EXECUTIVE SUMMARY

There are currently two WHO Collaborating Centre repositories that work with smallpox virus; one is situated at the Centers for Disease Control and Prevention (CDC) in Atlanta, USA and the other at the State Research Center of Virology and Biotechnology (VECTOR) in Novosibirsk, Russian Federation.

The CDC Poxvirus Program moved into a new laboratory suite in 2009. The new laboratory is part of a high containment complex, which also houses other adjacent Biosafety Level 4 (BSL4) and Biosafety Level 3 (BSL3) laboratories.

The inspection was carried out over four days with feedback on the fifth day and consisted of group discussions, review of documentary evidence as well as inspections of the facilities and installations. At the time of the inspection the laboratory was decommissioned for maintenance.

The WHO team observed many areas of good practice during the inspection. However, a number of findings were identified and observations made for CDC’s consideration. It is the responsibility of CDC to assess and implement associated actions required to address the issues raised.

The facilities can be considered to have an acceptable level of biosafety and laboratory biosecurity for variola virus research and storage. It is requested that CDC propose an action plan describing actions and timelines to rapidly address findings.

INSPECTION PROGRAMME

1. World Health Assembly resolution WHA60.1 (2007) mandates WHO to inspect these two centres every two years to ensure that ‘the conditions of storage of the virus, and that the research done in the laboratories meet the highest requirements of biosafety and biosecurity’.
In addition, WHA60.1 requests that inspection-mission reports be made available for public information after appropriate scientific and security redaction.

2. In agreement with CDC and VECTOR the inspection protocol used in 2009 was used again for the inspections of 2012. The protocol is based on the publication of the international Laboratory Biorisk Management Standard, which is a consensus Workshop Agreement registered with the European Committee for Standardization (CEN) CWA 15793 (2008).

4. A new high containment laboratory (HCL) for work with variola virus has been operational since 2009. This is the only laboratory at CDC where work with live variola virus is allowed. Storage is restricted to this laboratory and one secure repository where no work with the virus is allowed. The previous laboratory has been decommissioned and is no longer operational. According to the information provided, CDC’s National Select Agent Program has approved the decommissioning as completed. There are no plans to use the old facility again in the foreseeable future by CDC’s Poxvirus and Rabies Branch for work with variola virus.

5. The inspection took place over four days, with a presentation and discussion of the findings on the fifth. Both CDC staff and the WHO team underlined the serious responsibility they attached to ensuring that conditions of storage of the virus and of research conducted in the laboratories continue to meet the highest requirements for biosafety and biosecurity.

6. In the introductory session on the first morning, CDC’s National Select Agent Program gave an overview of U.S. Select Agent Regulations and inspection programme that applies to all work on live variola virus. CDC also presented the follow-up actions based on the previous recommendations from 2009.

7. The WHO team reported that a meeting with WHO and representatives of CDC and VECTOR had taken place in Oslo, Norway, between 31 January and 2 February 2012 to review the process for the biosafety inspection visits of the two smallpox repositories. During that meeting agreement was reached on a variety of issues, including the inspection team composition, the draft agenda for the visits, the desire to inspect the facilities when they were accessible to all team members and not in active use to permit evaluation of the laboratory facilities, and how the findings and report would be presented (i.e. a close-out session on the last day of the visit, followed by a written narrative report). The role of representatives from the repository not being inspected (in this case VECTOR) was identified by the WHO Office of the Legal Counsel to be the one of observers. Observers were able to attend interviews and site tours during the visit, but not discussions regarding findings and key observations, nor were they present at the close-out meeting.

8. The WHO team once again adopted the assessment approach first used during the 2009 inspection visits. The instrument addresses 16 elements relating to laboratory biorisk management. As in 2009, the inspection process consisted of discussions and interviews with key stakeholders, record checks, programme verification, and site inspections. Key findings
(areas of nonconformity to CWA 15793) and observations (areas that could benefit from improvement and may become a finding if not addressed before the next inspection visit) were presented for each element on the last day of the visit.

