be estimated using a few simplifying assumptions and the following relationship between the point estimate of clinical efficacy (VE) and a protective antibody concentration:

\[
VE = 1 - \frac{\text{Probability of disease in Vax group}}{\text{Probability of disease in Control group}}
\]

\[\therefore \quad VE = 1 - \frac{\% \text{ of Vax subjects with } [\text{Ab}] < \text{Ab}_{\text{protective}}}{\% \text{ of Control subjects with } [\text{Ab}] < \text{Ab}_{\text{protective}}}\]

The threshold antibody concentration of 0.20 µg/ml thus derived was supported by a number of other observations. These included: (1) the threshold corresponded with the threshold opsonophagocytic antibody titre of 1:8; (2) it predicted age-specific disease rates; (3) it was consistent with available data from passive immunization using bacterial polysaccharide immune globulin (BPIG) to prevent pneumococcal otitis media and invasive pneumococcal disease; (4) it appeared to clearly discriminate between conjugate vaccinees and controls in immunogenicity studies; (5) infants with antibody above the threshold showed evidence for priming and a booster response to a subsequent dose of vaccine. The rationale for selecting the threshold antibody concentration are described in more detail in the proceedings of a WHO meeting.\(^1\)

On the recommendations arising from this consultation, this analysis was repeated using the pooled immunogenicity and efficacy data from all the completed trials of pneumococcal conjugate vaccines in order to narrow the confidence limits around the point estimate of efficacy and to have additional populations represented. The threshold antibody concentration derived from the pooled analysis using the methods described previously was 0.35 µg/ml. Opsonophagocytic antibody titres were available from two of the three studies and analysis of the data showed that antibody concentrations in the range of 0.20 to 0.35 µg/ml correlated

best with an opsonophagocytic antibody titre of 1:8, which in turn correlates best with protective efficacy. The results of the pooled analysis were presented at a second consultation held in June 2003, which included experts in pneumococcal epidemiology and vaccine evaluation, as well as representatives of regulatory agencies. Based on the data presented at this consultation, the following criteria recommended for use as a relevant value to establish non-inferiority of a new vaccine compared to a licensed vaccine against invasive pneumococcal disease. The criteria should not be used to evaluate vaccines against other clinical end points, e.g. pneumonia and otitis media. It should be noted that immunological responses to pneumococcal conjugate vaccines may vary significantly by population, and a new vaccine candidate shown to be inferior to the licensed vaccine in one population may nevertheless be non-inferior in a second population, thereby allowing for acceptance in the second population.

The development of standardized assays to evaluate serological responses to new pneumococcal conjugate vaccines has been long pursued by the WHO through many consultations. Agreement was reached at a WHO Workshop held in Geneva in 2000 to select one well characterized pneumococcal ELISA protocol as a reference or benchmark assay for laboratories evaluating serological responses to pneumococcal vaccines and to make the link with the pivotal clinical protection studies carried out during the licensure of the first 7 component conjugate vaccine. Two WHO reference laboratories have been established to help other laboratories set up and standardize their own pneumococcal ELISA and to ensure the comparability and acceptability of the serological data. These reference laboratories are located at the Institute of Child Health, London, England, and at the Bacterial Respiratory Pathogen Reference Laboratory, The University of Birmingham, Alabama, USA. The detailed protocol for the pneumococcal ELISA, developed with technical assistance from Wyeth Vaccines, Rochester, New York, is available through the internet site: www.vaccine.uab.edu

Primary end point

The following criteria are recommended for use as the primary end point for demonstration of non-inferiority against a registered vaccine:

- IgG antibody concentrations, as measured by ELISA, in sera collected four weeks after a three dose primary series is considered to be the optimal primary end-point and main licensing parameter.
- A single threshold or reference antibody concentration is recommended for use for all pneumococcal serotypes. A reference antibody concentration of 0.35 µg/ml, as determined through an pooled analysis of data from the efficacy trials with invasive disease endpoints that have been completed to date, is recommended

- This threshold does not necessarily predict protection in an individual subject.
- The reference value is defined on the basis of data using ELISA without pre-adsorption with 22F. Antibody concentrations determined using an alternate method will need to be bridged to this method to derive an equivalent threshold concentration. It is recommended that the assay used be calibrated against a reference assay.

3 Chang I, et al. Serological predictors against invasive pneumococcal disease: a summary of three pneumococcal conjugate vaccine efficacy trials. Manuscript for publication
Head-to-head clinical comparison with a registered vaccine is the preferred method for evaluating new vaccine formulations.

The percentage of responders (with post-immunization antibody concentration above the threshold) should be used as the criteria to determine non-inferiority.

