Laboratory Processing of Fecal Specimens

This laboratory manual includes three pathogens that may be isolated from fecal specimens: *Shigella*, *Vibrio cholerae* O1/O139, and *Salmonella* serotype Typhi. Methods for the laboratory detection of other enteric pathogens can be found in other manuals, such as the American Society for Clinical Microbiology’s *Manual of Clinical Microbiology* or the World Health Organization’s *Manual for the Laboratory Investigations of Acute Enteric Infections*. The methods presented in this manual are intended to be economical and to offer laboratorians some flexibility in choice of protocol and media. Laboratories that do not have sufficient resources to adopt the methods described in this chapter should consider sending specimens or isolates to other laboratory facilities that routinely perform these procedures.

Enteric pathogens of public health concern cause both diarrheal disease and fever of unknown origin. Only a few pathogens cause epidemic diarrhea, although many cause sporadic diarrhea. *S. dysenteriae* serotype 1 and *V. cholerae* are the two etiologic agents responsible for most epidemic diarrhea in the developing world, contributing substantially to the burden of morbidity and mortality. *S. Typhi*, the etiologic agent of typhoid fever, is responsible for a substantial portion of the burden of fever of unknown origin.

In countries at risk for epidemics of dysentery or cholera, the laboratory’s first role is to be prepared for an epidemic; this means having ready access to the supplies necessary to identify *V. cholerae* O1/O139 and *Shigella*. Appendix 9 lists laboratory supplies required for isolation, identification, and antimicrobial susceptibility testing, as appropriate for district-level laboratories, regional laboratories, and national reference laboratories. All countries should have at least one national or central laboratory capable of identifying *Shigella* and *V. cholerae* O1/O139, determining antimicrobial susceptibility, and sending isolates to a regional or international reference laboratory; Appendix 12 includes international shipping regulations and Appendix 14 lists international reference laboratory contact information.

Collection, storage, and transport of stool specimens are addressed in Appendix 9. Methods for isolation of *S. Typhi*, *V. cholerae*, and *Shigella* from stool specimens are detailed in this appendix, whereas each of the pathogen-specific chapters address pathogen identification and antimicrobial susceptibility testing methods, including guidelines for interpretation of results to help shape patient treatment and policy.
Serogrouping and typing methodologies are included and these procedures are encouraged, when resource levels at the laboratory permit. (S. Typhi is included in Chapter VII; Shigella is included in Chapter VIII; and, V. cholerae is included in Chapter IX.)

Determination of antimicrobial susceptibility patterns not only helps shape successful treatment plans for individual patients but also assists with the development of public health policy for populations at risk for exposure. As mentioned in the introduction to this laboratory manual, because antimicrobial susceptibility testing is so resource intensive and requires a consistent investment in laboratory infrastructure and quality control, the World Health Organization (WHO) recommends that antimicrobial susceptibility testing occur at only one or two laboratories in a country with limited resources. Antimicrobial susceptibilities should be determined for the first 30 to 50 isolates identified by the laboratory at the beginning of an epidemic. Peripheral laboratories may perform initial isolation of Salmonella (including serotype Typhi), Vibrio, and Shigella isolates, and then refer isolates to the central or national reference laboratory for final confirmation and determination of antimicrobial susceptibility. Peripheral laboratories may also be the sites of focused studies to determine etiologic agents causing an outbreak. First-level laboratories should be supplied with transport medium and the means of sending the specimens to the next level laboratory or to the central laboratory.

Fecal specimens in the laboratory

Once specimens have arrived at the laboratory, laboratorians should follow procedures to isolate the suspected etiologic agent. In an outbreak situation, usually either dysentery or cholera is suspected on the basis of reports from health personnel in the field, and the laboratory response should reflect this. It should be noted that although some health-care providers believe that diarrheal illnesses can be diagnosed by the appearance of the stool and, for example, diagnose dysentery if the stool is bloody and cholera if the stool is watery, this “bloody” versus “watery” distinction is by no means definitive. Diarrhea caused by Shigella, for example, is only bloody approximately 50% of the time, and there are many agents that lead to watery diarrhea. Still, clinical observations may help guide laboratory testing.

Laboratories may also receive fecal (i.e., stool) specimens from patients who are suspected to have typhoid fever. Fecal cultures may be positive during the first week of fever and may be positive 2–3 weeks into the disease. (Because S. Typhi is more commonly suspected in cases of febrile illness and isolated from blood, urine, or bone marrow, pertinent isolation techniques are also included in Appendix 4, “Isolation of Agents from Normally Sterile Sites.”)
Recovery of *S. Typhi* from fecal specimens

Maximal recovery of *Salmonella* ser. Typhi from fecal specimens is obtained by using an enrichment broth although isolation from acutely ill persons may be possible by direct plating. Enrichment broths for *Salmonella* are usually highly selective and will inhibit certain serotypes of *Salmonella* (particularly *S. Typhi*). The selective enrichment medium most widely used to isolate *S. Typhi* from fecal specimens is selenite broth (SEL). Selenite broth should be incubated for 14–16 hours at 35°C–37°C and then streaked to selective agar (e.g., bismuth sulfite [BS] or desoxycholate citrate agar [DCA]). A nonselective broth (e.g., Gram negative [GN] broth) may also be used for enrichment for *S. Typhi*.

Plating media

Fecal specimens to be examined for *S. Typhi* may be inoculated onto standard enteric plating media (e.g., Hektoen enteric agar [HE], xylose lysine desoxycholate agar [XLD], DCA, MacConkey agar [MAC], or *Salmonella-Shigella* [SS] agar). However, bismuth sulfite agar (BS) is the preferred medium for isolation of *S. Typhi* and should be used if resources permit.

BS plates must be freshly prepared (Appendix 2) and used within 36 hours for isolation of *S. Typhi*. A rectal swab or stool swab may be used to inoculate BS agar by seeding an area approximately 1 inch in diameter on the agar, after which the plate is streaked for isolation. After seeding the plate, the swab may be placed in a tube of selenite broth if enrichment is desired.

If culturing fecal specimens from suspected typhoid carriers, the use of a BS pour plate may enhance isolation. For pour plates, the BS agar must be boiled and cooled to 50°C in a water bath. A 5-ml quantity of fecal suspension is added to a Petri plate, after which approximately 20 ml of cooled BS is immediately poured into the plate. The plate is swirled to mix the fecal suspension and the BS agar and the plate is left to harden.

BS streak and BS pour plates should be incubated for 48 hours at 35°C–37°C. On a BS streak plate, well-isolated colonies of *S. Typhi* appear black surrounded by a black or brownish-black zone with a metallic sheen. On a BS pour plate, well-isolated subsurface colonies are black and circular. Table 34 provides descriptions of *S. Typhi* colonies on other types of selective media. When colonies of *S. Typhi* are numerous and crowded, *S. Typhi* frequently does not produce typical blackening of BS; therefore, **plates must be streaked carefully to permit growth of discrete colonies.** When using pour plates, a second plate with a 0.5-ml inoculum may also be prepared to insure that isolated colonies will develop. Figure 83 illustrates the appearance of *S. Typhi* colonies on BS agar medium.

A flowchart for the isolation and identification of *S. Typhi* is included in Figure 29. Isolated colonies from BS or other selective media may be inoculated to Kligler iron agar (KIA) or triple sugar iron agar (TSI) or other screening media.
Sub-surface colonies from BS pour plates must be re-streaked for isolation on a medium such as MAC before being inoculated into KIA or TSI.

Colonies of S. Paratyphi A, S. Paratyphi B, and S. Paratyphi C and most other Salmonella serotypes have a similar appearance to S. Typhi on MAC, BS, HE, DCA, and XLD agar. Methodology for confirmatory identification and antimicrobial susceptibility testing of S. Typhi is addressed in Chapter VII.

TABLE 34: Appearance of Salmonella ser. Typhi colonies on selective plating media

<table>
<thead>
<tr>
<th>Selective agar medium*</th>
<th>Color of colonies*</th>
<th>Size of colonies*</th>
<th>Figure number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismuth sulfite agar (BS)</td>
<td>Black, surrounded by a black or brownish zone with a metallic sheen</td>
<td>1 – 3 mm</td>
<td>Figure 83</td>
</tr>
<tr>
<td>MacConkey agar (MAC)</td>
<td>Transparent or colorless opaque</td>
<td>2 – 3 mm</td>
<td>Figure 59a</td>
</tr>
<tr>
<td>Hektoen enteric agar (HE)</td>
<td>Blue-green (with or without black centers) or yellow with black centers</td>
<td>1 – 2 mm</td>
<td>~</td>
</tr>
<tr>
<td>Xylose lysine desoxycholate agar (XLD)</td>
<td>Red (with or without black centers) or yellow with black centers</td>
<td>1 – 2 mm</td>
<td>~</td>
</tr>
<tr>
<td>Salmonella-Shigella (SS) agar</td>
<td>Colorless</td>
<td>1 – 2 mm</td>
<td>~</td>
</tr>
<tr>
<td>Desoxycholate citrate agar (DCA)</td>
<td>Colorless</td>
<td>1 – 2 mm</td>
<td>~</td>
</tr>
</tbody>
</table>

* Most Salmonella serotypes appear similar to S. Typhi on these media; therefore, confirmatory testing is necessary.
Recovery of *Shigella* from stool: Isolation and preliminary identification

Isolation and identification of *Shigella* can be greatly enhanced when optimal laboratory media and techniques are employed.