9. Discussions on element 1 (Biorisk Management System) were held in a plenary session on the afternoon of the first day. On the second and third day, the team was split into two rotating WHO-led sub-teams for group discussions on all other individual elements of the assessment protocol. The five WHO team members held closed team discussions on findings over lunch, and reconvened for further team discussions before the end of the second and third day. A brief wrap up session for questions and clarifying comments was held at the end of the second and third day.

10. The fourth day was devoted to visits by the WHO team members to several facilities including the high containment laboratory (HCL) and associated animal rooms, the heating ventilation and air-conditioning spaces, the waste treatment plant, the vault (i.e. the secure liquid nitrogen storage facility), the entry door to the gamma irradiation room, the external emergency care facility (designated to support CDC and accept suspected and confirmed laboratory acquired smallpox cases for emergency care), and the internal CDC clinic.

11. On the afternoon of the fifth day, the findings were presented to CDC staff to confirm the WHO team’s understanding of initial findings with an opportunity to review, discuss and clarify any outstanding issues. Additional review and clarifying remarks occurred later by conference call.

12. The following sections describe the key findings identified by the assessment team, together with observations providing opportunities for improvement as well as areas considered to represent good practice. The structure of this report follows the 16 management elements addressed within CEN CWA 15793.

13. While a good cross-section of individuals was interviewed, it is emphasized that this was a sample of the organization and activities.

14. The inspection of the laboratory was planned for a time after the laboratory had been shut down and decontaminated to allow for annual maintenance. This provided an opportunity to visit areas that would normally be difficult to access when live virus was being handled. No actual work with variola virus was being conducted at the time of the visit. At the time of the next inspection, the opportunity to observe actual work activities when the laboratory is ‘hot’ will be planned with CDC.

15. In response to the inspection visit and the report, CDC is requested to propose an action plan describing actions and timelines to address findings within 30 days of receipt of the final report.

16. In conclusion, the WHO team appreciates the open and constructive attitude of CDC staff engaged in the inspection.
APPLICATION OF THE ASSESSMENT INSTRUMENT

1. Biorisk management system

17. Finding – Continue moves towards adoption of formal management system approaches relating to biorisk management

Although there are several areas highlighted in this report where progress towards the formalization of a biorisk management system at CDC have been noted, opportunities for further development of a biorisk management system were also identified. Since 2001, CDC’s Office of Safety, Health and Environment (OSHE) has had a policy on adopting a management systems approach, using the principles of ISO 14001. It was the view of the WHO inspection team that applying such an approach to the work with variola virus would result in tangible enhancements through a more systematic approach to biosafety and biosecurity in several areas, including document control, enhanced internal audit / inspection activities, and formal tracking and close out of action items (see below for specific examples). Continuing the development of the biorisk management system currently in place, adopting principles from management system standards is therefore strongly encouraged.

18. Finding – Continue improvements to the variola biosafety manual and consider potential for moving to an electronic document control system

The biosafety manual (High Containment Laboratory Manual) relating to the work with variola virus was found to have improved since the 2009 inspection visit. However, the manual could be further strengthened by the inclusion of more SOPs describing laboratory operations, for example more detailed procedures for decontamination processes between animal rooms and the main laboratory and testing procedures for suits and air pressure control valves. A better process for controlling change implementation should also be considered (e.g. different vaccination frequencies were present in the manual than those reported elsewhere). The manual remains in paper form and challenges were reported in maintaining this large and somewhat unwieldy document. It is therefore recommended that consideration be given to the introduction of an electronic system to support document management, which currently presents a significant burden and challenge to the Poxvirus Program in maintaining an up-to-date and comprehensive document set.

