Reliability of anthropometric measurements in the WHO Multicentre Growth Reference Study

WHO MULTICENTRE GROWTH REFERENCE STUDY GROUP¹,²

¹Department of Nutrition, World Health Organization, Geneva, Switzerland, and ²Members of the WHO Multicentre Growth Reference Study Group (listed at the end of the first paper in this supplement)

Abstract

Aim: To describe how reliability assessment data in the WHO Multicentre Growth Reference Study (MGRS) were collected and analysed, and to present the results thereof. Methods: There were two sources of anthropometric data (length, head and arm circumferences, triceps and subscapular skinfolds, and height) for these analyses. Data for constructing the WHO Child Growth Standards, collected in duplicate by observer pairs, were used to calculate inter-observer technical error of measurement (TEM) and the coefficient of reliability. The second source was the anthropometry standardization sessions conducted throughout the data collection period with the aim of identifying and correcting measurement problems. An anthropometry expert visited each site annually to participate in standardization sessions and provide remedial training as required. Inter- and intra-observer TEM, and average bias relative to the expert, were calculated for the standardization data. Results: TEM estimates for teams compared well with the anthropometry expert. Overall, average bias was within acceptable limits of deviation from the expert, with head circumference having both lowest bias and lowest TEM. Teams tended to underestimate length, height and arm circumference, and to overestimate skinfold measurements. This was likely due to difficulties associated with keeping children fully stretched out and still for length/height measurements and in manipulating soft tissues for the other measurements. Intra- and inter-observer TEMs were comparable, and newborns, infants and older children were measured with equal reliability. The coefficient of reliability was above 95% for all measurements except skinfolds whose R coefficient was 75–93%.

Conclusion: Reliability of the MGRS teams compared well with the study’s anthropometry expert and published reliability statistics.

Key Words: Anthropometry, bias, measurement error, measurement reliability, precision

Introduction

Measurement reliability is a direct indicator of data quality. Reducing errors in measurement will increase the probability that any relationships among variables in a study are uncovered. Adherence to recommended procedures will reduce bias in measurement and increase the certainty of inferences about similarities/differences with respect to other populations. For these and other reasons, it is generally cost effective to reduce measurement error to recommended minima. Standardized data collection methodology, rigorous training and monitoring of data collection personnel, frequent and effective equipment calibration and maintenance, and periodic assessment of anthropometric measurement reliability were among the quality assurance measures included in the World Health Organization’s (WHO) Multicentre Growth Reference Study (MGRS) of infants and children [1]. Anthropometry standardization sessions were conducted with the goal of monitoring anthropometric measurement techniques, identifying sources of error or bias and retraining teams or individuals as necessary.

Only a few growth studies and surveys [2–11] provide detailed descriptions of anthropometric standardization and measurement reliability assessments. The standardization of measurement techniques in anthropometry by Lohman and colleagues in the late 1980s has been a useful guide and reference for the collection of reliable anthropometric measurements [12]. However, there is a lack of uniformity in the methods employed in collecting reliability data and in reporting the statistics and terminology used in reliability assessment [6,7,9,11,13–16].

The objectives of this article are to describe the approach used in the MGRS to collect and analyse
reliability information, to present key results about measurement reliability, and to assess the implications of these results for the MGRS. The analyses are based on data collected during anthropometric standardization sessions held regularly over the duration of data collection in each of the six MGRS sites and on duplicate measurements taken during routine data collection.

Methods

Data collection teams and procedures

Data in the MGRS were collected between 1997 and 2003 in Brazil, Ghana, India, Norway, Oman and the USA [17]. Data collection teams were trained in each site during the study’s preparatory phase, at which time measurement techniques were standardized against one of two MGRS lead anthropometrists. During the study, one of these experts visited each site annually to participate in standardization sessions [1]. For the longitudinal component of the study, screening teams measured newborns within 24 h of delivery, and follow-up teams conducted home visits until the children reached 24 mo of age. The follow-up teams also carried out measurements in the cross-sectional component of the MGRS involving children aged 18–71 mo.