For the serotypes present in a registered vaccine, the percentage of responders to each serotype in the new formulation/combination should be compared with percentage responders to the same serotype in the registered vaccine in the same population. Non-inferiority to antibody response for each of the serotypes in the registered vaccine is desirable but not an absolute requirement. Registration of products where one or more serotypes do not meet non-inferiority criteria would have to be decided on an individual basis.5

Serotypes not contained in a registered formulation may be evaluated on non-inferiority to the aggregate response to the serotypes in the registered vaccine. Failure of one or more new serotypes to meet this criterion may be considered on an individual basis.5

Additional criteria required to support registration:

In addition to showing non-inferiority with respect to the primary end point, additional data to demonstrate the functional capacity of the antibody and induction of immunological memory in a subset of the sera are required for registration.

a. Functional antibodies:

- Opsonophagocytic activity as measured by opsonophagocytic assay after a three-dose priming series is required to demonstrate the functionality of antibodies.
- The method used to demonstrate opsonophagocytic activity should be comparable to the reference assay 6

b. Immunological memory:

- Evidence of memory should be demonstrated. One method to show this is by administration of a booster dose of pneumococcal PS vaccine and comparison of concentrations between age-matched unprimed and primed individuals; data from non-concurrent controls may be sufficient for the purposes of comparison.
- A full dose of polysaccharide vaccine should be used at this stage since use of a reduced dose of the polysaccharide vaccine as a booster is not sufficiently tested.
- Avidity of antibodies is also a useful marker for immunological memory.

The following reference reagents and quality control and reference materials are available for the serology assays (also available at: http://www.vaccine.uab.edu/information.htm)

1. Pneumococcal ELISA calibration sera: To obtain an aliquot of each of the 12 sera please contact (e-mail preferred)

4 Training manual for Enzyme linked immunosorbent assay for the quantitation of Streptococcus pneumoniae serotype specific IgG (Pn PS ELISA).http://www.vaccine.uab.edu/

5 For example, the local epidemiology of pneumococcal disease, specifically the importance of serotypes that do not meet non-inferiority definitions in causing disease as compared to presence of new immunogenic serotypes in the new formulation. In case of certain serotypes in the vaccine not meeting non-inferiority criteria, the package insert should include a statement to that effect.

Dr David Goldblatt Email: d.goldblatt@ich.ucl.ac.uk
WHO Pneumococcal Reference Laboratory Direct Tel +44 (0)207 813 8491
Institute of Child Health Fax +44 (0)207 813 8494
30 Guilford Street
London, WC1N 1EH, United Kingdom
Sera are stored and will be distributed by the National Institute of Biological Standards
and Control, Potters Bar, UK.
2. Materials for pneumococcal assays

<table>
<thead>
<tr>
<th>Name</th>
<th>Provider</th>
<th>Address</th>
<th>Fax Number</th>
<th>E-mail/Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PS</td>
<td>Staten Serum Institute</td>
<td>5, Artillerivej</td>
<td>45-3268-3167</td>
<td>Serum@ssi.dk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK-2300 Copenhagen S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsular polysaccharide</td>
<td>ATCC</td>
<td>10801 University Blvd.</td>
<td>1-703-365-2750</td>
<td>http://www.atcc.org/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manassas VA 20110-2209</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-SF (standard)</td>
<td>Dr. Carl Frasch</td>
<td>CBER, FDA, Bethesda, Maryland</td>
<td>1-301-402-2776</td>
<td>Frasch@cber.fda.gov</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA Calculation program</td>
<td>Mr. Brian Plikaytis</td>
<td>Centers for Disease Control and Prevention</td>
<td>1-404-639-2780</td>
<td>http://www.cdc.gov/ncidod/dbmd/bimb/elisa.htm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atlanta, GA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S.A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Values assigned to 89 – SF (reference serum)

Pneumococcal Antibody Concentrations of Pneumococcal reference serum, lot 89SF

<table>
<thead>
<tr>
<th>Type #</th>
<th>Total antibody (mg/l)</th>
<th>IgG (mg/l)</th>
<th>IgM (mg/l)</th>
<th>IgA (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.7</td>
<td>6.3</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>7.9</td>
<td>2.4</td>
<td>0.6</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>7.0</td>
<td>4.1</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>10.0</td>
<td>5.8</td>
<td>4.2</td>
<td>1.2</td>
</tr>
<tr>
<td>6B</td>
<td>24.3</td>
<td>16.9</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>7F</td>
<td>7.3</td>
<td>5.2</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>9V</td>
<td>10.2</td>
<td>6.9</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>27.8</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>18C</td>
<td>6.7</td>
<td>4.5</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>19F</td>
<td>18.8</td>
<td>13.0</td>
<td>3.2</td>
<td>2.0 *</td>
</tr>
<tr>
<td>23F</td>
<td>11.9</td>
<td>8.1</td>
<td>0.7</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* The IgG values are now officially assigned, except for 19F (actual may be lower).

Serotypes 1 and 5 are included in a typical 9 valent vaccine and serotypes 3 and 7F are included in a typical 11 valent vaccine.

Values assigned to 89-S for additional serotypes.

<table>
<thead>
<tr>
<th>Type #</th>
<th>Total lg (mg/l)</th>
<th>IgG(mg/l)</th>
<th>IgM(mg/l)</th>
<th>IgA(mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21.4</td>
<td>12.2</td>
<td>5.1</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>11.5</td>
<td>5.1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>9N</td>
<td>12.7</td>
<td>7.8</td>
<td>2.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>