19. Finding – Formally address biorisk issues through target setting and reporting mechanisms across organisation

Although the prominence of biosafety and biosecurity had been enhanced since the 2009 visit through reinforcement of the need to comply with all relevant regulations and legal requirements by formal sign off by researchers, the setting of individual and group targets and objectives in relation to biorisk management could be further strengthened. Examples of where specific biosafety and biosecurity objectives could be reflected in job performance plans include actions resulting from emergency exercises and close out
activities from the WHO visits. These areas are already being discussed within CDC, and moves towards the formalization of such initiatives, are strongly encouraged.

20. Finding – Ensure that formal mechanisms are introduced for tracking and close-out of actions, including recommendations from previous WHO inspection visits

Although there are good examples of improvement initiatives and monitoring mechanisms (e.g. through the High Containment Laboratory Operating Group (HOG)), no formal mechanism was presented to ensure the tracking and close out of action items. It is therefore recommended that the need for such mechanisms be reviewed and strengthened to ensure recommendations from areas including emergency exercises and issues identified by the HOG are adequately addressed to identify ownership, define timelines and monitor progress. Recommendations from WHO inspection visits should also be incorporated into such a system to ensure satisfactory close-out and communication of measures set in place both within the organization and to WHO.

2. Risk assessment

21. The Biosafety in Microbiological and Biomedical Laboratories (BMBL), 5th edition, 2009 recognizes risk assessment as an important responsibility for directors and principal investigators of microbiological laboratories, as a process to identify the hazardous characteristics of a known infectious agent, the activities that can result in a person’s exposure to an agent, the likelihood that such exposure will cause a laboratory acquired infection, and the probable consequences of such an infection. The risk assessment process is essential for the determination of appropriate mitigation measures and controls necessary to ensure safe and secure working conditions.

22. Finding – Work should continue to further develop policies, methodologies and tools to ensure a comprehensive and systematic approach to risk assessment is set in place for all work with variola virus

A number of validation studies to support risk assessments were presented in the course of the inspection, e.g. heat inactivation kinetics of variola virus under different conditions. However, the WHO team noted that there is no agreed format or methodology for recording and documenting risk assessments. In 2009 CDC was working on the development of a software system to perform risk assessments, however, the program did not meet the requirements and development was not continued. The acquisition of a new program (MEDGATE) is in progress. CDC agreed with the WHO team that the nature and approaches of the assessments presented could be further improved and this desire to further develop and apply risk-based thinking and methodologies is commended. In this regard, the close cooperation and engagement of OSHE and other specialist groups within CDC in supporting the Poxvirus Program in the development and roll out of risk assessment approaches is strongly encouraged.
3. Pathogen and toxin inventory and information

23. As noted in 2009, CDC has established an electronic inventory database and associated systems for identification, for accounting and information tracking of all materials containing live virus. The WHO inspection team also noted that the previous request to minimize volumes and concentrations of working stocks had been addressed through a specific SOP.

24. Observation – Review measures in place for control of inventory and information relating to genomic DNA

Variola virus genomic DNA is transferred to a lower containment laboratory (BSL2) where it is handled and stored; this laboratory is also under the supervision of the Poxvirus and Rabies Branch. Although security measures are in place, questions were raised by the WHO inspection team as to the risk associated with this DNA, and associated expectations on security and other controls which should be applied. This issue was considered to at least somewhat fall outside the remit of the WHO inspection team since it related to the authorizations to conduct research and the conditions that should apply, an issue that falls under the responsibility of the WHO Advisory Committee on Variola Virus Research. Although it is accepted that variola virus DNA may warrant a lower level of control than that applied to live virus stocks, the WHO inspection team recommended that a review be conducted by CDC to ensure that material is stored securely given its nature.

4. General safety

25. Finding – Consider revisiting the two person rule policy as part of the move towards more structured and systematic risk assessments

The issue of lone working and the two person rule was reported to have been discussed at the highest levels within CDC. The policy at CDC remains to allow, at certain times, staff to work alone in the maximum containment laboratory, despite strong previous WHO recommendations to re-evaluate this rule. The WHO team considered that the ability of workers to have lone access to the working environment and specimens remains an issue and encouraged CDC to provide a risk assessment identifying conditions during which lone working is justified and accepted.

