Objective To study the effectiveness of planning and management interventions for ensuring children in India are immunized at the appropriate age.

Methods The study involved children aged less than 18 months recruited from Haryana, India, in 2005–2006: 4336 in a pre-intervention cohort and 5213 in a post-intervention cohort. In addition, immunization of 814 hospitalized children from outside the study area was also assessed. Operational barriers to age-appropriate immunization with diphtheria, pertussis and tetanus (DPT) vaccine were investigated by monitoring vaccination coverage, observing immunization sessions and interviewing parents and health-care providers. An intervention package was developed, with community volunteers playing a pivotal role. Its effectiveness was assessed by monitoring the ages at which the three DPT doses were administered.

Findings The main reasons for delayed immunization were staff shortages, non-adherence to plans and vaccine being out of stock. In the post-intervention cohort, 70% received a third DPT dose before the age of 6 months, significantly more than in the pre-intervention cohort (62%; P = 0.002). In addition, the mean age at which the first, second and third DPT doses were administered decreased by 17, 21 and 34 days, respectively, in the study area over a period of 18 months (P for trend < 0.0001). No change was observed in hospitalized children from outside the study area.

Conclusion An intervention package involving community volunteers significantly improved age-appropriate DPT immunization in India. The Indian Government’s intention to recruit village-based volunteers as part of a health sector reform aimed at decentralizing administration could help increase timely immunization.

Introduction

Every year communicable diseases kill more than 14 million people throughout the world, predominantly in developing countries. At present, measles, pertussis and tetanus, diseases that affect children, are responsible for the majority of disability-adjusted life years lost. Measles accounts for 30 million cases and 888 000 deaths worldwide annually, 85% of them in south-east Asia and Africa. Outbreaks of diphtheria also occur, especially in countries with low vaccination coverage.

Despite the availability of safe and effective vaccines, the coverage of immunization against the six main vaccine-preventable diseases is still variable across different regions of India. Although increasing immunization coverage is essential, it is also important that vaccines are administered when the child is at the appropriate age, as indicated in the national immunization schedule, because this will provide protection from disease when the risk is highest. Numerous studies have investigated immunization coverage and have recommended strategies for increasing it. However, few intervention studies have focused on administering vaccines at the appropriate age. The present study was conducted primarily to identify interventions that can increase timely vaccination by overcoming operational barriers to providing age-appropriate immunization.
at 6, 10 and 14 weeks, respectively, and measles vaccine at 9 months of age. In addition, the Khizrabad block was chosen from among four blocks in this district because its geographic location facilitated patients’ access to the study hospitals.

In the primary health-care system in India, community health centres provide specialist services for population groups of 100 000, while primary health centres provide health-care services for disease prevention and cure and health-care promotion to population groups of 30 000. Generally, individual primary health centres are associated with six subcentres, each of which covers a population group of 5000. In these subcentres, basic medical care for minor illnesses and disease prevention and health-care promotion activities are provided by male and female multipurpose health workers.

In the study block, a network of one community health centre, three primary health centres and 25 subcentres provided health care to a population of 170 000 in 204 villages. In addition to health service staff, 155 child care workers were also present in villages to promote nutritional and health interventions. These workers (roughly one for each 1000 population) belong to child-care and mother-care centres, or *anganwadi*, set up under the Indian Government’s Integrated Child Development Services Scheme.

The planning, implementation and monitoring of immunization services in Yamunanagar district is decentralized to the primary health centres. Vaccines are stored for up to 3 months at district headquarters, from where supplies are sent to the community health centre and to primary health centres that have facilities for storing vaccine for up to 1 month. Each subcentre holds an outreach session once a week, traditionally on a Wednesday, at the *anganwadi* in the villages where vaccine storage facilities are not available.

Pre-programme performance

To determine whether all eligible children at a particular subcentre had been registered at birth and thereby enrolled for vaccination, all children registered by the female multipurpose health worker as having been born between April 2004 and March 2005 were compared with the children registered by a trained community volunteer for the corresponding period. This was done in 13 subcentres (52%), where the same female multipurpose health worker had been present for at least two consecutive years. The details of the children registered by the community volunteers were validated in 10% of randomly selected households by one of five full-time field supervisors who had been recruited at primary health centres to supervise these volunteers.

The study investigators observed one village outreach session for each of the 25 subcentres using a standard World Health Organization supervisory checklist to identify problems in immunization service planning, implementation or monitoring.

The mothers of children who had not attended the immunization session 1 month after the first DPT vaccine dose were interviewed to identify the reason for dropping out. All female multipurpose health workers in the community development block were interviewed to determine the number of sessions held during the preceding month as a proportion of the planned number of sessions, and the reasons for not holding a session as planned were recorded. The vaccine cold chain and logistics system were also reviewed.

Study intervention

Observations made during the assessment of the pre-intervention vaccination programme were discussed in separate meetings with district health authorities, medical officers from the community health centre and primary health centres and female multipurpose health workers. Subsequently, a strategy for improving the immunization programme was worked out jointly.

Data collection

Community volunteers enrolled all children under 18 months of age in the study, maintained a log of pregnant women and prospectively enrolled all children born to permanent residents during the study period. The past immunization status of children under 18 months of age at the time of initial enrolment was recorded. Subsequently, community volunteers recorded the date of immunization of children vaccinated in the immunization sessions and records were submitted each week. Each child was followed up until the age of 18 months. When the child reached 24 months, a follow-up form was completed detailing the dates when vaccines were administered after enrolment, as recalled by the mother. These follow-up forms were used to check the accuracy of data collected by community volunteers. Any disagreement was checked and a correct record was agreed upon by the field supervisors. In addition, immunization data on children under 2 years of age who were admitted to 15 paediatric private and government hospitals from the entire district were collected by medical officers as a part of pneumonia and meningitis surveillance.

Data analysis

Enrolment and follow-up data were entered into Epi Info version 3.0 statistical software (Centers for Disease Control and Prevention, Atlanta, GE, United States of America) for analysis. The overall effectiveness of the interventions was assessed by comparing the immunization coverage of children who had started or completed their immunization schedule at study enrolment (i.e. the pre-intervention cohort), reflecting the past performance of the immunization programme, with coverage of newborn children who had not been vaccinated before study enrolment (i.e. the post-intervention cohort), reflecting the impact of the interventions. The mean age at which different DPT doses were administered and the mean time difference between DPT doses in the two cohorts were also compared.

A similar analysis was performed using data from hospitalized children from all community development blocks except the study block. These children were divided into two groups: those immunized before July 2005 (the date at which the interventions were introduced in the study area) and those immunized after. The significance of the difference in categorical and continuous variables between the two groups was assessed using the χ^2 test and *t* test, respectively. The statistical significance for the trend was computed using the χ^2 test for trend and the ANOVA test for categorical and continuous variables, respectively.
six quarterly immunization cohorts covering the period from July 2005 to December 2006. An analysis of variance was used to determine whether there were any significant trends over the six quarters.

Results

The pre-intervention cohort comprised 4336 children aged less than 18 months who at the time of enrolment in the study had started or completed their immunization schedule; the post-intervention cohort comprised 5213 children who were registered prospectively at birth during the study. The majority (99.3%) of mothers consented to participation. The first, second and third DPT doses were administered during the study to 4810, 4775 and 4730 children, respectively. In addition, 814 children were admitted to the study hospitals from other blocks in Yamunanagar district. According to their parents' reports, first, second and third DPT doses were administered to 477 (58.6%), 377 (46.3%) and 294 (36.1%) children, respectively.

Although nearly 92% of the children in the pre-intervention cohort had received a third DPT dose by the age of 12 months, only 19% had received it by the age of 4 months, the age by which they should have received it according to the Indian national immunization schedule.

Service delivery

The performance of the pre-intervention immunization programme was analysed to identify operational barriers that needed to be overcome to improve age-appropriate immunization coverage. It was found that female multipurpose health workers failed to register 7.5% of births on average. The percentage of missed births was less in villages with an *anganwadi* (0.5%) than in those without (17.2%). The accuracy of birth registration in villages was inversely related to their distance from a subcentre: the proportion of missed births was 0.02% in subcentre villages or villages within 2 km of a subcentre village, 9.5% in villages 2–5 km from a subcentre village and 8.2% in villages more than 5 km from a subcentre village.

A review of vaccine logistics revealed that ice-lined refrigerators and deep freezers were not functioning in two out of the three primary health centres. Moreover, only 1 months' supply of vaccine could be stocked at the district store because storage space was inadequate. Overall, ice-lined refrigerators and deep freezers in the district could only store 80% of the 3 months' stock. In 2 months of the preceding year (2004–2005), DPT vaccine was out of stock at district level.

Updated and comprehensive microplans were not available in primary health centres. Sixteen outreach sessions (13.9%) planned for the month preceding the performance analysis were not held. The main reasons were that a monthly staff meeting was scheduled at the primary health centre on an immunization day (50%); the female multipurpose health worker's post was vacant (25%); the female multipurpose health worker decided to miss the session (12.5%), and the female multipurpose health worker was either on leave or away on training and there was no replacement (12.5%). Of the 99 sessions held, 23 (23.2%) did not take place on the planned day. In total, 527 children dropped out 1 month after the first DPT dose. The reasons given included: “child not at home on the day of immunization” (47.3%), “child not vaccinated due to minor illness” (27.3%), “mother busy and nobody to bring the child to the session” (7.0%) and “the session was not held on that day” (4.6%). In the remaining 13.8% of cases, either the vaccine was not available or the mother did not know that the session was taking place on that day.

Study intervention

Analysis of the immunization programme performance led to the development of the intervention package detailed in Table 1, which was designed to address the operational barriers identified above. The package was implemented by district health authorities.

The presence of community volunteers who would act as community mobilizers was regarded as pivotal to the overall strategy and 25 community volunteers were recruited for the subcentres. The volunteers were educated to at least tenth grade (15 years of age) and were given an honorarium of 1000 Indian rupees (US$ 25) per month for part-time work. In addition, female multipurpose health workers were recruited to fill vacant positions at the subcentres. Part-time vaccinators were also hired to supplement immunization activity at any subcentre where the female multipurpose health worker was absent on a vaccination day. Comprehensive microplanning was carried out at primary healthcentre level to define the date, venue, vaccinator, number of clients, vaccine requirements and vaccine delivery mechanism for each outreach session. Continuing education sessions were held for doctors, health workers and *anganwadi workers*.

Table 1. Details and timing of the interventions planned for increasing age-appropriate immunization coverage, India, 2005–2006

<table>
<thead>
<tr>
<th>Timing</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2005</td>
<td>Recruitment and training of community volunteers and field supervisors</td>
</tr>
<tr>
<td>August–October 2005</td>
<td>Providing training and continuing education for medical officers at primary health centres, multipurpose health workers and anganwadi workers</td>
</tr>
<tr>
<td>September–October 2005</td>
<td>Analysing the performance of the pre-intervention immunization programme</td>
</tr>
<tr>
<td>November 2005</td>
<td>Presenting the analysis findings to district health authorities, and primary health centre and subcentre staff</td>
</tr>
<tr>
<td>November 2005–December 2006</td>
<td>Drawing up an action plan using a participatory planning approach</td>
</tr>
<tr>
<td>December 2005</td>
<td>Recruitment of additional female multipurpose health workers and vaccinators by district health authorities to fill vacant positions</td>
</tr>
</tbody>
</table>

* Village child-care and mother-care centre in India.
Table 2. Age at DPT vaccination and time between DPT doses in the six quarterly immunization cohorts monitored after the introduction of the study interventions, India, 2005–2006

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of children vaccinated</th>
<th>Mean (SD) age, in days, at vaccination</th>
<th>Mean (SD) time, in days, between DPT doses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPT1</td>
<td>DPT2</td>
<td>DPT3</td>
</tr>
<tr>
<td>July–September 2005</td>
<td>919</td>
<td>754</td>
<td>766</td>
</tr>
<tr>
<td>Oct.–Dec. 2005</td>
<td>1115</td>
<td>1107</td>
<td>1035</td>
</tr>
<tr>
<td>Jan.–Mar. 2006</td>
<td>978</td>
<td>1096</td>
<td>1174</td>
</tr>
<tr>
<td>Apr.–June 2006</td>
<td>761</td>
<td>789</td>
<td>813</td>
</tr>
<tr>
<td>July–Sept. 2006</td>
<td>822</td>
<td>822</td>
<td>888</td>
</tr>
<tr>
<td>Oct.–Dec. 2006</td>
<td>1035</td>
<td>979</td>
<td>855</td>
</tr>
</tbody>
</table>

* P for trend < 0.0001 (ANOVA).

Fig. 1. Children who received DPT1 within 60 days of birth and who received DPT2 and DPT3 within 35 days of the preceding dose, in six quarterly immunization cohorts monitored after study interventions, India, 2005–2006

Discussion

Previously, the immunization programme in the study area was being monitored by determining the proportion of children who were fully immunized at 1 year of age. Periodic surveys have also used this crude indicator to evaluate the performance of routine immunization programmes.18–20 This emphasis on 1-year-old children was evident in the figures on vaccination coverage before the study intervention: 92% of children aged 12 months had received the third DPT dose compared with only 19% of children aged 4 months. Since immunization is most beneficial when received at the recommended age, age-appropriate coverage should be the benchmark for assessing immunization programme performance.

Major operational lacunae in immunization programmes are related to programme planning and management. The findings of this study demonstrate that better microplanning can significantly improve programme performance. In particular, data provided by a management information system were found to be helpful for evaluating performance and finding solutions at monthly review meetings.
Implementation of the intervention programme was impeded by a higher-than-expected workload. In the study area, the average subcentre catered to a population of 6800, considerably above the national norm of 5000, and 12 subcentres (48%) catered to more than 8000. Moreover, there was a shortage of female multipurpose health workers. Similar observations were made in another local study. In our case, female multipurpose health workers, additional vaccinators and part-time community volunteers were recruited under the Reproductive and Child Health-II programme. In addition, the infrastructure for vaccine storage needs to be strengthened. This will become even more important when the Indian Government introduces newer vaccines, such as Hib and vaccine against hepatitis B.

One reason for the discrepancy between reported and actual routine immunization coverage often found in studies is underregistration of births. The completeness of birth registration can be improved by extending the Integrated Child Development Services programme to all areas of India and by better coordination with anganwadi workers. In the present study, birth registration by female multipurpose health workers was almost 100% in villages with an anganwadi.

The majority of previous studies of immunization performance have focused on overall coverage. We could not find any published research into age-appropriate immunization apart from one document in the grey literature. However, many authors have emphasized the importance of timely immunization for better protection against pertussis, measles and Hib.

Other studies have noted that many children do not return for vaccination after the first dose of a multidose vaccine. One study from Delhi found a dropout rate similar to ours between the first and third DPT dose. The main reason given was a lack of information about the vaccination session. Dealing with this problem requires a change in focus from providing “universal coverage” to providing “universal timely coverage”. This new focus should be communicated to clients and highlighted in continuing education for health-care workers.

The present study identified operational barriers to providing immunization at an appropriate age in a developing country. However, it also showed that age-appropriate immunization coverage can be significantly increased (Table 2) by supervising workers in the community and by improving programme planning and monitoring.

Double-blind, randomized, controlled trials of programme intervention activities are difficult to carry out. Comparable reference populations are hard to find and expenditure on data collection alone is difficult to justify. Hence, this study used hospitalized children from outside the study area as a reference population. It is possible that the parents of these children were more concerned about health than other parents. Nevertheless, the ages at which the DPT vaccine doses were administered to hospitalized children did not change during the study period, whereas the ages at which they were administered to children in the study area decreased. There were no sociodemographic or health infrastructure differences between these two groups. Moreover, selection bias was unlikely as only 0.7% of parents refused to participate.

Although the mean age at which the second and third DPT doses were administered in the post-intervention cohort decreased by several weeks (21 and 34 days, respectively) over the six study quarters. In the study area, there were cultural reasons for the delay in the first dose. A pregnant woman generally goes to her parents’ house to deliver her first baby and returns home when the baby is about 2 months old. Health workers usually administer vaccine only to the resident population. A change in state policy is required so that the baby can be vaccinated where it is delivered and mothers should be encouraged to ensure this happens.

Another barrier to providing age-appropriate immunization is that outreach sessions were held only once a month in each village. If a session was missed, the age at which the first and subsequent dose was given was increased by 1 month. Consequently, in this study, the intervention package was completely implemented by only the third quarter (Table 1) and the full impact of the intervention was seen in only the sixth quarter.

This study was conducted in an area that already had a high rate of immunization coverage in children 12 months of age. The findings may not be replicable in areas with low immunization rates. Nevertheless, the interventions implemented here may be helpful. Indeed, the World Health Organization and United Nations Children’s Fund Global Immunization and Vision Strategy recommends similar interventions in both low- and high-income settings.

This study demonstrates that decentralization of planning and management can improve immunization programme performance. The role played by community volunteers is particularly relevant given that village-based volunteers, called accredited social health activists, are being introduced in India under the National Rural Health Mission as part of a health sector reform aimed at decentralizing and devolving administrative and financial power. Moreover, there is increasing interest worldwide in the impact of community-based health workers on child survival, particularly where there are few human resources. Community-based workers are cost-effective and can reduce inequity by targeting the poor.

Acknowledgements
We are grateful to Haryana Health Services, especially PK Jain, Vijay Atreja and Shivinder Singh for implementing the intervention package. We acknowledge assistance of Amandeep Kapoor, Dinesh Garg and Chandan Mago for data collection and supervision of community volunteers.

Funding: Funding was provided by the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America, and the Indian Council of Medical Research, New Delhi, India.

Competing interests: None declared.
Résumé

Efficacité des interventions de planification et de gestion dans les zones rurales de l’Inde pour améliorer l’âge d’administration des vaccins

Objectif Étudier l’efficacité des interventions de planification et de gestion visant à garantir la vaccination des enfants à un âge approprié en Inde.

Méthodes L’étude a porté sur des enfants de moins de 18 mois, recrutés dans l’Haryana en Inde, sur la période 2005-2006 : 4336 composant une cohorte pré-intervention et 5213 constituant une cohorte post-intervention. En outre, on a évalué la vaccination de 814 enfants hospitalisés, mais n’habitant pas la zone étudiée. On a étudié les obstacles opérationnels à l’administration à un âge approprié du vaccin antidiphtheritique-anticoqueluché-antitétanique (DTP) par une surveillance de la couverture vaccinale, une observation des sessions de vaccination et un entretien avec les parents et les prestataires de soins. On a mis au point un module d’intervention dans lequel des volontaires appartenant à la communauté jouaient un rôle central. L’efficacité de ce module a été évaluée en suivant les âges auxquels les doses de DPT étaient administrées.

Résultats Les retards dans la vaccination étaient principalement imputables à des pénuries de personnel, au non-respect des plans et à des ruptures de stocks de vaccins. Parmi la cohorte post-intervention, 70 % des enfants avaient reçu une troisième dose de DTP avant l’âge de 6 mois, soit significativement plus que dans la cohorte pré-intervention (62 %, P = 0,002). De plus, l’âge moyen d’administration de la première, de la deuxième et de la troisième doses de DTP avait diminué respectivement de 17, 21 et 34 jours dans la zone étudiée, sur une période de 18 mois (probabilité de la tendance < 0,0001). Aucun changement n’a été observé chez les enfants hospitalisés ne provenant pas de la zone étudiée.

Conclusion Un module d’intervention faisant appel à des volontaires communautaires a permis en Inde de rapprocher significativement l’âge d’administration du vaccin DPT de l’âge approprié. L’intention du Gouvernement indien de recruter des volontaires dans les villages dans le cadre de la réforme de décentralisation de l’administration pourrait favoriser la vaccination à un âge approprié.
References

Aيتم تنفيذ مراقبة التعبيرات المتحفظة في القطاع الصحي في الهند. ينصح ب sacrificiating ردود فعل اعتماد قادة الصراع في المجتمع والبيئة إلى تحقيق الأهداف المرجوة من أفضل ما يمكن، ومن أجل تحقيق الهدف، يجب أن يتدخل الثالث من فريق الوزير في مجال تعليق بلقاح (الخناق والسعال الديكي والكزاز) في الهند. في السنوات الأخيرة، كانت هناك تقلبات في معدلات التعبيرات المتحفظة لنكسوس في الهند. وقد تكون هذه التقلبات متعلقة بالممارسات السياحية والبيئية. إن تحسين معدلات التعبيرات المتحفظة في الهند، وفي الخطى الافتراضي، يمكن أن يحسن من الصحة العامة للإنسانية في الهند. إن الاعتراف بالتأكد من تطوير نشاطات خاصة في مجال تعليق بلقاح (الخناق والسعال الديكي والكزاز) يمكن أن يساهم في تحقيق الأهداف المرجوة من أفضل ما يمكن، وفي ظل اتفاق واضح روائي من أولئك الذين يدخلون في المجال، يمكن أن يساهم في تحقيق الأهداف المرجوة من أفضل ما يمكن، وفي ظل اجتماع منتظم رياضي في المجتمع.