An outline of the procedure for isolation and identification of *Shigella* from fecal specimens is presented in Figure 36. Refer to Appendix 9 for a list of supplies necessary for laboratory identification of *Shigella*. (This appendix includes supplies appropriate for district laboratories, regional laboratories and national reference laboratories.) A sample worksheet for organizing laboratory data is presented in Figure 37.

There is no enrichment medium for *Shigella* that consistently provides a greater recovery rate than use of direct plating alone. For optimal isolation of *Shigella*, two different selective media should be used: a general purpose plating medium of low selectivity, such as MAC, and a more selective agar medium, such as XLD. DCA and HE agar are suitable alternatives to XLD agar as media of moderate to high selectivity. **SS agar should not be used** because it frequently inhibits the growth of *S. dysenteriae* serotype 1.

Inoculation of selective agar for recovery of *Shigella* from fecal specimens

Fecal specimens should be plated as soon as possible after arrival in the laboratory. Selective media may be inoculated with a single drop of liquid stool or fecal suspension. Alternatively, a rectal swab or a fecal swab may be used. If a swab is used to inoculate selective media, an area approximately 2.5 cm (1 inch) in diameter is seeded on the agar plates, and the plates then are streaked for isolation (Figure 84).

When inoculating specimens to a plate for isolation, the entire surface of the agar plate must be used to increase the chances of obtaining well-isolated colonies. Media of high selectivity (e.g., XLD) require more overlapping when streaking than media of low selectivity (e.g., MAC); it is therefore important to pay particular attention to streaking. After streaking, cover the agar plate and place it upside-down (i.e., cover-side down) in the incubator to avoid excessive condensation. Incubate the plates for 18–24 hours at 35°–37°C.

Isolation of suspected *Shigella* from selective media

After incubation, record the amount and type of growth (i.e., lactose-fermenting or -nonfermenting) on each isolation medium for each patient specimen. Colonies of *Shigella* on MAC appear as convex, colorless colonies approximately 2–3 mm in diameter, although *S. dysenteriae* 1 colonies may be smaller (Table 35). *Shigella* colonies on XLD agar are transparent pink or red, smooth colonies, approximately 1–2 mm in diameter, although *S. dysenteriae* 1 colonies on XLD agar are frequently
very tiny. Select suspect colonies from the MAC and XLD plates and inoculate them to appropriate screening media such as Kligler iron agar (KIA) or triple sugar iron agar (TSI). Figures 85, 86, 87, and 88 show the typical appearance of Shigella colonies on XLD and MAC.

Following the preliminary identification of suspect Shigella colonies on plating media, the laboratorian should conduct biochemical screening tests and serologic testing to confirm the identification of the agent. Methodology for the identification and antimicrobial susceptibility testing of Shigella is addressed in Chapter VIII of this manual.

Recovery of V. cholerae from stool: Isolation and preliminary identification

Although *V. cholerae* will grow on a variety of commonly used agar media, isolation from fecal specimens is more easily accomplished with specialized media. Alkaline peptone water is recommended as an enrichment broth, and thiosulfate citrate bile salts sucrose agar (TCBS) is the selective agar medium of choice. (Refer to Appendix 2 (“Media, Reagents and Quality Control”) before preparing any of these media because incorrect preparation can affect the reactions of organisms in
TABLE 35: Appearance of *Shigella* colonies on selective plating media

<table>
<thead>
<tr>
<th>Selective agar medium</th>
<th>Color of colonies</th>
<th>Size of colonies</th>
<th>Figure number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacConkey agar (MAC)</td>
<td>Colorless</td>
<td>2 – 3 mm</td>
<td>Figure 88</td>
</tr>
<tr>
<td>Xylose lysine desoxycholate (XLD)</td>
<td>Red or colorless</td>
<td>1 – 2 mm</td>
<td>Figures 85, 86, and 87</td>
</tr>
<tr>
<td>Desoxycholate citrate agar (DCA)</td>
<td>Colorless</td>
<td>2 – 3 mm</td>
<td>~</td>
</tr>
<tr>
<td>Hektoen enteric agar (HE)</td>
<td>Green</td>
<td>~</td>
<td>~</td>
</tr>
</tbody>
</table>

* S. dysenteriae 1 colonies may be smaller.
* S. dysenteriae 1 colonies on XLD agar are frequently very tiny, unlike other *Shigella* species.

Enrichment of suspected *V. cholerae* in alkaline peptone water

Enrichment in alkaline peptone water (APW) can enhance the isolation of *V. cholerae* when few organisms are present, as in specimens from convalescent

FIGURE 85: *Shigella dysenteriae* 1 colonies on xylose lysine desoxycholate (XLD) agar

The colonies appear as small pinpoints of growth; this pattern is characteristic of growth of *S. dysenteriae* type 1 on XLD specifically, and can help guide in the identification of the etiologic agent.
Colonies of *S. flexneri* are larger on XLD than are colonies of *S. dysenteriae* 1.

S. flexneri colonies are colorless to red, whereas *E. coli* colonies are yellow on XLD.
patients and asymptomatic carriers. *Vibrio* spp. grow very rapidly in alkaline peptone water, and at 6–8 hours they will be present in greater numbers than non-*Vibrio* organisms.

Alkaline peptone water can be inoculated with liquid stool, fecal suspension, or a rectal swab. The stool inoculum should not exceed 10% of the volume of the broth. Incubate the tube with the cap loosened at 35°–37°C for 6–8 hours. After incubation, subculture one to two loopfuls of alkaline peptone water to thiosulfate citrate bile salts sucrose (TCBS) medium. (The loopfuls of APW should be obtained from the surface and topmost portion of the broth, because vibrios preferentially grow in this area.) **Do not shake or mix the tube before subculturing.** If the broth cannot be plated after 6–8 hours of incubation, subculture a loopful of the broth at 18 hours to a fresh tube of alkaline peptone water; this second tube of APW should then be subcultured to TCBS agar after 6–8 hours of incubation.

Inoculation and isolation of suspected *V. cholerae* from thiosulfate citrate bile salts sucrose (TCBS) selective agar

TCBS agar is commercially available and easy to prepare, requires no autoclaving, and is highly differential and selective. **Growth from TCBS medium is not suitable for direct testing with *V. cholerae* antisera.**
Inoculate the TCBS plate by streaking (as described in Figure 84). After 18–24 hours’ incubation at 35°–37°C, the amount and type of growth (i.e., sucrose-fermenting or sucrose-nonfermenting) on the TCBS plate should be recorded on data sheets (Figure 46). **Colonies suspicious for V. cholerae will appear on TCBS agar as yellow, shiny colonies, 2–4 mm in diameter** (Figure 89). The yellow color is caused by the fermentation of sucrose in the medium; in contrast, sucrose-nonfermenting organisms (e.g., V. parahaemolyticus) produce green to blue-green colonies.

Isolation of suspected V. cholerae

Carefully select at least one of each type of sucrose-fermenting (yellow) colony from the TCBS plate to inoculate a heart infusion agar (HIA) slant or another nonselective medium; each type of colony selected should be inoculated onto a separate plate. (*V. cholerae* requires 0.5% NaCl [salt] for optimal growth on agar media; some commercially available formulations of nutrient agar do not contain salt, and should not be used for culture of *V. cholerae*.) Using an inoculating needle, lightly touch only the very center of the colony. (Do not take the whole colony or go through the colony and touch the surface of the plate because contaminants may be on the surface of the agar.) If there is doubt that a particular

FIGURE 89: Growth of Vibrio cholerae on thiosulfate citrate bile salts sucrose (TCBS) agar

Colonies suspicious for *V. cholerae* will appear on TCBS agar as yellow, shiny colonies, 2–4 mm in diameter. The yellow color is caused by the fermentation of sucrose by the organism; non-sucrose-fermenting organisms (e.g., *V. parahaemolyticus*) produce green to blue-green colonies on this same medium.
colony is sufficiently isolated from surrounding colonies, purify the suspicious colony by streaking on another agar plate, incubating it and then testing colonies from the subculture.

Incubate the heart infusion agar slants at 35°–37°C for up to 24 hours; note that sufficient growth for serologic testing might be obtainable after 6 hours. Slide serology with polyvalent O1 and O139 antisera is sufficient for a presumptive identification of *V. cholerae*, and is described in Chapter IX of this manual.

Following the preliminary identification of suspect colonies as *V. cholerae* on TCBS agar, the laboratorian should conduct other biochemical and serologic identification tests and, if appropriate, antimicrobial susceptibility testing of the isolate. Methodology for the identification and antimicrobial susceptibility testing of *V. cholerae* is addressed in Chapter IX.
Preservation and Storage of Isolates

It is often necessary for isolates to be examined at a time-point following the infection from which the culture was obtained. For example, it is sometimes appropriate to refer back to an isolate for epidemiological purposes; e.g., to learn if a new case-patient is infected with the same strain of a pathogen as an individual who had an earlier case of disease. Another example would be a situation where a laboratory chooses to screen a number of isolates at one time each year to additional antimicrobial agents or, e.g., for beta-lactamase production; this practice would assist in the detection of emerging characteristics in known pathogens. Sometimes isolates need to be sent to reference laboratories for confirmation and/or further testing and must be stored prior to packing and shipping (Appendix 12). Selection of a storage method depends on the length of time the organisms are to be held and the laboratory equipment and facilities available.