26. Observation – Consider a review of noise levels on HEPA housing floor and potential need for PPE

During the tour of the plant room containing the HEPA housings, the WHO team noted elevated noise levels. Although this is not a variola-specific issue, CDC may wish to assess hazards associated with this area and consider providing hearing protection and other measures routinely found in similar environments in other, similar facilities (e.g. hard hats).
5. Personnel and competency

27. The inspection team noted that since the 2009 inspection, a number of improvements had been made including the formalization of training needs and competency assessments for scientific personnel.

28. Finding – Further strengthen measures set in place to define, monitor and record competency for staff, including maintenance and other support staff.

Moves towards the development of competency assessments were commended. However, the WHO team noted that there was potential to further develop the system and address activities more specifically (e.g. defining procedures for testing gloves before and after use, and procedures for disinfecting suits and boots before leaving the animal holding rooms and the laboratory and monitoring staff’s competency in carrying these out). Furthermore, as well as including additional staff within the scope of the activity (e.g. maintenance and other support staff).

6. Good microbiological technique

29. CDC uses the BMBL 5th edition to inform basic principles, guidelines and requirements for biosafety and biosecurity. Since 2009 a member of the Poxvirus Program has been appointed to support management of SOPs and other documentation, resulting in an improvement in the quality and consistency of these documents. However, as the inspection team was not witnessing any laboratory procedures due to the facility shut down, the opportunity to comment on good microbiological technique was limited.

30. Finding – Review status of animal holding/procedure rooms with regard to whether or not they constitute primary containment during non-human primate work, and if so what additional control measures may be required.

While the containment devices (bioisolators) used for the non-filtered, fenestrated non-human primate cages in the animal holding room provide a degree of isolation between different isolators, it was unclear that these would meet established primary containment requirements for operation and procedures (e.g. those pertaining to the operator protection performance of a microbiological safety cabinet or animal isolator). It was therefore the view of the WHO inspection team that procedures conducted would result in the room effectively becoming challenged as a primary containment barrier (e.g. transfer of anaesthetized animals within the room, cage and floor cleaning activities). This issue was further emphasized since there is also no decontamination barrier between the animal room and the remainder of the laboratory. The WHO team therefore recommended that a formal risk assessment be performed to either demonstrate that the measures (physical equipment and procedures) can be arranged in such a manner as to ensure the room does not constitute primary containment, and / or that appropriate controls are in place to prevent the transfer of potentially contaminated materials (e.g. PPE, fomites) and infectious aerosols from the animal room to the main laboratory. Should the room be found to be acting as primary containment, measures to be considered should include the need for local decontamination.
of PPE (e.g. additional cleaning of gloves, boots and other items) and also other issues including the potential need to pressure test the rooms and ductwork.

7. Clothing and personal protective equipment

31. Finding – Consider the need to standardize procedures for the assessment, maintenance and repair of items of PPE

An issue identified in the 2009 report was the need to test suits in a standardized way and at an appropriate frequency, but due to the nature of the suits used at CDC, it was reported that these could not be pressure tested as recommended at that time. However, the WHO team considered that a more systematic approach to the assessment of PPE should still be applied to suit testing by a more achievable method (e.g. soap bubble testing), as well as developing procedures for selection and use of adhesives when repairing suits (e.g. taking into consideration potential material compatibility issues) and formalizing the methods for monitoring gloves.

8. Human factors

32. A variety of systems and initiatives were presented to demonstrate good practice with regard to human factors at CDC. In particular, the close-knit Poxvirus Program and evidence of good team work were observed, and it was noted that the Poxvirus Program meets regularly to discuss any issues of concern. The HOG also provides an additional opportunity to voice concerns with a larger group and have these formally recorded in the minutes of the meeting. In addition an Employee Assistance Programme is in place to identify staff-related problems and provide counseling opportunities to address and resolve issues. Training is available to help alert staff of warning signs of abnormal behaviors.