The anthropometric variables measured were weight and head circumference at all ages, recumbent length in the longitudinal study, height in the cross-sectional study, and arm circumference, triceps and subscapular skinfolds in all children aged ≥3 mo. The methodology and equipment used in taking these measurements have been described in detail elsewhere [1]. Briefly, anthropometric data were collected by observers working in pairs. Each observer independently measured and recorded a complete set of measurements, and the two then compared their readings. If any pair of readings exceeded the maximum allowable difference for a given variable (weight 100 g; circumferences 5 mm; length/height 7 mm; skinfolds 2 mm), the observers again independently measured and recorded a second and, if necessary, a third set of readings for the affected variable(s). The availability of duplicate measurements by two observers allows for the estimation of inter-observer reliability statistics under routine data collection conditions. Since weight was measured with near-perfect precision on digital scales, it was not included in the standardization sessions.

During the standardization sessions, screening teams measured newborns while follow-up teams measured older infants. The children involved in the standardization sessions were not part of the MGRS cohort. During these sessions, the observers measured independently but did not compare values with other observers, as was done during routine data collection. No inter-site statistical comparisons are presented because no common set of children was measured by observers from different sites. At each site, the screening teams’ standardization sessions stopped when the enrolment of newborns ended (duration 12–14 mo), while the follow-up team sessions continued for the entire 3–3½ y of MGRS data collection. Because the USA site did not have access to newborns for the screening team’s standardization exercises, the team measured older infants.

Data management

The MGRS data management protocol, which has been described in detail elsewhere [18], highlights the specific measures applied in detecting errors and cleaning the MGRS anthropometry data. For the standardization sessions, study supervisors in each site were responsible for checking the data collected for any recording errors prior to on-site analysis of measurement error. The data were then sent to the study coordinating centre in Geneva, Switzerland, for further quality control checks and monitoring of the performance of observers and site teams. These data were merged within site to create the standardization master files used in the present analyses. Recorded values that varied by more than 4 standard deviations from a given child’s mean (estimated from all values recorded by the observers in the session) were considered errors of transcription or the result of causes unrelated to measurement reliability and were reset as missing [8]. For the purpose of this report, data were analysed only from observers who participated in two or more standardization sessions.

Statistical analysis

Reliability statistics reported for the standardization sessions were intra-observer technical error of measurement (TEM), inter-observer TEM and average bias. Inter-observer TEM achieved in routine data collection was also estimated and used to calculate the coefficient of reliability, R, for six anthropometric variables (excluding weight) measured in the MGRS. The key statistics are defined as follows.

Technical error of measurement (TEM) is a measure of error variability that carries the same measurement units as the variable measured, e.g. centimetres of head circumference. Its interpretation is that differences between replicate measurements will be within ± the value of TEM two-thirds of the time [14]. Similarly, 95% of the differences between replicate measurements are expected to be within ±2 × TEM [9], which is referred to as the 95% precision margin elsewhere in this paper. Intra-observer TEM is estimated from differences between replicate
measurements taken by one observer, while inter-
observer TEM is estimated from single measure-
ments taken by two or more observers. The formulae (1)–
(4) for these statistics are given below.

Intra-observer TEM for one observer is calculated by:
\[\sqrt{\frac{\sum_{i=1}^{N} (M_{i1} - M_{i2})^2}{2*N}}, \]
(1)

where \(M_{i1} \) and \(M_{i2} \) are the duplicate measurements
recorded by a given observer for the \(i \)th child, and \(N \) is
the number of children measured. It can be general-
ized to \(k \) observers as in (2):
\[\sqrt{\frac{\sum_{j=1}^{K} \sum_{i=1}^{N_j} (M_{ij1} - M_{ij2})^2}{2*K*N_j}}, \]
(2)

where \(M_{ij1} \) and \(M_{ij2} \) are the duplicate readings
recorded by observer \(j \) for the \(i \)th child, \(N_j \) is the
number of children measured by observer \(j \), and \(K \) is
the number of observers taking the measurements.

The inter-observer TEM in standardization data is
caclculated by:
\[\left\{ \frac{1}{N} \sum_{j=1}^{K} K_j - 1 \left[\sum_{j=1}^{K} Y^2_j - \left(\frac{\sum_{j=1}^{K} K_j Y^2_j}{K_j} \right) \right] \right\}^{1/2}, \]
(3)

where \(Y_j \) is one of the duplicate measurements taken
by observer \(j \) for child \(i \) (for simplicity in program-
ming the present analyses, the first recorded measure-
ment was selected), \(K_j \) is the number of observers that
measured child \(i \) (this takes care of missing values),
and \(N \) is the number of children involved. In the
routine MGRS data (calculated separately for screen-
ing, longitudinal follow-up and cross-sectional survey
data), only two observers took measurements, so
formula (3) simplifies to:
\[\left\{ \frac{1}{N} \sum_{j=1}^{K} \sum_{j=1}^{2} Y^2_j - \left(\frac{\sum_{j=1}^{2} Y^2_j}{2} \right) \right\}^{1/2}, \]
(4)

where \(N \) is the total number of children measured in
respective master files for each anthropometric vari-
able.

