Internet health learning to improve women’s health

Editor – I wish to congratulate S. Yunkap Kwankam on his article (1). As he rightly says, “e-Health systems can improve access to information, thus increasing awareness of what is known in the health sciences, while selective dissemination by electronic means can facilitate targeting of information on those who either request it or are most likely to use it.”

The health and status of women is a very complex and a challenging issue for developing and industrialized countries alike. Women face enormous obstacles — prejudice, ostracism, domestic violence, poverty, hunger and virtually no access to medical care and life-saving medicines.

Knowledge and understanding are preconditions for action at all levels of the health-care and other systems. Skilled attendants mean successful outcomes and education is for life. Internet has connected the world, and e-learning projects in obstetrics and gynaecology between the United States and developing countries are of mutual benefit and foster mutual respect. The United States is a vast multicultural society, and providing quality care to diverse populations requires much more than translating a foreign language. We should be willing to learn where each patient is “coming from”, taking into account how culture, customs and community pressures affect her decision-making processes.

Of all the health statistics monitored by WHO, maternal mortality shows the largest discrepancy between developed and developing countries. Every day at least 1600 women die from complications of pregnancy and childbirth: 90% of these deaths occur in the developing countries.

Internet classrooms are the most cost-effective way to provide continuing medical education to the developing countries. The Women’s Health and Education Center launched an e-learning project in association with the Department of Public Information of the United Nations on 24 October 2002 (http://www.WomensHealthSection.com). Two years later it had reached more than 100 countries and it is proving to be an excellent resource in the education of health-care providers and policy-makers who are working for Safe Motherhood. Connecting to the health-care providers and getting the message across are essential.

The syllabus of our project is designed to stress common, everyday health-care issues in women’s health. The text is divided into five sections to give a comprehensive overview of women’s health-care: violence against women, obstetrics, gynaecology, urology, and health-care policies and women’s health. A sub-section on obstetric fistula provides insight into this devastating problem in developing countries. We hope the sections will serve both as a comprehensive review and a reference to facilitate understanding of the disease process. Most of all, however, we hope that the contents will motivate future research that will further enhance the understanding of reproductive health.

Even though the main focus is on Safe Motherhood, sections on violence against women and health-care policies are included to assist the development of effective strategies for action. We believe meaningful programmes can be developed to reduce maternal mortality and morbidity in the developing countries.

Translation into different languages is definitely an important step to improve better understanding of the medical literature, and will help the health-care providers and policy-makers to express their needs and build networks. The languages chosen for our web site are the six official languages of the United Nations: Arabic, Chinese, English, French, Russian and Spanish. We believe this availability of medical scripts in cyberspace will improve people’s relationship with the new medium and their ability to tap its potential.

Education is the best gift in life both to give and to receive. Developing countries and industrialized countries can both learn a great deal from each other’s experiences with various social and health-care projects and programmes. In the United States, fascination with technology seems to be endless. The development of technology has certainly enhanced our ability to diagnose and treat patients, to the extent that we almost defy death. Developing countries have done good work in many areas with limited technology and clinical medicine.

Investing in wireless Internet technology is the way forward to tackle maternal mortality and morbidity in the developing countries. Imagine sitting at home or in an office in the United States and teaching obstetrics, gynaecology and urology to students in developing countries and learning from their perspectives too. By interacting with different cultures we will be able to understand different customs and learn to respect the diversity.

E-learning is the most cost-effective way of transmitting evidence-based medicine to developing countries. Continuing medical education is a requirement in the United States, Canada and the United Kingdom for the renewal of medical licences, and this gives an incentive to stay up to date on medical advances. Continuing medical education regulations for health-care providers have been proposed in legislation in India, and many other developing countries could follow suit.

Continuing medical education is a lifetime commitment requiring knowledge of current trends and developments in the science, technology and economics of health care, and thereby improving the quality of health care. The convenience of provider-directed independent study activities allows health-care professionals to reach the learning goals that must be incorporated into their demanding professional schedules.

Competing interests: none declared.

Rita Luthra 1

Infectious disease “elimination” commonly refers to reducing the number of cases of disease to a small and routinely manageable number. Thus, prevalence trend is a key yardstick in the CEE paradigm. When leprosy elimination campaigns were put in place in the 1990s, their primary goals were to implement enhanced surveillance activities in order to detect leprosy cases promptly and to treat them immediately with multidrug therapy. Between 1985 and 2002, global leprosy prevalence fell by about 95% (1). In May 2001, the World Health Assembly affirmed that “the overall target, set ten years ago, for the global elimination of leprosy as a public health problem has been attained” (4).

“Control” is usually the first approach to cope with the deleterious effects of intractable infectious diseases such as tuberculosis and syphilis. When the prevalence and adverse effects are curtailed, the focus normally shifts from control to elimination. For example, as the prevalence of Chagas disease continues to fall in Central America, the focus has shifted from disease control to disease elimination, through vector control activities and the screening of blood banks (5).