33. No significant findings were identified.

9. Healthcare

34. Good practices including routine annual medical examinations are carried out for staff at CDC. The vaccination frequency has been reduced from annual to every three years, using second generation vaccines.

35. Finding – Review the level of preparedness and appropriateness of the contracted hospital isolation unit for handling Variola infected patients

Just like in 2009, the WHO team once again raised concerns over the robustness of the neighbouring emergency care facility to handle potential smallpox cases. The WHO team considered the situation could be improved in a number of areas, including control of liquid waste from the bathroom and sinks (at present, if used, bathroom waste would be directed to hospital sewer), removing materials which would be difficult to decontaminate (e.g. soft furnishings), reviewing the adequacy of ventilation systems (e.g. the anteroom does not provide an airlock on entry to the room; inlet and exhaust in close proximity above the bed), and the need for formalization of critical procedures (e.g. training and competence
requirements, appropriate decontamination measures, PPE requirements for hospital staff). The WHO team therefore recommended that a thorough review of this facility be conducted and formal plans be set in place specifically for a variola scenario, and that these are subject to exercise to ensure adequacy, with any remaining deficiencies systematically followed up and closed out.

10. Emergency response and contingency planning

36. The WHO team was advised that a database application had been introduced to track, monitor and respond to emergency situations, encouraging the reporting and close-out of actions. Emergency exercises were reported to be conducted annually.

37. **Finding – Review specific emergency scenarios to ensure appropriate response measures are in place**

Areas were identified where emergency response plans could benefit from further examination to ensure the control measures which are believed to be in place would function as planned under all credible operating scenarios. In particular, the WHO team recommended to include clear instructions of how a potentially infected worker (including those showing signs of infection consistent with a potential ability to be infectious) would be managed with regard to the external emergency care facility (see above); how the site lockdown procedure would work in practice in the event that concern was raised over potentially missing specimens (e.g. time before alarm was raised), and the potential need to control floodwater from either the plant rooms above the lab or in the event sprinklers were discharged (including potential issues with the capacity of the cook tank and lack of flood detection in the effluent treatment room).

11. Accident/incident investigation

38. CDC reported that a structured mechanism for reporting and evaluation of incidents and accidents is in place. There have been no records of incidents involving variola virus.

39. No significant findings were identified.

12. Facility physical requirements

40. The WHO team noted the dedication of maintenance personnel. Good communication and interaction between biosafety and maintenance personnel was evident.

41. **Finding – Ensure any potential deviations from BMBL requirements are adequately described in commissioning documents and communications with Select Agent inspectors**

During a review of the commissioning documentation, it was observed that backflow preventers on the water and gas supplies had been substituted with an alternative arrangement. This change had been raised by the commissioning consultants but had not been formally closed out in the commissioning documentation. While it is not inferred that this arrangement is necessarily inappropriate, the issue had also not been formally closed
13. Equipment and maintenance

42. The WHO team noted that a dedicated maintenance team and schedule are in place.

43. Finding – Ensure risk assessments and verification plans are in place for decontamination of all equipment requiring maintenance and/or removal from the laboratory

At the time of the visit, an ultracentrifuge was awaiting maintenance at the margins of the HCL area. However, no verification was provided to demonstrate that the VHP process had successfully decontaminated all areas of the equipment (e.g. interior of centrifuges). The WHO team therefore recommends that appropriate risk assessments be conducted on all equipment to ensure effective decontamination prior to maintenance.