Average bias is estimated as the average difference
between measurements taken by an expert and those
taken by an observer or observers of the same
subjects. A negative-signed average bias estimate
indicates that the test group underestimates the
measurement, while the opposite indicates overesti-
mation. It is calculated by:
\[\sum_{i=1}^{N} \left[\sum_{j=1}^{K} (M_{ij1} + M_{ij2})/(2*K) - (M_{iG1} + M_{iG2})/2 \right] \]
(5)

where \(M_{ij1}, M_{ij2} \) and \(M_{iG1}, M_{iG2} \) are the duplicate
readings recorded by observer \(j \) and the expert,
respectively, for the \(i \)th child, \(N \) is the set of children
measured by the expert, and \(K \) is the number of
observers measuring the same children.

Coefficient of reliability, \(R \), estimates the proportion
of the inter-subject variance (total measurement var-
iance) that is not due to measurement error. A
reliability coefficient \(R = 0.8 \) means that 80% of
the total variability is true variation, while the remaining
proportion (20%) is attributable to measurement
error, described by Marks and colleagues [8] as
imprecision and unreliability. For the MGRS data,
\(R \) was calculated using the formula:
\[R = 1 - \frac{(TEM(Inter))^2}{SD^2}, \]
(6)

where \(TEM(Inter) \) refers to the MGRS data TEM as
calculated in formula (4), and \(SD \) values for each
anthropometric variable are taken from the MGRS
population at specified ages. For newborns: head
circumference 1.27 cm and length 1.91 cm; and for
older children: head circumference 1.40 cm, length
2.60 cm, arm circumference 1.30 cm, triceps skinfold
1.80 mm, subscapular skinfold 1.40 mm (12 mo), and
height 4.07 cm (48 mo).

In the MGRS, intra-observer TEM could be
calculated for the standardization but not the routine
study data, while inter-observer TEM was calculated
for both data sets. Intra-observer TEM for each
team was calculated using data from all the standardiza-
tion sessions conducted in a given site. The MGRS
anthropometry experts’ measurements from all sites
were combined to calculate the “gold standard” intra-
observer TEM. The assessment of bias was restricted
to the data collected during the standardization
sessions in which an international lead anthropome-
trist participated.

Several approaches were used to judge the ade-
quacy of measurement in the MGRS, consistent with
guidelines suggested in the literature:

a. TEM values for observers were considered
adequate if they were within \(\pm 2 \) times the
expert’s TEM, i.e. the expert’s 95% precision
margin [19].

b. We assessed average bias in terms of magnitude
and whether or not site teams systematically
over- or underestimated measurements. To be
consistent with the criterion used to set the
maximum allowable differences between paired
observer measurements in the MGRS, bias was
considered to be large if it exceeded the expert’s intra-observer TEM × 2.8 [1]. This is equivalent to the limits that were considered to indicate significant deviations from likely “true” values while accommodating the unavoidable imprecision of anthropometric measurements.

c. Our main criterion for judging adequacy of measurement was the coefficient of reliability, R, because it considers the measurement variance in relation to variability in the measurement. As is the case for other related measures of agreement, e.g. kappa, values of 0.8 and greater may be taken to represent “excellent” agreement and those between 0.61 and 0.8 “substantial” agreement [20].

d. Finally, we compared the TEMs obtained by the MGRS observers to those reported in the literature.

Results

The number of standardization sessions at each site ranged from five to nine for the screening teams and 14 to 21 for the follow-up teams (Table I). There was also inter-site variation in the number of observers, which was a function of staff turnover (Ghana had the highest turnover and Oman the lowest). The MGRS anthropometry experts participated in 17 of the standardization sessions.

Screening team

Intra-observer TEMs ranged among sites from 0.16 to 0.28 cm for newborn head circumference and from 0.22 to 0.48 cm for length measurements (Table II). In all cases, observer TEMs were within twice the gold standard TEM, that is, within the 95% precision margin. While there was no evidence of bias in the teams’ head circumference measurements compared with the expert’s, all four sites for which bias was calculated tended to underestimate length, by −0.21 to −0.37 cm.

Inter-observer TEMs for both the standardization and the routine data collected by the screening teams are presented in Table III. TEMs were very similar for the two data sources. Reliability coefficients, estimated for routine data collection, were greater than 95% in all cases. Inter-observer TEMs were not substantially larger than intra-observer TEMs (Table III versus Table II).

Follow-up team

In almost all cases, the follow-up teams’ intra-observer TEMs were less than twice the gold standard TEM (Table IV). Only the Norwegian and Omani teams’ TEMs exceeded the expert’s 95% precision margin (0.24 cm) for head circumference. All bias estimates but one (Brazil, subscapular skinfold) were within the allowable limits of 2.8 times the gold standard TEM for each measurement. However, the sign of the teams’ bias estimates showed that they tended to underestimate arm circumference, length and height, and to overestimate skinfold measurements. Estimates of bias in head circumference had a fair balance of positive and negative signs, and were of the lowest overall magnitude.

The three sets of data (standardization, longitudinal and cross-sectional) represented in Table V had similar inter-observer TEMs within each variable and site. The largest disparity in this regard was for triceps skinfold in India with 0.49 mm for the standardization and 0.71 mm for the longitudinal data. The coefficient of reliability was above 0.95 for all variables except the skinfolds for which R ranged from 0.75 to 0.93. A comparison of inter- and intra-observer TEM based on the standardization data revealed very few substantial differences. The expected pattern (inter-observer TEM larger than intra-observer TEM) was systematic for two measurements (the skinfolds) in all sites, and for all measurements in two sites (Brazil and the USA).

The reliability of both newborn and older-child measurements for the MGRS teams was as good as,
or better than, intra-observer TEM estimates reported in other published studies involving children (Table VI).

Discussion

The measurement and standardization protocols of the MGRS provided a mechanism for continuous monitoring of measurement reliability. This helped to identify and resolve problems by retraining individual observers (during or immediately after each standardization session) or site teams, as happened on specific occasions in Norway and the USA. The sources of error in the MGRS were identified with the express intention of correcting them, going beyond what has been implemented in other studies that documented measurement reliability [5,9,11]. A further unique feature of the MGRS is the documentation of measurement reliability in the very data that have been used to construct the WHO Child Growth Standards [21].

The standardization sessions and routine data collection settings are difficult to compare. In the former, workers had to collect duplicate measurements on 10 to 20 children in one session and were not allowed to compare and take new measurements when differences were large. In routine data collection, fieldworkers were dealing with just one child at a time and were allowed to compare their values and re-measure if disparities exceeded preset limits. Despite these differences, measurement error was similar in both settings.

A comparison of reliability statistics between the screening and follow-up teams, and between the longitudinal and cross-sectional samples, shows that newborn and older infants were measured as reliably as were older children. Judging by the site teams’ intra-observer TEM relative to the expert’s 95%
Table IV. Follow-up team intra-observer technical error of measurement (TEM)\(^a\) and bias\(^b\) relative to MGRS anthropometry expert in the standardization sessions.

<table>
<thead>
<tr>
<th>Site</th>
<th>Expert Brazil ((n = 210, 0))</th>
<th>Ghana ((n = 234, 138))</th>
<th>India ((n = 200, 160))</th>
<th>Norway ((n = 162, 80))</th>
<th>Oman ((n = 200, 90))</th>
<th>USA ((n = 179, 69))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head circumference (cm)</td>
<td>TEM 0.13</td>
<td>0.23</td>
<td>0.19</td>
<td>0.25</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Average bias 0.01</td>
<td>-0.01</td>
<td>-0.16</td>
<td>0.04</td>
<td>-0.18</td>
<td>-0.14</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>TEM 0.23</td>
<td>0.37</td>
<td>0.33</td>
<td>0.58</td>
<td>0.43</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Average bias 0.01</td>
<td>-0.18</td>
<td>-0.15</td>
<td>-0.35</td>
<td>-0.24</td>
<td>-0.70</td>
</tr>
<tr>
<td>Arm circumference (cm)</td>
<td>TEM 0.17</td>
<td>0.20</td>
<td>0.20</td>
<td>0.26</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Average bias -0.10</td>
<td>-0.30</td>
<td>-0.24</td>
<td>-0.31</td>
<td>-0.26</td>
<td>-0.37</td>
</tr>
<tr>
<td>Triceps skinfold (mm)</td>
<td>TEM 0.42</td>
<td>0.39</td>
<td>0.46</td>
<td>0.61</td>
<td>0.49</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Average bias -0.81</td>
<td>0.21</td>
<td>0.45</td>
<td>0.11</td>
<td>0.25</td>
<td>0.11</td>
</tr>
<tr>
<td>Subscapular skinfold (mm)</td>
<td>TEM 0.38</td>
<td>0.31</td>
<td>0.32</td>
<td>0.29</td>
<td>0.35</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Average bias -1.05</td>
<td>0.28</td>
<td>0.28</td>
<td>0.11</td>
<td>0.03</td>
<td>0.79</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>TEM 0.23</td>
<td>-</td>
<td>0.26</td>
<td>0.27</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Average bias -0.30</td>
<td>0.21</td>
<td>-0.20</td>
<td>-0.20</td>
<td>-0.22</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

\(^a\) The expert’s TEM is based on the sum of measurements taken in all sites by the MGRS lead anthropometrists participating in standardization sessions. Site teams’ intra-observer TEM is calculated using data from all standardization sessions (initial and bimonthly) conducted in respective sites, average of all observers taking part in \(\geq 2\) bimonthly sessions.

\(^b\) Average bias relative to the expert is calculated from the subset of measurements taken in the standardization sessions in which the MGRS lead anthropometrist participated, and thus includes only subjects measured by both the expert and each site’s team (\(n\) per site (\(n\) height): Brazil 19 (0); Ghana 60 (40); India 40 (30); Norway 40 (30); Oman 50 (30); USA 19 (9)).

\(^c\) The second sample size figure is the number of subjects involved in height standardization. Sites normally began to take this measurement at the inception of the cross-sectional study.
Table V. Inter-observer technical error of measurement (TEM) for the follow-up teams in the standardization sessions and the routine MGRS data.

<table>
<thead>
<tr>
<th>Data source and R coefficienta</th>
<th>Brazil (n)</th>
<th>Ghana (n)</th>
<th>India (n)</th>
<th>Norway (n)</th>
<th>Oman (n)</th>
<th>USA (n)</th>
<th>All (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head circumference (cm)</td>
<td>Standardization</td>
<td>0.25</td>
<td>0.24</td>
<td>0.18</td>
<td>0.23</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.23 (5849)</td>
<td>0.23 (6069)</td>
<td>0.23 (5633)</td>
<td>0.25 (5460)</td>
<td>0.26 (5425)</td>
<td>0.23 (3834)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>0.25 (1342)</td>
<td>0.23 (1406)</td>
<td>0.21 (1455)</td>
<td>0.24 (1376)</td>
<td>0.29 (1445)</td>
<td>0.28 (1339)</td>
</tr>
<tr>
<td></td>
<td>R coefficient</td>
<td>0.97/0.97</td>
<td>0.97/0.97</td>
<td>0.97/0.97</td>
<td>0.97/0.97</td>
<td>0.97/0.97</td>
<td>0.97/0.97</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>Standardization</td>
<td>0.40</td>
<td>0.44</td>
<td>0.32</td>
<td>0.48</td>
<td>0.42</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.33 (5836)</td>
<td>0.41 (6067)</td>
<td>0.36 (5630)</td>
<td>0.37 (5470)</td>
<td>0.38 (5420)</td>
<td>0.41 (3827)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>0.23 (250)</td>
<td>0.34 (286)</td>
<td>0.27 (327)</td>
<td>0.27 (371)</td>
<td>0.35 (356)</td>
<td>0.29 (164)</td>
</tr>
<tr>
<td></td>
<td>R coefficient</td>
<td>0.98/0.99</td>
<td>0.98/0.98</td>
<td>0.98/0.99</td>
<td>0.98/0.98</td>
<td>0.98/0.99</td>
<td>0.98/0.99</td>
</tr>
<tr>
<td>Arm circumference (cm)</td>
<td>Standardization</td>
<td>0.28</td>
<td>0.27</td>
<td>0.19</td>
<td>0.29</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.26 (4545)</td>
<td>0.25 (4791)</td>
<td>0.26 (4461)</td>
<td>0.29 (4267)</td>
<td>0.23 (4550)</td>
<td>0.26 (3002)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>0.22 (1333)</td>
<td>0.20 (1406)</td>
<td>0.18 (1448)</td>
<td>0.22 (1354)</td>
<td>0.21 (1444)</td>
<td>0.23 (1339)</td>
</tr>
<tr>
<td></td>
<td>R coefficient</td>
<td>0.96/0.97</td>
<td>0.96/0.98</td>
<td>0.96/0.98</td>
<td>0.95/0.97</td>
<td>0.97/0.97</td>
<td>0.96/0.97</td>
</tr>
<tr>
<td>Triceps skinfold (mm)</td>
<td>Standardization</td>
<td>0.67</td>
<td>0.51</td>
<td>0.49</td>
<td>0.83</td>
<td>0.60</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.66 (4638)</td>
<td>0.50 (4791)</td>
<td>0.71 (4464)</td>
<td>0.75 (4259)</td>
<td>0.63 (4551)</td>
<td>0.83 (3002)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>0.85 (1325)</td>
<td>0.46 (1406)</td>
<td>0.67 (1440)</td>
<td>0.76 (1328)</td>
<td>0.59 (1444)</td>
<td>0.84 (1335)</td>
</tr>
<tr>
<td></td>
<td>R coefficient</td>
<td>0.87/0.78</td>
<td>0.92/0.93</td>
<td>0.85/0.86</td>
<td>0.83/0.82</td>
<td>0.88/0.89</td>
<td>0.79/0.78</td>
</tr>
<tr>
<td>Subscapular skinfold (mm)</td>
<td>Standardization</td>
<td>0.48</td>
<td>0.42</td>
<td>0.36</td>
<td>0.42</td>
<td>0.41</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.47 (4639)</td>
<td>0.42 (4791)</td>
<td>0.45 (4466)</td>
<td>0.43 (4273)</td>
<td>0.46 (4551)</td>
<td>0.69 (3003)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>0.59 (1324)</td>
<td>0.44 (1406)</td>
<td>0.44 (1434)</td>
<td>0.39 (1339)</td>
<td>0.49 (1444)</td>
<td>0.62 (1335)</td>
</tr>
<tr>
<td></td>
<td>R coefficient</td>
<td>0.89/0.82</td>
<td>0.91/0.90</td>
<td>0.89/0.90</td>
<td>0.91/0.92</td>
<td>0.89/0.88</td>
<td>0.75/0.80</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>Standardization</td>
<td>0.24</td>
<td>0.27</td>
<td>0.23</td>
<td>0.34</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>0.15 (1328)</td>
<td>0.39 (1404)</td>
<td>0.23 (1449)</td>
<td>0.34 (1358)</td>
<td>0.26 (1443)</td>
<td>0.32 (1348)</td>
</tr>
<tr>
<td></td>
<td>Cross-sectional</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>

**"Longitudinal" are the data measured by the follow-up team in the MGRS longitudinal component, and “cross-sectional” are data from the MGRS cross-sectional component. The reliability coefficient R was based on the routine MGRS (not standardization) data: the first figure belongs to the longitudinal measurements and the second to the cross-sectional measurements, and the single figure for height refers to the cross-sectional component.

The teams’ precision compared favourably with the expert’s for all measurements. There was no consistent pattern in the relationship between intra- and inter-observer variability.

Although the magnitude of bias in the teams’ measurements was overall within allowable limits compared with the expert, distinct negative and positive tendencies were noticeable for all measurements except head circumference. The “problem” measurements were those that involve manipulation of soft tissues (arm circumference and skinfolds) and those that require careful positioning to ensure that the child is fully stretched out for the measurement (length and height). It is worth noting that the same pattern was observed in the Rotterdam standardization session [1] where, compared with the expert, the session’s participants all had negative-signed bias for length, height and arm circumference, and positive-signed bias for the skinfold measurements. In general, the standardization sessions were stressful as the observers had to repeat measurements on often crying and struggling children. Under those conditions, the expert could, with greater self-assurance than the fieldworkers, position the child to full length/height, pause to let the callipers close in on skinfolds before taking the reading, and retain better control of the circumference tape around the child’s arm to avoid compressing the soft tissues. The average bias estimate for subscapular skinfold in Brazil was larger than the limits set by the expert’s TEM × 2.8 and also in the opposite direction from the other sites. The data used to calculate this estimate were collected at the site’s initial standardization, and the team thereafter received remedial training in the measurement of skinfolds.

Considering our main criterion for assessing measurement reliability in the MGRS data, overall R coefficients were higher than the 90% reliability threshold that Marks and colleagues [8] suggest as adequate for the presentation of growth standards. However, Uljaszek and Lourie [22], while endorsing that cut-off, recognized the characteristic low reliability of skinfold measurements in young children. Indeed, the MGRS skinfold measurements had R coefficients below 90% but mostly above the threshold of 80% applied to other measures of agreement such as the kappa coefficient cut-off for “excellent” agreement [20]. As others have noted, larger inter-observer reliability is expected in measurements that have characteristically low precision [8]. This is illustrated by the lower intra- than inter-observer TEM for the two skinfold measurements in the MGRS. One suggested approach to improving precision for such measurements is to measure twice and report the average of the two values [5,8]. This is what we did in the MGRS, for all the anthropometric measurements used to construct the WHO Child Growth Standards, with the added assurance that the
two measurements were within preset margins of difference [1].

Several published studies and reviews of the anthropometry literature provided intra-observer TEM estimates, and these were compared with the MGRS teams’ performance [5,6,22–24]. The MGRS teams’ reliability was generally better than the published ranges. However, these comparisons should be viewed with the understanding that the numbers of observers and subjects involved, and the measurement protocols and equipment employed, vary widely among studies. For example, the number of subjects measured in the MGRS standardization sessions is larger than has been reported in most other published studies.

The MGRS presents a number of innovations with regard to reliability assessment in anthropometry. These include the use of standardized measurement protocols and equipment at six country sites, the evaluation of the different site teams’ reliability using a common gold standard, and the estimation of measurement reliability in the data that have been used to construct growth standards. Ulijaszek and Kerr [15] proposed using “criterion anthropometrist(s)” for the purpose of overseeing and assuring the standard application of measurement procedures, and to set targets for the level of accuracy that fieldworkers in anthropometry could aim to achieve. The use in the MGRS of the international lead anthropometrist’s intra-observer TEM to set cut-offs for precision (the expert’s 95% precision margin) and the limits of acceptable bias (2.8 times the expert’s TEM) is a significant step in this direction, and one that could be applied in other studies to standardize reliability assessment when a gold standard is available. In the absence of a designated individual to serve as gold standard, the average intra-observer TEM of a well-trained group could be used to set both precision and accuracy targets.

Acknowledgements

This paper was prepared by Adelheid W. Onyango, Reynaldo Martorell, Wm Cameron Chumlea, Jan Van den Broeck, Cora L. Araújo, Anne Baerug, William B. Owusu and Roberta J. Cohen on behalf of the WHO Multicentre Growth Reference Study Group. The statistical analysis was conducted by Alain Pinol and Elaine Borghi.

References

WHO Multicentre Growth Reference Study Group

<table>
<thead>
<tr>
<th>Age group and variables</th>
<th>MGRS teams</th>
<th>Published estimates</th>
<th>Source (number in ref. list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (cm)</td>
<td>0.22–0.48</td>
<td>0.79, 1.22</td>
<td>Johnson et al., 1997 [23]</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>0.16–0.28</td>
<td>0.28, 0.30</td>
<td>Johnson et al., 1997 [23]</td>
</tr>
<tr>
<td>Older children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (cm)</td>
<td>0.23–0.58</td>
<td>0.4, 0.8</td>
<td>Ulijaszek and Lourie, 1994, literature review [22]</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.16–0.29</td>
<td>0.34</td>
<td>Malina et al., 1973, NHES III [5]</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>0.13–0.29</td>
<td>0.14</td>
<td>Martorell et al., 1975 [6]</td>
</tr>
<tr>
<td>MUAC (cm)</td>
<td>0.15–0.27</td>
<td>0.35</td>
<td>Malina et al., 1973, NHES III [5]</td>
</tr>
<tr>
<td>Triceps skinfold (mm)</td>
<td>0.39–0.61</td>
<td>0.47</td>
<td>Martorell et al., 1975 [6]</td>
</tr>
<tr>
<td>Subscapular skinfold (mm)</td>
<td>0.29–0.41</td>
<td>0.27</td>
<td>Martorell et al., 1975 [6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.83</td>
<td>Johnston et al., 1972, NHES III [24]</td>
</tr>
</tbody>
</table>

NHES III: cycle III of the National Health Examination Survey (USA); MUAC: mid-upper arm circumference.
Reliability of anthropometric measurements