Smallpox is probably the only human disease so far that has reached the “eradication” end of the spectrum (no cases reported since 1979), though dracunculiasis (guinea-worm disease) — which, like leprosy, is a chronic stable disease — and poliomyelitis are also inching very close to being eradicated. For instance, there are currently less than 800 incident cases of polio worldwide, and the formidable infrastructure for polio eradication makes it more likely than ever that the disease will be eradicated during this decade (6). Interestingly, erstwhile polio researchers expressed serious doubts concerning the feasibility of poliomyelitis elimination or eradication about a century ago, when poliovirus microbiology and vaccination were less well understood (7).

It is noteworthy that diseases that have progressed steadily from the control to the eradication ends of the spectrum are invariably those whose microbiology has been well delineated and for which effective control and treatment measures to interrupt transmission are available. The microbiology of leprosy is not yet fully elucidated, and it appears unlikely that multidrug therapy alone would prevent leprosy transmission (1). Given these gaps in current knowledge concerning microbiology and therapy, it is not surprising that the elimination stage appears to be the dead end for efforts to reduce the scourge of leprosy. While it would be counterintuitive to go back to the control stage of the paradigm, given the tremendous progress made in case detection and treatment (especially since the introduction of multidrug therapy in the 1980s), it is also clear that unless we can bridge the gaps in our knowledge of leprosy microbiology and transmission mapping, leprosy elimination is unlikely to progress to leprosy eradication.

Rather than table a World Health Assembly resolution that leprosy has not been eliminated, as reportedly suggested by some evaluators of the Global Alliance for the Elimination of Leprosy (1, 8), it might be more productive to work towards overcoming our knowledge gaps with regard to leprosy microbiology and therapy. Unless extraordinary resources are provided for clinical and epidemiological research, leprosy will remain a disease that is eliminated but is far from eradicated. Such an approach might in fact stimulate interest among a new generation of researchers, and generate research funding from donors that hitherto appear reluctant to support leprosy research.

Competing interests: none declared.

Niyi Awofeso


Invest in breaking the barriers of public–private collaboration for improved tuberculosis care

Editor – Mahendradhata & Utarini rightly call for an urgent move from feasibility studies of public–private collaboration in tuberculosis (TB) control to studies that analyse success factors as well as the cost and cost-effectiveness of such initiatives (1). WHO is currently coordinating a number of operational research initiatives that focus on these issues.

In the August 2004 issue of the Bulletin, we published a study on success factors for public–private collaboration in TB control (2). That analysis was based on project evaluations of four initiatives in three countries. We

---

1 Associate Professor, School of Public Health and Community Medicine, University of New South Wales, Sydney 2052, Australia (email: niyi.awofeso@justicehealth.nsw.gov.au).
are continuously updating this analysis based on a rapidly growing body of data from more than 40 ongoing projects in 14 countries. A policy framework and tools to help implementation have been developed based on field experiences and operational research. Information about WHO’s work on private sector involvement in TB control can be found on the web site: http://www.who.int/tb/dots/ppm.

Mahendradhata & Utarini highlight the fact that public–private collaboration for improved TB control takes place in a context of constrained resources and competing interests. Our analysis suggests that government investment is indeed crucial in order to ensure technical capacity-building in the private sector, managerial capacity-building in the public sector, improved supervision and quality control of private providers, and improved surveillance. Public funding is also needed in order to secure a supply of drugs and consumables free of charge to TB patients attending private clinics. While additional investments will be required, cost-effectiveness analysis of two collaborative projects in India has demonstrated that the amounts of such investments would be comparable, on a cost per successfully treated case basis, to those required by the public sector (3). From a societal perspective, a significant added value would be a substantial reduction in the financial burden on patients and, potentially, early detection and reduction in transmission of TB.

From documented experiences, what do we already know about why partnerships work? As expected, the determinants of success are precisely the factors that help to counter some of the well-known barriers to collaboration (4). First, a genuine commitment on the part of the public sector demonstrating that it is indeed interested in working with private providers; second, justifiable additional investments — human and financial — to help build the collaboration and contribute further to TB control; third, a proper situational analysis to develop a locally appropriate task-mix for public and private providers; fourth, orientation and training of both public and private providers to prepare them to work together; and finally, a built-in monitoring and evaluation system to continue to measure the benefits and to improve upon the collaboration (2, 5).

For Mahendradhata & Utarini’s own project, if they intend to apply first what they mentioned first — the strategy of strengthening regulatory structures — then a word of caution is called for. Regulation of private providers is indeed crucial and must be dealt with. To begin with a heavy emphasis on “regulating” providers, however, could turn the project into a non-starter. Experience shows that in public–private partnership building, when to employ a strategy is as important as the strategy itself. This and similar potential stumbling blocks could be avoided if private providers are involved in the process right from the first step of planning an intervention and, more importantly, in a spirit of partnership.

Competing interests: The authors work with the Public–Private Mix for DOTS Initiative in the Stop TB Department at WHO.

Knut Lönnroth & Mukund Uplekar

Can clinical algorithms deliver an accurate diagnosis of HIV infection in infancy?

Editor – The Integrated Management of Childhood Illness (IMCI) guidelines established clinical criteria to identify children with suspected HIV infection for HIV testing and specific management. In an article published in the Bulletin, based on a study conducted in South Africa, Horwood et al. report that they have fine-tuned these criteria into a clinical algorithm (1). This algorithm has been incorporated into the 2003 edition of the South African IMCI guidelines to maximize identification of HIV infected children (1, 2). Horwood et al.’s study clinically assessed 690 hospital outpatients, aged 2–59 months, in an HIV prevalence setting of 28.7%. In the absence of screening questions, the clinical algorithm was applied and yielded a sensitivity of 70%, specificity of 80% and a positive predictive value (PPV) of 59%. The validity of the algorithm for the 226 infants (2–11 months), 38% of whom were infected, did not differ from that for the other age categories (1). Validation of the clinical algorithm in different settings was invited (1).

Vertically exposed infants in prevention-of-mother-to-child transmission (PMTCT) programmes in low-resource settings rely on clinical assessments for HIV diagnosis since infants are first tested at 12 months of age using an HIV enzyme-linked immunosorbent assay (ELISA). The HIV prevalence among infants will vary according to the availability of PMTCT services and the mode of infant feeding. We carried out a study to establish an affordable and accurate diagnostic protocol for HIV using a cohort of 301 infants attending a PMTCT clinic at Coronation Women and Children’s Hospital, a secondary-level hospital in Johannesburg, South Africa (3). At 12 months of age, the infant’s true HIV-infection status was determined using polymerase chain reaction (PCR) testing according to the Centers for Disease Control and Prevention (CDC) guidelines, in conjunction with clinical assessments (4). In a predominantly exclusively formula-fed population, 26 patients (8.7%) were HIV positive (3). At the visits at 6 weeks and at 3, 7 and 12 months of age, 18 different doctors experienced in local paediatric HIV care and blinded to the HIV test results prospectively diagnosed the infant’s HIV infection status based on clinical findings. Two-thirds of all clinical examinations were performed by paediatricians. The clinical findings were recorded on a structured data collection tool.
that concentrated on clinical features derived from CDC clinical guidelines (i.e., recurrent infections, weight gain, candidiasis, lymphadenopathy, hepatosplenomegaly) (4). The number of HIV-infected infants who were correctly clinically diagnosed in our study increased with age; 56% at 6 weeks of age to 93% at 12 months of age.

The performance of the IMCI algorithm in our study population was retrospectively assessed by applying our source data to the South African 2003 IMCI clinical algorithm which consists of asking, looking and feeling for eight features of symptomatic HIV without the screening questions (5).

The disturbing finding was that the algorithm would have detected only 17% of HIV-infected infants at 6 weeks of age. Even though the detection rate improved to 50% for infants aged 12 months, this was still much lower than the rate of 70% reported by Horwood et al. (1). Retrospective application of the IMCI algorithm to clinical data collected by highly skilled personnel therefore yielded particularly poor sensitivity in detecting HIV infection throughout infancy.

A long-term prospective study in Rwanda has documented that HIV-infected children in Africa develop early morbidity and mortality (6). In our cohort, all 15 surviving HIV-infected infants available for assessment at 12 months of age were symptomatic and required specific medical interventions, e.g. antifungal treatment for oral thrush. Despite this clinical scenario, eight (53%) of the 12-month-olds would not have been detected by the IMCI algorithm. The high early mortality rate of HIV-infected infants is a further concern, particularly with the increasing availability of antiretroviral therapy. Of the 10 HIV-infected infants who died before their first birthday, 5 (50%) would have remained undiagnosed by the IMCI algorithm. The clinical assessments in our study missed 2 (20%) of these children. Like Horwood et al., we noted that the higher sensitivity of the doctors’ clinical assessments was often attributable to the detection of hepatosplenomegaly, which is not included in the IMCI algorithm (1).

Clinical diagnosis of HIV infection in infancy remains a challenge. Additional prospective assessments of the IMCI clinical algorithm in vertically exposed infants in PMTCT settings with different HIV prevalence are required. It is a cause for concern that in our PMTCT setting the IMCI algorithm used by highly skilled clinical practitioners only identified approximately half of the infants experiencing HIV-related mortality and morbidity at 12 months of age. In an era of expanding antiretroviral scale-up programmes, clinical assessment remains an unacceptably insensitive diagnostic tool for ensuring that HIV-infected infants access care. A more pragmatic approach may be to invest in assessment of affordable, simple methods of testing for early diagnosis of infants rather than relying on clinical skills alone.

Competing interests: none declared.

Stephanie A. Jones1, Gayle G. Sherman,2 & Ashraf H. Coovadia3

1 Medical Officer, Wits Paediatric HIV Working Group, PO Box 2086, Fourways, Johannesburg 2055, South Africa (email: stephanie.jones@hivsa.com). Correspondence should be sent to this author.

2 Associate Professor, Department of Molecular Medicine & Haematology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa.

3 Paediatrician, Coronation Hospital, Wits Paediatric HIV Working Group, Johannesburg, South Africa.

References