Short-term storage may be accomplished with transport media, freezing, or, in some cases (and for some pathogens) at room temperature on simple media plus mineral oil to prevent drying. Methods for short-term storage appropriate to the different bacteria included in this laboratory manual are included later in this appendix.

Long-term storage of bacterial isolates is best accomplished by either lyophilization or freezing. Specific methods appropriate for the bacteria included in this laboratory manual are included later in this appendix. Lyophilization (freeze-drying) is the most convenient method of storage because lyophilized bacteria can be stored for long periods at 4°C or -20°C and can be transported without refrigeration.\(^\text{41}\) However, the equipment required is expensive and not all laboratories will have the ability to lyophilize isolates. (Reference laboratories choosing to lyophilize bacteria should always maintain a frozen preparation in addition to larger quantities of lyophilized strains, because some lyophilized preparations may be nonviable upon reconstitution.) Bacterial cultures may be stored frozen or lyophilized in a variety of suspending media formulated for that purpose. There are many formulations of suspending medium, but in general serum-based media, skim milk, or polyvinylpyrrolidone (PVP) medium is used for

\(^{41}\) Cultures for transport should be packaged according to the IATA shipping regulations presented in Appendix 12. No more than 50-ml of culture should be shipped in one package.
lyophilization, and skim milk, blood, or a rich buffered tryptone soy broth (TSB) with 15%–20% reagent-grade glycerol is used for freezing. Do not use human blood, because of safety issues (e.g., HIV and hepatitis transmission), and because of the possible inhibition of growth of isolates resulting from antibodies or residual antibiotics.

Cultures to be prepared for either permanent or short-term storage should be confirmed as pure before proceeding with any of these methodologies. Fresh cultures (i.e., overnight growth) should be used for the preparation of storage strains.

Storage of Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae isolates

The three agents of pneumonia and meningitis included in this laboratory manual (H. influenzae, N. meningitidis, and S. pneumoniae) are fragile and care must be taken in their preparation for storage. Maintain sterility at all times during preparation of cultures for storage.

Short-term storage of H. influenzae, N. meningitidis, and S. pneumoniae

If Dorset Egg medium (DE) is available to the laboratory, it is useful for room temperature (i.e., approximately 25°C) storage of S. pneumoniae, H. influenzae, and N. meningitidis. On DE, H. influenzae and N. meningitidis can each be stored for approximately 3 weeks, whereas S. pneumoniae can be stored for approximately 6 weeks on DE. (Instructions for preparation of DE are included in Appendix 2.) Use overnight growth from blood or chocolate agar, as appropriate, to inoculate a 4-ml DE slant in a 7-ml screw-top tube.

If DE is not a medium readily prepared or used by the laboratory, short-term storage of any of these three pathogens can be carried out on supplemented chocolate agar for up to 1 week.

- Viability during the short-term storage (7 days or fewer) is best if S. pneumoniae and H. influenzae are inoculated onto chocolate agar slants with screw-cap tubes, incubated overnight at 35°C, and then maintained at 4°C. These bacterial species do not survive well in broth and survive only 3 to 4 days on primary agar plates.
- For N. meningitidis, solid screw-caps should be loosened during storage but permeable membrane screw caps (which allow for an exchange of gases and are available commercially) should be used when possible. An overlay of TSB may also be helpful and might increase viability to 14 days. N. meningitidis slants should not be refrigerated.
S. pneumoniae, H. influenzae, and N. meningitidis can also be stored short-term on swabs stored in silica gel packets; stored in this manner, the isolates will last approximately 2 weeks at room temperature. The packets are inexpensive and easy to use, but are not often available from commercial manufacturers. (One commercial source of silica gel packets is Scientific Device Laboratory, Inc., included in Appendix 13.) Figure 90 shows how to use the packets.

Long-term storage of H. influenzae, N. meningitidis, and S. pneumoniae

Long-term storage can be accomplished by freezing or lyophilization.

- **Frozen storage**
 a) Grow pure culture of *H. influenzae* on chocolate agar and of *S. pneumoniae* and *N. meningitidis* on blood or chocolate agar. Incubate the plates in a CO₂ incubator or candle-jar for 18–24 hours at 35°C. Inspect the plates for purity.
b) Harvest all of the growth from a plate with a sterile swab.

c) Dispense the growth in a 2-ml, externally-threaded screw-capped cryogenic vial containing 1 ml of sterile defibrinated blood by twirling the swab to release the organisms. Squeeze the excess blood from the swab by rotating it against the sides of the vial before carefully withdrawing it. Discard the swab in disinfectant.

• Defibrinated sheep, horse, or rabbit blood can be used for all three of these respiratory organisms. **Human blood should not be used.** Alternatives, such as TSB with 15%–20% reagent-grade glycerol or Greaves solution, can also be used.

• **Caution:** Do not use glass ampoules (i.e., glass cryovials) for freezing in liquid nitrogen because they can explode upon removal from the freezer.

d) If possible, rapidly freeze the suspension in a bath of 95% alcohol and dry-ice pellets.

e) Place the cryovials in a -70˚C freezer or a nitrogen freezer (-120˚C). A -20˚C freezer can be used, but some loss of viability can be expected. **Freezers with automatic defrosters should never be used.**

- **Lyophilization**

Some laboratories may have lyophilization (i.e., freeze-drying) facilities.

a) Grow the *H. influenzae* on supplemented chocolate agar / the *S. pneumoniae* and *N. meningitidis* on blood agar or chocolate agar. Incubate the plates in a CO₂-incubator or candle-jar for 18 – 20 hours at 35˚C. Inspect the plate for purity.

b) Harvest the growth from the plate with 1–2 ml of sterile skim milk and a sterile swab. Place approximately 0.5 ml of suspension into a sterile ampoule or lyophilization vial. Several vials can be prepared from a single plate, if desired. **Maintain sterility at all times during the preparation of the vial.**

c) The cell suspension should be shell-frozen on the walls of the lyophilization vial. This is accomplished by one of the following two methods:

• Keep the lyophilization vial at -70˚C until just before the cell suspension is added. Add the cell suspension and rapidly rotate the vial to freeze the suspension to the wall. Return the vial to the -70˚C freezer until ready to attach to the lyophilizer.

or

• If a -70˚C freezer is not available, a mixture of alcohol (95% ethanol) and dry ice can be prepared and used to shell-freeze the cell suspensions. Shell-freezing is accomplished by placing the cell suspension in the lyophilization vial and rotating the vial at a 45° to 60° angle in the alcohol/dry-ice mixture.
d) Attach the vials to the lyophilizer. **Follow the manufacturer’s directions because each instrument uses a different type of apparatus.** The time of lyophilization will depend on the number of vials being lyophilized and the capacity of the instrument. On an average machine, 4–5 hours are required to completely dry 10–20 small vials.

e) At the end of the run, seal the vials with a torch while they are still attached to the lyophilizer and under vacuum. The vials can be stored at 4°C or at freezer temperatures after being sealed.

- **Recovery of isolates from long-term storage**

 Lyophilized specimens of *H. influenzae*, *N. meningitidis*, and *S. pneumoniae* can be recovered by suspending the preparation in 0.25–0.5 ml of broth (e.g., TSB, Mueller-Hinton broth, or PBS). Add one drop of the suspension to a plate of medium (sheep blood agar plate or chocolate agar for *H. influenzae*), and approximately five drops to a liquid (broth) medium containing five drops of blood (sheep, rabbit, goat, or horse blood, but **not human blood**). Incubate the plate and tube for 18–24 hours at 35°C, and observe for growth. If growth on the plate occurs, the tube can be discarded; however, if no growth is observed on the plate, sample the medium in the tube and re-incubate. After another 18–24 hours, the plate should be re-examined for growth. If growth is seen, the tube can be discarded; if no growth is present, examine the tube for turbidity (which would indicate growth). If the tube is turbid, the tube should be re-sampled and re-incubated; if the tube is not turbid, assume the lyophilized sample was dead. (This is why it is strongly suggested that a specimen be prepared for long-term frozen storage in addition to lyophilization.) Organisms grown from lyophilized specimens must be subcultured at least once prior to being used in tests.

 Frozen cultures should be thawed at room temperature, and a Pasteur pipette should be used to remove a small amount of inoculum from the cryotube for culture. The inoculum may be taken from the frozen culture before the preparation is completed thawed and should be taken no later than when the frozen culture has completely thawed. (Once completely thawed, the frozen culture will begin to lose viability.) Organisms grown from frozen specimens must be subcultured at least once prior to being used in tests.

Storage of Neisseria gonorrhoeae isolates

N. gonorrhoeae is a fragile organism and care must be taken in preparation of the cultures for storage. Maintain sterility at all times during preparation of cultures for storage.
Short-term storage of *N. gonorrhoeae*

Isolates of *N. gonorrhoeae* can be stored for approximately 2 weeks at -20°C. (They cannot be stored at room temperature or 4°C; they must be frozen.) Isolates for short-term storage should be stored in TSB containing 20% glycerol at the back of the freezer shelves and not in the door or at the front of the shelves (because when the door to the freezer is opened and the isolates are not at the back of the shelf, they may thaw and not properly refreeze). Repeated freezing/thawing cycles, or failure to re-freeze results in a rapid loss of viability.

Long-term storage of *N. gonorrhoeae*

The best method for storing gonococcal isolates is to freeze them in a -70°C freezer or in liquid nitrogen (at -196°C). Strains may be stored as freeze-dried lyophiles; however, this method is expensive and labor-intensive and lyophiles may lose viability over time.

- **Frozen storage**

 To store frozen isolates, use a sterile swab to prepare dense suspensions of 18- to 24-hour pure cultures prepared in TSB containing 20% (vol/vol) glycerin. The best suspensions are prepared by rolling the swab over isolated colonies or the margin of confluent areas of growth. Dispense the suspension into cryovials (i.e., freezing vials specially designed for use at very low temperatures), but glass ampoules should never be used for freezing in liquid nitrogen because they can explode upon removal from the freezer.

 When frozen suspensions are thawed to inoculate cultures, the suspension should not be refrozen; new suspensions of organisms should be prepared. As many as 99% of the cells in a suspension may be destroyed during the freezing and the thawing of the preparations due to physical destruction (i.e., shearing) of cells by crystals of the suspending medium that form during the freezing processes. One way to minimize the loss of cells during freezing is by “flash-freezing” the specimen in an acetone or alcohol bath containing dry ice. Alternatively, a sample may be taken from the top of the frozen preparation with a sterile bacterial loop if the suspension is not thawed.

 If neither a -70°C freezer nor a liquid-nitrogen storage facility is available, gonococcal suspensions may be frozen for up to 2 weeks at -20°C; frozen suspensions of *N. gonorrhoeae* will lose viability if stored for periods longer than 2 weeks at this temperature.

- **Lyophilization**

 Some laboratories may have lyophilization (i.e., freeze-drying) facilities. To prepare lyophiles, 18- to 24-hour pure cultures of isolates are suspended in special lyophilization media and are distributed in small aliquots (usually
0.25–0.5 ml) in lyophilization ampoules. As with frozen storage, approximately 99% of the organisms are killed during the freezing process.

Gonococcal isolates should not be suspended in skim milk because fatty acids in the milk may be toxic for some organisms and the density of the suspension cannot be determined. The suspensions are frozen at -70°C or in an ethanol/dry-ice bath and are then dried in a vacuum for 18–24 hours until the moisture has evaporated. **The manufacturer’s directions must be followed, because each instrument uses a different type of apparatus.** The dried preparation should be powdery in texture; if the preparation has a clear, syrupy appearance, the vial should be discarded. One ampoule of each strain preparation should also be opened and cultured immediately to ascertain that the preparation is viable and pure and to verify the identity of the organism and its characteristics (e.g., antimicrobial susceptibilities). Ampoules are best stored at 4°–10°C or at -20°C; ampoules should not be stored at room temperature. Oxygen may diffuse slowly into the ampoule through the thin seal, particularly with thin-walled ampoules. Thus, one ampoule should be opened every 1–2 years to confirm that the preparation is viable. If the re-suspended lyophilized preparation does not grow after incubation for 48 hours, new ampoules must be prepared.

• **Recovery of isolates from long-term storage**

Lyophilized specimens of *N. gonorrhoeae* can be recovered by suspending the preparation in 0.5–1.0 ml of glycerol TSB, Mueller-Hinton broth, or PBS, and inoculating GC-chocolate agar. An advantage of using glycerol TSB is that the suspension can be re-frozen until purity is assured on the culture plate; after pure culture is confirmed, the suspension can either be appropriately discarded or a new frozen or lyophilized specimen can be prepared. Perform at least one subculture off the initial culture prior to inoculating tests.

Frozen cultures should be thawed at room temperature, and used to inoculate a plate of GC-chocolate agar. The inoculum may be taken from the frozen culture before the preparation is completed thawed, and should be taken no later than when the frozen culture has completely thawed. (Once completely thawed, the frozen culture will begin to lose viability.)

If resources are available and the stored (lyophilized or frozen) isolate is from a different originating laboratory (*i.e.*, a laboratory other than the one recovering it from the stored specimen), it is suggested that selective GC-medium be inoculated at the same time as GC-chocolate. If the culture is contaminated, this selective medium step will purify the culture.
Storage of Salmonella, Shigella, and Vibrio isolates

Salmonella, Shigella, and *Vibrio* isolates will usually remain viable for several days on solid medium held at room temperature (22–25°C) unless the medium dries out or becomes acidic. However, if cultures are to be maintained for longer than a few days, they should be appropriately prepared for storage. As with other bacteria, selection of a storage method depends on the length of time the organisms are to be held and the laboratory equipment and facilities available. Maintain sterility at all times during preparation of cultures for storage.

Short-term storage of *S.* Typhi, *Shigella,* and *V.* cholerae

Blood agar, tryptone soy agar (TSA), and heart infusion agar (HIA) are examples of good storage media for enteric organisms. Carbohydrate-containing media (e.g., Kligler iron agar [KIA] or triple sugar iron agar [TSI]) should not be used because acidic by-products of metabolism quickly reduce viability of the organisms. Blood agar, TSA, and HIA all contain salt (NaCl), which enhances the growth of *V. cholerae.* (Nutrient agar should not be used for growth or storage of *V. cholerae* because it contains no added salt.)

When preparing storage medium, place tubes of medium that are still hot after autoclaving in a slanted position to provide a short slant and deep butt (2–3 cm). To inoculate, stab the inoculating needle to the butt of the medium once or twice, and then streak the slant. Incubate the culture overnight at 35–37°C. Seal the tube with cork stoppers that have been soaked in hot paraffin or treated in some other way to provide a tight seal. Store cultures at 22–25°C and in the dark. Sterile mineral oil may also be used to prevent drying of slants. Add sufficient sterile mineral oil to cover the slants to 1 cm above the top of the agar, and subculture when needed by scraping growth from the slant; there is no need to remove mineral oil to subculture. *Shigella,* *Vibrio,* and *Salmonella* strains maintained in pure culture in this manner will usually survive for several years.

Long-term storage of *S.* Typhi, *Shigella,* and *V.* cholerae

Isolates may be stored indefinitely if they are maintained frozen at -70°C or below; these temperatures can be achieved in an “ultralow freezer” (-70°C) or a liquid nitrogen freezer (-196°C). Storage of isolates at -20°C is not recommended, because some organisms will lose viability at that temperature.

- **Frozen storage**
 a) Inoculate a TSA or HIA slant (or other non-inhibitory, salt-containing growth medium) and incubate at 35–37°C.
 b) Harvest cells from the slant and make a suspension in the freezing medium.
c) Dispense the suspension into cryovials (freezing vials specially designed for use at very low temperatures).

 • **Caution:** Glass ampoules should never be used for freezing in liquid nitrogen because they can explode upon removal from the freezer.

d) Prepare an alcohol and dry-ice bath by placing dry ice (frozen CO₂) in a leak-proof metal container large enough to hold a metal culture rack, and add enough ethyl alcohol to submerge about half of the cryovial. Rapidly freeze the suspension by placing the sealed vials in the dry-ice bath until frozen. (If no dry ice is available, a container of alcohol may be placed in the freezer overnight and then used to quick-freeze vials.) Transfer the frozen vials to the freezer.

• **Lyophilization**

Most organisms may be successfully stored after lyophilization, or freeze-drying. Freeze-drying involves the removal of water from frozen bacterial suspensions by sublimation under reduced pressure. **Follow the manufacturer’s directions since each instrument uses a different type of apparatus.** Lyophilized cultures are best maintained at 4°C or lower.

• **Recovery of isolates from long-term storage**

To recover an isolate from frozen storage, remove the frozen cultures from the freezer and place them on dry ice or into an alcohol and dry-ice bath; transfer to a laboratory safety cabinet or a clean area if a cabinet is not available. Using a sterile loop, scrape the top-most portion of the culture and transfer to a growth medium, being careful not to contaminate the top or inside of the vial. Re-close the vial before the contents completely thaw, and return the vial to the freezer; with careful technique, transfers can be successfully made from the same vial several times. Incubate 18–24 hours at 35–37°C; perform at least one subculture before using the isolate to inoculate a test.

To recover lyophilized specimens of *Salmonella*, *Shigella*, or *V. cholerae*, inoculate a tube of nonselective broth (e.g., TSB or heart infusion broth) and incubate the suspension overnight. Subculture the broth to a nonselective growth medium (e.g., TSA or HIA) and incubate 18–24 hours at 35°–37°C.
Packing and Shipping of Diagnostic Specimens and Infectious Substances

Preparation for transport of infectious specimens and cultures

Transport of diagnostic specimens and etiologic agents (i.e., infectious substances) should be done with care not only to minimize the hazard to humans or the environment, but also to protect the viability of suspected pathogens. Transport of infectious items by public or commercial delivery systems may be subject to local, national, and (if crossing national borders) international regulations.

If possible, specimens should be sent so that they will arrive during working hours to ensure proper handling and prompt plating of the specimens. Inform the receiving laboratory as soon as possible that the specimens are coming, preferably before the specimens are sent.

Depending on local conditions, within-country transport may be by ground or by air. If specimens are sent by a messenger, the messenger must know the location of the laboratory and the appropriate person to contact. The sender should identify the fastest and most reliable way of transport in advance (whether it is, e.g., by bicycle, motorcycle, car, ambulance or public transport), and should make sure that adequate funds are available to reimburse costs for fuel or public transport. For longer distances, the fastest transport service may be air-freight or expedited delivery service. Because the ice packs or dry ice will last only 24–48 hours, arrangements should be made for immediate collection at the receiving airport. When the specimens are shipped by air, the following information should be communicated immediately to the receiving laboratory: the air waybill number, the flight number, and the times and dates of departure and arrival of the flight.

Transport and shipment of cultures and specimens

Regulatory organizations

The United Nations Committee of Experts on the Transport of Dangerous Goods is continually developing recommendations for the safe transport of dangerous goods. The International Civil Aviation Organization (ICAO) has used these recommendations as the basis for developing regulations for the safe
transportation of dangerous goods by air. The regulations of the International Air Transport Association (IATA) contain all the requirements of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods. However, IATA has included additional requirements that are more restrictive than those of ICAO. Member airlines of the IATA have adopted the use of the IATA regulations governing dangerous goods, and shippers must comply with these regulations in addition to any applicable regulations of the state of origin, transit, or destination.

The shipment of infectious substances or diagnostic specimens by air must comply with local, national, and international regulations. International air transport regulations may be found in the IATA publication titled Dangerous Goods Regulations. This reference is published annually in January and the regulations are often updated each year. A copy of the IATA regulations in English, Spanish, French, or German may be obtained from one of the following regional offices.

Orders for IATA Regulations from the Americas, Europe, Africa, and the Middle East:

Customer Service Representative
International Air Transport Association
800 Place Victoria, P.O. Box 113
Montreal, Quebec
CANADA H4Z 1M1
Telephone: +1 514 390 6726
Fax: +1 514 874 9659
Teletype: YMQTPXB

Orders for IATA Regulations from Asia, Australasia, and the Pacific:

Customer Service Representative
International Air Transport Association
77 Robinson Rd.
No. 05-00 SIA Bldg.
SINGAPORE 068896
Telephone: +65 438 4555
Fax: +65 438 4666
Telex: RS 24200 TMS Ref: TM 2883
Cable: IATAIATA
Teletype: SINPSXB

Internet Information:
http://www.iata.org

For Internet Orders, send e-mail to:
sales@iata.org
Shipping regulations for infectious substances and diagnostic specimens

In general, packages that are being shipped by air via commercial and cargo carriers (such as Federal Express, DHL, and passenger aircraft) are affected by IATA regulations. These regulations are outlined in this section of the laboratory manual to provide examples of acceptable packaging procedures for infectious materials. However, because they may not reflect current national or IATA requirements for packaging and labeling for infectious substances, anyone packaging isolates or infectious specimens should consult the appropriate national regulations and the current edition of IATA Dangerous Goods Regulations before packing and shipping infectious substances by any means of transport. Tables 36a and 36b include images of labels and packages appropriate for shipping different classifications of packages under IATA regulations (current as of 2002). Note that a completed “Shipper’s Declaration for Dangerous Goods” form is required for shipments of hazardous materials including infectious substances; guidance in the use of this form is provided later in this appendix.

Definition of infectious substances

According to IATA [2003], infectious substances are defined as substances known or reasonably expected to contain pathogens. Pathogens are microorganisms (including bacteria, viruses, rickettsia, parasites, fungi) or recombinant microorganisms (hybrid or mutant) that are known or reasonably expected to cause infectious disease in humans or animals.

Definition of diagnostic specimens

According to IATA [2003], a diagnostic specimen is defined as any human or animal material being transported for diagnostic or investigational purposes. Human or animal material includes (but is not limited to) excreta, secreta, blood and its components, tissue and tissue fluids, and excludes live infected animals.

Diagnostic specimens are to be considered “diagnostic specimens” unless the source patient or animal has or may have a serious human or animal disease which can be readily transmitted from one individual to another, directly or indirectly, and for which effective treatment and preventative measures are not usually available, in which case they must be classified as “infectious substances.”

Guidelines for packaging and labeling infectious substances

Persons who ship infectious agents or diagnostic specimens must comply with all local and international regulations pertaining to the packaging and handling of these materials. They must ensure that specimens arrive at their destination in good condition and that they present no hazard to persons or animals during transport.
<table>
<thead>
<tr>
<th>Package Type</th>
<th>Figure A</th>
<th>Figure B</th>
<th>Figure C</th>
<th>Figure D</th>
<th>Figure E</th>
<th>Figure F</th>
<th>Figure G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Specimens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious Substance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Ice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If overpack used.
TABLE 36b: Description of individual labels and markings required for safe and proper shipping of different types of packages

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This orientation label should clearly mark which side is ‘Up.’ Two labels are required on all boxes, each one on opposite sides of the package.</td>
</tr>
<tr>
<td></td>
<td>This marking must appear on an overpack when the regulations require the use of packagings bearing UN Specification Markings.</td>
</tr>
<tr>
<td></td>
<td>This marking is required when shipping diagnostic specimens.</td>
</tr>
<tr>
<td></td>
<td>These two labels are required when shipping a substance or specimen on dry ice.</td>
</tr>
<tr>
<td></td>
<td>These three labels are required when shipping infectious substances. Please note when shipping infectious substances you must use UN certified 6.2 Infectious Substances Packaging.</td>
</tr>
</tbody>
</table>
This label is required when shipping ≥ 50 ml of an infectious substance.

Figure A: Package with diagnostic specimens

- Surface to which air waybill and/or address labels are affixed
- Must have two “up” arrows on opposite sides

Figure B: Package with diagnostic specimens on dry ice

- Surface to which air waybill and/or address labels are affixed
- Must have two “up” arrows on opposite sides
TABLE 36b: continued

Figure C: Overpack with < 50 ml of infectious substance

- Label indicating name and telephone number of person responsible for shipment
- Surface to which air waybill and/or address labels are affixed
- Must have two “up” arrows on opposite sides

You **must** use UN certified 6.2 Infectious Substances Packaging.

Figure D: Overpack with ≥ 50 ml of infectious substance

- Label indicating name and telephone number of person responsible for shipment
- Surface to which air waybill and/or address labels are affixed
- Must have two “up” arrows on opposite sides

You **must** use UN certified 6.2 Infectious Substances Packaging.
You must use UN certified 6.2 Infectious Substances Packaging.
The inner packaging of infectious substance shipments must include the following:

- An inner watertight primary container that is glass, metal, or plastic and has a leak-proof seal.
 - Screw-cap tops should be reinforced with adhesive tape.
 - Petri plates should not be shipped.
- A watertight, impact-resistant secondary container (i.e., United Nations [UN] Specification Packaging that has been rigorously tested and certified for infectious substances)
- Absorbent material between the primary container and the secondary container.
 - If multiple primary containers are placed in a single secondary packaging, they must be wrapped individually to ensure that contact between them is prevented. The absorbing material, such as cotton wool, must be sufficient to absorb the entire contents of all primary containers.
- An itemized list of contents, placed between the secondary packaging and the outer packaging,
Multiple primary receptacles placed in a single secondary packaging must be wrapped individually or, for infectious substances transported in liquid nitrogen, separated and supported to ensure that contact between them is prevented. The absorbing material must be sufficient to absorb the entire contents of all primary receptacles.

The outer packaging of infectious substance shipments must meet the following requirements:

- Be of sufficient strength to adequately protect and contain the contents.
- Be at least 100 mm (4 inches) in its smallest overall external dimension, and of sufficient size to accommodate all labels to be placed on a single surface without overlapping.
- Be durably and legibly marked on the outside with the address and telephone number of the shipper and the consignee (i.e., the intended recipient). The infectious substance label must be affixed to the outside of the outer container, and must bear the inscription, “Infectious substance. In case of damage or leakage immediately notify public health authority.” The secondary packaging for infectious substances must be marked with UN Specification Markings denoting that the packaging has been tested and certified for shipping infectious substances.
- Be marked with the infectious substance marking (UN 2814): “Infectious substance, affecting humans (Genus species {or technical name}) x total number of milliliters or grams.” The species can be specified, or else indicated as “spp.” Note that this marking can be written by hand and does not require a special adhesive label. Genus and species may be written with or without italics or underlining. For example:

 “Infectious substance, affecting humans (N. meningitidis) x 5.0 ml”
 or
 “Infectious substance, affecting humans (Streptococcus spp.) x 5.0 ml”
 or
 “Infectious substance, affecting humans (HIV) x 0.5 ml”

- Be labeled with a set of two up-arrows (➤➤) on at least two opposite sides of the outer box to indicate the proper package orientation for the closures to be in the upright position. In addition to the double arrows on the sides, the top of the box may also be labeled with the statement “This End Up” or “This Side Up.”
- Be labeled with a “Cargo Aircraft Only” label if the total volume of the infectious substance per outer shipping container is ≥50 ml.
• Be marked with the name and telephone number of the person responsible for the shipment.

The packaging requirements for transport of infectious substances are illustrated in Figure 91.

Guidelines for packaging and labeling diagnostic specimens

Diagnostic (i.e., clinical) specimens with a low probability of containing an infectious agent must be packaged as follows in packaging that will not leak after a 1.2-meter drop test procedure:

• Be “triple packed” with a watertight primary container, a leak-proof secondary container, and sufficient absorbent material in between the primary and secondary containers.

3 The primary receptacle or the secondary packaging must be capable of withstanding, without leakage, an internal pressure differential of not less than 95 kiloPascals when between -40°C and +55°C. (Manufacturers indicate which of their packing and shipping containers meet these criteria.)

– Infectious substance containers exceed these criteria and are therefore acceptable for use for packing and shipping of diagnostic specimens.

• Contain an itemized list of contents between the secondary packaging and the outer packaging.

FIGURE 91: Proper packing and labeling of the secondary container for shipping of infectious substances
• Be marked with the diagnostic specimens statement on the outside of the outer container: “Diagnostic specimen. UN 3373. Packed in compliance with IATA Packing Instruction 650.” Note that this marking can be written by hand and does not require a special adhesive label.

3 If being shipped by air, the diagnostic specimens statement (“Diagnostic specimen. UN 3373. Packed in compliance with IATA Packing Instruction 650.”) must be present on the air waybill as well as on the outer container.

The packaging requirements for transport of diagnostic specimens are illustrated in Figure 92.

Guidelines for packaging and labeling of specimens shipped on dry ice (CO\textsubscript{2})

Wet ice or dry ice must be placed outside the secondary packaging in an overpack, and interior supports must be provided to secure the secondary packaging in the original position after the ice has dissipated. If wet ice is used, the packaging must be leak-proof. If dry ice is used, it must be packed according to IATA Packing Instruction 904: the outer packaging must permit the release of carbon dioxide [CO\textsubscript{2}] gas. Cardboard and polystyrene (i.e., Styrofoam) are two examples of materials suitable for the packaging of dry ice. In a temperate climate, approximately 6 pounds of dry ice will dissipate in a 24-hour period, and therefore at least that much (and preferably more) dry ice is suitable for a 24-hour shipment/delivery period; this amount should be adjusted accordingly for warmer climates.

FIGURE 92: Proper packing and labeling of the secondary container for shipping of diagnostic specimens
climates and size of the box. The larger the box, the more dry ice required to keep the contents frozen. Note that for air transport, the maximum dry ice allowed in a single outer container is 200 kg (approximately 440 pounds).

Packages containing dry ice must be properly marked with the words “Carbon dioxide, solid (dry ice); UN1845; (and net weight of the dry ice in kg),” and a pre-printed Class 9 “Miscellaneous Dangerous Goods” label, as shown in Table 36.

When an overpack is used, the overpack must be marked with the statement “Inner packages comply with prescribed specifications” (because the UN Specification Markings will not be visible on the outer-most packaging).

Guidelines for completion of the “Shipper’s Declaration for Dangerous Goods” form

All shipments of hazardous materials including infectious substances must be accompanied by two original, completed copies of the “Shipper’s Declaration for Dangerous Goods” form, inserted in the pouch along with the other shipping documents. A sample Shipper’s Declaration for Dangerous Goods form with information required for completion is presented in Figure 93. It is important to remember the following in order to reduce the risk of a shipment being refused and returned to the laboratory of origin:

• International regulations require the diagonal hatch marks in the left and right margins to be printed in red, and so photocopies of this form may not be used.

• The form must be completed in English, although translations may accompany it on the same form.

• Specific terms, spellings, and nomenclature must be used. For example, a cardboard box must be referred to as “fibreboard box” (spelled with R before E), and there must be a comma after the term “infectious substance” within the statement “infectious substance, affecting humans” (Figure 93).

• The person responsible for the shipment must be listed in one of the address boxes; if the person responsible for the shipment is different than the shipper or recipient, include the responsible person’s telephone number alongside the name.

• Under the “Transport Details” portion of the form, cross out the option that does not apply.
 • If the shipment is under 50 ml, cross out “cargo aircraft only.”
 • If the shipment is 50 ml or more, cross out “passenger and cargo aircraft.”

• Under the “Nature and Quantity of Dangerous Goods” portion of the form:
 3 The proper shipping name for infectious substances is “Infectious substance, affecting humans (technical name).” The technical name of the infectious
substance(s) must be included in parentheses after the proper shipping name; however, the specific species is not required, and “spp.” may follow the genus. It is therefore appropriate for the technical name of the infectious substance *Neisseria meningitidis* to be listed as either “(Neisseria meningitidis)” or “(Neisseria spp.).” Italics are permitted for the genus and species names but are not necessary.

3 For “Infectious substances, affecting humans (technical name)”: the proper class is 6.2; the UN number is UN2814; and the packing instruction is 602.

3 For “Carbon dioxide, solid (dry ice)”: the proper class is 9; the UN number is UN1845; the packing group is III; and the packing instruction is 904.

3 For infectious substances, the quantity must be noted in ml under the “Quantity and Type of Packing” portion of the form.

3 For dry ice, the quantity must be noted in kg (measured in whole numbers) under the “Quantity and Type of Packing” portion of the form.

3 If the UN specification marking is not visible on the outer package, the declaration must contain the words “OVERPACK USED” under the “Quantity and Type of Packing” portion of the form.

• Under the “Additional Handling Information” portion of the form, the 24-hour emergency contact telephone number must be answered by a person knowledgeable about emergency response procedures for damaged and leaking boxes.

• The “Shipper’s Declaration for Dangerous Goods” form is a legal document and must be signed.

Be certain to contact the intended recipient prior to shipment of the box to share all shipping details, and make arrangements for proper handling during shipping and legal importation of the infectious substance without delay in delivery; these guidelines are in keeping with IATA regulation 1.3.3.1.

Reference publication for packing and shipping of dangerous goods

FIGURE 93: Information required for proper completion of the “Shipper’s Declaration for Dangerous Goods” form

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Shipper</td>
<td>Company Name</td>
</tr>
<tr>
<td>Complete address (no P.O. Box)</td>
<td>Telephone number (include area code)</td>
</tr>
<tr>
<td>Person responsible (name and telephone)</td>
<td></td>
</tr>
<tr>
<td>Name of Recipient</td>
<td>Company Name</td>
</tr>
<tr>
<td>Complete address (Not a P.O. Box)</td>
<td>Telephone number (include area code)</td>
</tr>
<tr>
<td>Person responsible (name and telephone)</td>
<td></td>
</tr>
<tr>
<td>Use Air Waybill number of package</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Cross-out choice that does NOT apply (if quantity >50ml, transport must occur on cargo aircraft)</td>
<td></td>
</tr>
<tr>
<td>If parcel contains dry ice, include the following:</td>
<td></td>
</tr>
<tr>
<td>Cross-out choice that does NOT apply (infectious substances are usually non-radioactive)</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>If UN specification markings are not visible because the overpack covers the secondary packaging, include:</td>
<td></td>
</tr>
<tr>
<td>Overpack Used</td>
<td>REQUIRED</td>
</tr>
<tr>
<td>Prior arrangements as required by the ICAO and IATA Dangerous Goods Regulations 1.3.3.1 have been made</td>
<td></td>
</tr>
</tbody>
</table>

Infectious substance, affecting humans (GENUS SPECIES)

- UN number: 62 UN2814
- Quantity: x_______ ml
- 1 FIBREBOARD BOX

Carbon dioxide, solid (Dry ice)

- UN number: 9 UN1845
- Quantity: x_______ ml
- 1 FIBREBOARD BOX
- OVERPACK USED

Shippers’ Declaration for Dangerous Goods

- City, State, Country
- Name of Recipient
- Company Name
- Complete address (Not a P.O. Box)
- Telephone number (include area code)
- Person responsible (name and telephone)
- Name of Shipper
- Company Name
- Complete address (no P.O. Box)
- Telephone number (include area code)
- Person responsible (name and telephone)

Additional Information

- Shipper’s name, Title, company name
- City, State, Country
- Date shipped
- Shipper’s signature
Manufacturer, Supplier, and Distributor Contact Information

The following list of the manufacturers, suppliers, and distributors of the commonly used media and reagents does not indicate endorsement of these products and/or manufacturers. Note that contact information may change.

Follow the manufacturer’s instructions closely when using commercially available media and reagents, and perform quality control activities regularly as appropriate.

<table>
<thead>
<tr>
<th>Manufacturer, Supplier, and Distributor</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD (Becton, Dickinson and Co.)</td>
<td></td>
</tr>
<tr>
<td>also includes products from:</td>
<td></td>
</tr>
<tr>
<td>• BBL (internet catalogue)</td>
<td></td>
</tr>
<tr>
<td>http://catalog.bd.com/scripts/catalog.exe</td>
<td></td>
</tr>
<tr>
<td>• Difco (internet catalogue)</td>
<td></td>
</tr>
<tr>
<td>BD Microbiology Systems</td>
<td></td>
</tr>
<tr>
<td>7 Loveton Circle</td>
<td></td>
</tr>
<tr>
<td>Sparks, Maryland 21152 USA</td>
<td></td>
</tr>
<tr>
<td>Phone: (+1) 410 316 4000</td>
<td></td>
</tr>
<tr>
<td>Fax: (+1) 410 316 4723</td>
<td></td>
</tr>
<tr>
<td>BD Worldwide</td>
<td></td>
</tr>
<tr>
<td>House of Vanguard</td>
<td></td>
</tr>
<tr>
<td>Chiromo Road, Westlands</td>
<td></td>
</tr>
<tr>
<td>4th Floor, Wing B, P.O. Box 76813</td>
<td></td>
</tr>
<tr>
<td>Nairobi, Kenya</td>
<td></td>
</tr>
<tr>
<td>Phone: (+254) 2 44 96 09</td>
<td></td>
</tr>
<tr>
<td>Fax: (+254) 2 44 96 19</td>
<td></td>
</tr>
<tr>
<td>BD Diagnostics Systems, Asia Limited</td>
<td></td>
</tr>
<tr>
<td>5th Floor, Signature Tower South City</td>
<td></td>
</tr>
<tr>
<td>Gurgaon – 122016</td>
<td></td>
</tr>
<tr>
<td>Haryana, India</td>
<td></td>
</tr>
<tr>
<td>Phone: (+91) 124 638 3566</td>
<td></td>
</tr>
<tr>
<td>Fax: (+91) 124 638 3224</td>
<td></td>
</tr>
<tr>
<td>E-mail: bd_india@bd.com</td>
<td></td>
</tr>
<tr>
<td>BD Chile</td>
<td></td>
</tr>
<tr>
<td>Carretera General San Martin 16500</td>
<td></td>
</tr>
<tr>
<td>Sitio 33, Colina (Casilla 16273 – Correo 9)</td>
<td></td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td></td>
</tr>
<tr>
<td>Phone: (+56) 2 460 0380</td>
<td></td>
</tr>
<tr>
<td>Fax: (+56) 2 460 0306</td>
<td></td>
</tr>
</tbody>
</table>
bioMérieux
bioMérieux Vitek, Inc.
595 Anglum Drive
Hazelwood, MO 63042 USA
Phone: (+1) 314 731 8500
Fax: (+1) 314 731 8700

bioMérieux s.a.
69280 Marcy-l’Etoile, France
Phone: (+33) 4 78 87 20 00
Fax: (+33) 4 78 87 20 90
Telex: 330967

Developing Health Technology
(low-cost laboratory equipment & supplies for developing countries, NGOs and aid agencies)
Developing Health Technology
Bridge House
Worlington Road
Barton Mills
ENGLAND IP28 7DX.
Phone: (+44) 1603 416058
Fax: (+44) 1603 416066
E-mail: sales@dht-online.co.uk
Internet: http://www.dht-online.co.uk/

Fisher Scientific Co.
Fisher Scientific, Puerto Rico
Carreterra #1, Km.56.4
Barrio Montellano
Cayey, Puerto Rico 00737 USA
Phone: (+1) 787 738 4231
Fax: (+1) 787 738 4600

3970 Johns Creek Court
Suite 500
Suwanee, GA 30024 USA
Phone: (+1) 770 871 4500
Fax: (+1) 770 871 4600

Europe/Middle East/Africa Headquarters
Fisher Scientific Overseas Marketing, Inc.
46 Queen Anne Street
London W1M 9LA, United Kingdom
Phone: (+44) 171 935 4440
Fax: (+44) 171 935 5758

Listing of additional locations:
http://www.fishersci.com.sg/contact.html
Merck & Co KGaA
Electronic listing of global suppliers
Internet: http://www.merck.de
E-mail: service@merck.de

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merck KGaA Darmstadt Germany</td>
<td>Frankfurter Strasse 250, 64293 Darmstadt, Germany</td>
<td>(+49) 6151 720</td>
<td>(+49) 6151 722000</td>
<td></td>
</tr>
<tr>
<td>Merck Laboratory Supplies Division</td>
<td>1 Friesland Drive, Longmeadow Business Estate, Modderfontein, Gauteng, South Africa</td>
<td>(+27) 11 372 5000</td>
<td>(+27) 11 372 5254</td>
<td></td>
</tr>
<tr>
<td>Merck Quimica Argentina</td>
<td>Artilleros 2436, 1428 Buenos Aires, Argentina</td>
<td>(+54) 114 787 8100</td>
<td>(+54) 114 788 3365</td>
<td></td>
</tr>
<tr>
<td>Merck Limited</td>
<td>Shiv Sagar Estate “A”, Dr. Annie Besant Road, Worli, Mumbai 400018, INDIA</td>
<td>(+91) 22 4964855 (through 862)</td>
<td>(+91) 22 4950307 or 4954590</td>
<td></td>
</tr>
</tbody>
</table>

Calbiochem
(affiliate of Merck)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Internet</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calbiochem</td>
<td>P.O. Box 12087, LaJolla, CA 92039-2087, USA</td>
<td>(+1) 858 450 9600</td>
<td>(+1) 858 453 3552</td>
<td>http://www.calbiochem.com/contactUs/sales.asp</td>
<td>orders@calbiochem.com</td>
</tr>
</tbody>
</table>

Murex Diagnostics, Inc.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Murex</td>
<td>Central Road, Temple Hill, Dartford, Kent DA1 5LR, United Kingdom</td>
<td>(+44) 132 227 7711</td>
<td>(+44) 132 227 3288</td>
<td></td>
</tr>
<tr>
<td>Customer Services Department</td>
<td>3075 Northwoods Circle, Norcross, GA 30071, USA</td>
<td>(+1) 404 662 0660</td>
<td>(+1) 404 447 4989</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Phone</td>
<td>Fax</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Murex Diagnostics, Inc.</td>
<td>Murex Diagnostics / Embree Diagnostics</td>
<td>(+91) 11 326 7172</td>
<td>(+91) 11 324 1508</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delhi 110006, India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxoid</td>
<td>Oxoid s.a.</td>
<td>(+33) 4 78 35 17 31</td>
<td>(+33) 4 78 66 03 76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 route de Paisy, B.P. 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69572 Dardilly Cedex, France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+33) 4 78 35 17 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+33) 4 78 66 03 76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxoid Limited</td>
<td>(+44) (0) 1256 841 144</td>
<td>(+44) (0) 1256 463 388</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wade Road, Basingstoke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hampshire RG24 8PW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>England</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+44) (0) 1256 841 144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+44) (0) 1256 463 388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: oxoid@oxoid.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastorex</td>
<td>Sanofi Diagnostics Pasteur</td>
<td>(+33) 1 47 95 60 00</td>
<td>(+33) 1 47 41 91 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, Bld Raymond Poincaré - BP 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>92430 Marnes-la-Coquette, France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+33) 1 47 95 60 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+33) 1 47 41 91 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telex: 631293F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quélab Laboratories, Inc.</td>
<td>2331, Dandurand</td>
<td>(+1) 514 277 2558</td>
<td>(+1) 514 277 4714</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montreal (Quebec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canada, H2G 3C5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+1) 514 277 2558</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+1) 514 277 4714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet: http://www.quelab.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(website in English, French & Spanish)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remel Laboratories</td>
<td>12076 Santa Fe Drive</td>
<td>(+1) 913 888 0939</td>
<td>(+1) 913 895 4128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 14428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lenexa, KA 66215, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: (+1) 913 888 0939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: (+1) 913 895 4128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail: customersupport@remelinc.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Phone</td>
<td>Fax</td>
<td>E-mail</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Scientific Device Laboratory, Inc.</td>
<td>411 E. Jarvis Avenue, Des Plaines, IL 60018</td>
<td>(+1) 847 803 9545</td>
<td>(+1) 847 803 8251</td>
<td>scidev@aol.com</td>
</tr>
<tr>
<td>Sigma-Aldrich Corp.</td>
<td>Fancy Road, Poole, Dorset, BH17 7NH, UK</td>
<td>(+44) 0800 373 731</td>
<td>(+44) 0800 378 785</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma-Aldrich Chimie S.ar.l.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L’Isle d’Abeau Chesnes, B.P. 701, 38297 St. Quentin, Fallavier Cedex, France</td>
<td>(+33) 05 21 14 08</td>
<td>(+33) 05 03 10 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma-Aldrich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO USA</td>
<td>(+1) 314 286 7690</td>
<td>(+1) 314 286 7807</td>
<td>ncorray@sial.com</td>
</tr>
<tr>
<td></td>
<td>TCS Biosciences Ltd.</td>
<td>Botolph Claydon, Buckingham, MK18 2LR, England</td>
<td>(+44) (0) 1296 714222</td>
<td>(+44) (0) 1296 714806</td>
</tr>
<tr>
<td></td>
<td>Wellcome Diagnostics</td>
<td>GlaxoSmithKline, Glaxo Wellcome UK Ltd., Stockley Park West, Uxbridge, Middlesex, UB11 1BT</td>
<td>(+44) 20 8990 9000</td>
<td>(+44) 20 8990 4321</td>
</tr>
</tbody>
</table>
Wellcome Diagnostics
(continued)

Glaxo SmithKline
Consumo
Av. Presidente Kennedy
5454 Piso 13
Chile
Phone: (+56) 2 370 6600
Fax: (+56) 2 370 6666

GlaxoSmithKline
South Africa
44 Old Pretoria Road
Halfway House
Midrand Gauteng
South Africa
or
PO Box 3388
Halfway House 1685
Gauteng South Africa
Phone: (+27) 11 3136000
Fax: (+27) 11 3136111

VWR International

VWR International Ltd.
Merck House
Poole BH15 1TD
England
Phone: (+44) 1 202 669 700
Fax: (+44) 1 202 665 599
info@uk.vwr.com

VWR International S.A.S.
“Le périgares”–Bâtiment B
201, rue Carnot
F-94126 Fontenay-sous-Bois cedex
Phone: (+33) 1 45 14 85 00
info@fr.vwr.com
Quality control strains

Many laboratories purchase QC strains from official culture collections, including the American Type Culture Collection (ATCC) and the National Collection of Type Cultures and Pathogenic Fungi (NCTC). This manual presents the ATCC numbers for quality control strains, but ATCC strains may also be obtained from the NCTC.

American Type Culture Collection (ATCC)
12301 Parklawn Drive, Rockville, MD 20852 USA
Phone (+1) 703-365-2700
Fax (+1) 703-365-2701
E-mail help@atcc.org
Internet http://www.atcc.org

National Collection of Type Cultures and Pathogenic Fungi (NCTC)
Public Health Laboratory Service, London NW9, England
E-mail nctc@phls.nhs.uk
Internet http://www.phls.co.uk/services/nctc/

Quality control strains also may be purchased from commercial companies such as Lab M.
Lab M Topley House, 52 Wash Lane, Bury, BL9 6AU, England.

Etest® strips

Etest® strips may be somewhat more difficult to obtain than antimicrobial disks, and so specific information is included here regarding their acquisition. Etest® strips are available from:

AB BIODISK AB BIODISK North America, Inc Remel Inc. (Distributor)
Dalvagen 10 200 Centennial Ave 12076 Santa Fe Dr.
S 169 56 Piscataway, NJ, 08854-3910 Lenexa, KS 66215
Solna, Sweden Phone: (+1) 732 457 0408 Phone: (+1) 913 888 0939
Phone: (+46) 8 730 0760 Fax: (+1) 732 457 8980 Fax: (+1) 913 888 5884
Fax: (+46) 8 83 81 58

Find AB Biodisk on the Internet at: http://www.abbiodisk.com

In some cases discounts on Etest® strips may be available for projects funded by the World Health Organization (WHO), particularly for laboratories in resource-poor regions. To learn more about potential discounts, contact: Anne Bolmstrom, President AB BIODISK, at the company address in Sweden provided here.
Persons wishing to send isolates to an international reference laboratory for confirmation must contact the laboratory prior to the packaging and shipping process in order to obtain information about import permits and to ascertain the laboratory is able to accept the shipment. (Note: instructions for the proper packaging of isolates are found in Appendix 12.)

WHO Collaborating Centre for Research, Training, and Control in Diarrhoeal Diseases
International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B)
G.P.O. Box 128
Dhaka 100
BANGLADESH

WHO Collaborating Centre for Diarrhoeal Diseases Research and Training
National Institute of Cholera and Enteric Diseases
P-33, CIT Road Scheme XM
Beliaghata
P.O. Box 177
Calcutta 700 016
INDIA

WHO Collaborating Centre for Shigella
National Reference Laboratory for *Escherichia coli* and *Shigella*
Foodborne and Diarrheal Diseases Laboratory Section
Centers for Disease Control and Prevention
1600 Clifton Rd., N.E., MS C03
Atlanta, GA 30333 USA
Phone: (+1) 404 639 3344
Fax: (+1) 404 639 3333
E-mail: nas6@cdc.gov
National Reference Laboratory for *Vibrio cholerae* O1 and O139
Epidemic Investigations and Surveillance Laboratory
Foodborne and Diarrheal Diseases Laboratory Section
Centers for Disease Control and Prevention
1600 Clifton Rd., N.E., MS C-03
Atlanta, GA 30333 USA
Phone: (+1) 404 639 3344
Fax: (+1) 404 639 3333
E-mail: cab4@cdc.gov

WHO Collaborating Centre for Reference and Research on *Salmonella*
Institut Pasteur
28 rue du Docteur Roux
F-75724 Paris Cedex 15
FRANCE
Phone: (+33) 1 45 68 83 46
Fax: (+33) 1 45 68 82 28

WHO Collaborating Centre for Phage-typing and Resistance of Enterobacteria
Division of Enteric Pathogens
Central Public Health Laboratory
Colindale Avenue
London NW9 5HT
United Kingdom
Phone: (+44) 181 200 4400
Fax: (+44) 181 200 7874

WHO Collaborating Centre for Global Monitoring of Antimicrobial Resistant Bacteria
Nosocomial Pathogens Laboratory Branch
Centers for Disease Control and Prevention
1600 Clifton Rd., N.E., MS G-08
Atlanta, GA 30333 USA
Fax: (+1) 404-639-2256
E-mail: zoa6@cdc.gov (e-mail contact is preferred.)

WHO Collaborating Centre for Reference and Research on Meningococci
Attention: Prof. Dominique A. Caugant, Head
Norwegian Institute of Public Health
Geitmyrsveien 75
P.O. Box 4404 Nydalen
N-0403 Oslo
NORWAY
Phone: (+47) 22 04 23 11
Fax: (+47) 22 04 25 18
Unité du méningocoque, Centre Collaborateur OMS
(Meningococcal Unit, WHO Collaborating Centre)
Institut de Médecine Tropicale du Service de Santé des Armées
Attention: Dr. Pierre Nicolas
Parc du Pharo, B.P. 46
F-13998 Marseille-Armées
France
Phone: (+33) 4 91 15 01 15
Fax: (+33) 4 91 59 44 77
E-mail: imtssa.meningo@free.fr

WHO Collaborating Centre for STD and HIV
(Gonococcal Antimicrobial Surveillance Programme – Western Pacific Region)
The Prince of Wales Hospital,
Randwick, Sydney
Australia 2031
Phone: (+61) 2 9382 9079
Fax: (+61) 2 9398 4275
E-mail: j.tapsall@unsw.edu.au or limniosa@sesahs.nsw.gov.au

Gonococcal Antimicrobial Surveillance Program for Latin America and the Caribbean
Centre for Research in Biopharmaceuticals
Room 4170, Guindon Hall
University of Ottawa
451 Smyth Road
Ottawa, Canada K1H 8M5
Phone: (+1) 613 562 5800, ext. 8379
Fax: (+1) 613 562 5699
E-mail: GASPLAC@uottawa.ca

Quality control strains for supplemental antimicrobial susceptibility testing of Neisseria gonorrhoeae can be obtained from:
Neisseria Reference Laboratory
Gonorrrhea Research Branch, Building 1 South / Room B260
Centers for Disease Control and Prevention
1600 Clifton Rd NE
Atlanta, GA 30333 USA
Attention:
Dr. David Trees (Phone: (+1) 404 639 2134; Fax: 404 639 2310;
E-mail: DTrees@cdc.gov)
or
Dr. Joan S. Knapp (Phone: (+1) 404 639 3470; Fax: 404 639 3976;
E-mail: JKnapp@cdc.gov)
Resources for quality assurance

Laboratorians may also be interested in seeking reference information regarding quality assessment (Q/A). The World Health Organization maintains a website regarding international external Q/A schemes:

http://www.who.int/pht/health_lab_technology/ieqass.html.

As of 2002, the WHO international Q/A assessment scheme organizer for microbiology is:

WHO Collaborating Centre for External Quality Assessment in Clinical Microbiology
Attention: Dr J. Verhaegen
University Hospital St Raphael
Leuven, Belgium

An additional internet-based resource for information useful to laboratories in resource-limited settings is the “Public Health Care Laboratory” website:

The organization states a mission, “. . . to serve as a global resource and information exchange forum in support of laboratory services in resource-poor countries and thereby contribute to sustainable quality improvement. . . .”

PHCLab.com can be contacted by e-mail at: mail@phclab.com.
Selected References

Reference manuals

Copies of the above enterics manual can be obtained from:
Foodborne and Diarrheal Diseases Laboratory Section, Centers for Disease Control and Prevention
1600 Clifton Road, NE MailStop C-03
Atlanta, GA 30333 USA
Fax: 404-639-3333

• Copies of the above meningitis manual can be obtained from the World Health Organization, Geneva.

Reference manuals (pending publication by WHO)

Generic Protocol to Measure the Burden of Pneumonia and Pneumococcal Disease in Children 0 to 23 Months of Age. WHO, Geneva: Pending.

Shipping and packing reference

Additional references

Centers for Disease Control and Prevention (1994) *Laboratory methods for the diagnosis of Vibrio cholerae.* CDC: Atlanta, GA USA.

Selected References | 339

Miller MJ (1996) *A guide to specimen management in clinical microbiology.* Microbiology Technical Services, