Glossary

BCPE
The Box-Cox power exponential distribution.

µ
The median of the Box-Cox power exponential distribution.

σ
The approximate coefficient of variation of the Box-Cox power exponential distribution — related to the variance.

ν
The power of the Box-Cox transformation (to the normal distribution) of the Box-Cox power exponential distribution — related to the skewness.

τ
The power exponential parameter of the Box-Cox power exponential distribution — related to the kurtosis.

λ
The power of the age (or starting weight) transformation.

δ
A constant value (delta) added to weight increments.

Box-Cox transformation
A power transformation to the normal distribution.

Coefficient of variation
The ratio of the standard deviation to the mean.

Cubic spline
A piecewise third-order polynomial function that passes through a set of \(m \) (or degrees of freedom) control points; it can have a very simple form locally, yet be globally flexible and smooth.

Cut-off
A designated limit beyond which a subject or observation is classified according to a pre-set condition.

Degrees of freedom (df)
The number of control points used to fit the cubic splines.

Kurtosis
An attribute of a distribution describing "peakedness". A high kurtosis portrays a distribution with fat tails in contrast to a low kurtosis, which portrays a distribution with skinny tails.

P-value
The probability of falsely rejecting the hypothesis being tested. In this report all p-values were compared to a level of significance set to 0.05.

Q-test
A statistical test which combines overall and local tests assessing departures from the normal distribution with respect to median, variance, skewness and kurtosis.

Skewness
A statistical term used to describe a distribution's asymmetry in relation to a normal distribution.

Standard deviation score (SD)
See z-score.

Worm plots
A set of detrended Q-Q plots — plots that compare the distribution of a given set of observations to the normal distribution.

Z-score
The deviation of an individual's value from the median value of a reference population divided by the standard deviation of the reference population (or transformed to normal distribution).