14. Decontamination, disinfection and sterilization

44. Finding – Ensure all materials have been adequately decontaminated prior to shut down of the HCL

Vaporized hydrogen peroxide (VHP) has been shown to be effective against poxviruses. While SOPs were presented on some aspects of gaseous decontamination (e.g. positioning of spore strips for validation of room decontamination), other areas had not been formally addressed through risk assessment, formal documentation and validation. The WHO team therefore recommends that a systematic assessment be carried out to identify all equipment and materials that will be subject to gaseous decontamination to ensure they are suitable in terms of their properties and ability of gas to reach areas requiring decontamination. Specific items noted by the inspection team which could be challenging in this respect were the use of paper in the lab, and whether or not it can be adequately decontaminated or alternatives should be adopted (e.g. substitute paper with an electronic system, or scan papers prior to autoclaving for removal from the HCL). Additional items should also be considered to ensure that they can be adequately decontaminated including interiors of centrifuges and other equipment (see above), and liquid nitrogen storage vessels.

45. Finding – Ensure effective autoclaving of animal carcasses and validation of kill prior to transportation to the incinerator for final disposal

Animal carcasses are removed from the HCL through the autoclave, after exposure to 250°F (121°C) for 65 minutes. However, the validation process failed to confirm killing of spores inserted in the core of the carcasses. After autoclaving, double bagged carcasses, in metal carriers, are then transported to the incinerator (located on a different floor in the same building) and are incinerated. The WHO team recommends that the process used to
autoclave animal carcasses be reviewed and validated to ensure virus inactivation prior to removal from the autoclave.

46. Observation – CDC should consider the potential to reduce the concentration of disinfectant being used in the shower and other sources which go to the kill tank

It was reported that disinfectant is used in a concentration that is greater than that required for inactivation of variola virus and that this may have adverse consequences in relation to cost and environmental impact, as well as potentially resulting in an increased risk of long term damage to the effluent decontamination system (e.g. increased rate of corrosion). It is therefore suggested that a review be conducted to ensure that while the required concentrations of decontaminant are maintained throughout the process, they are also not excessive in terms of what is required to inactivate the virus.

47. Observation – consider installation of an automated system for maintaining chemical shower disinfectant header tanks

The procedure for filling the header tanks for the shower is currently done manually, leading not only to the risk of human error, but also potentially exposing operators to chemical and physical hazards while filling the tanks. The WHO team therefore suggested that consideration be given to installation of an automated system for maintaining the chemical shower header tanks.

15. Transport procedures

48. CDC reported that there has been no external transport of samples of live variola virus since the last inspection visit of 2009, nor has the freezer in the vault containing permanent variola virus stocks been opened. Currently, the two liquid nitrogen freezers located within the HCL assigned to the Poxvirus and Rabies Branch contain archived and working stocks of variola virus.

49. No significant findings were identified.

16. Security

50. The WHO team noted a strong focus on compliance with Select Agent Regulations, with the aim of producing a balanced approach to security addressing physical, personnel and information aspects. Since the 2009 inspection, the level of security background checks for authorized workers with direct access to variola virus has been raised.

51. Observation – Review security arrangements associated with the transfer of live variola virus outside the HCL.

A number of areas were discussed where infectious materials are transferred across the containment barrier of the HCL, namely use of the dunk tank, transport to the gamma cell and transport of carcasses to the animal incinerator. As such, these areas may present a potential vulnerability and are inconsistent with the rules in force for two person access to
the repository itself. CDC is therefore encouraged to review these activities through a formal risk assessment to ensure that appropriate levels of control are maintained at all times when live virus is transported outside the BSL4 containment barrier.

OVERALL CONCLUSIONS

52. In relation to the 2012 inspection of the CDC repository, the inspection team found that improvements had been made since the 2009 inspection and many of the recommendations of the previous report had been addressed.

53. The WHO team was appreciative of further advances towards the implementation of a biorisk management system at CDC, together with ample evidence of commitment from management and a strong and ongoing willingness to improve.

54. The WHO team acknowledged the presence of dedicated, committed and knowledgeable professionals that created a friendly atmosphere during the inspection with proactive participation in discussions and activities.

55. This inspection report places no responsibility on WHO for the safe conduct of work that uses live variola viruses in this facility, which remains the responsibility of CDC.

ACKNOWLEDGEMENTS

The WHO inspection team was grateful to CDC for the cooperation, commitment and hospitality during this inspection.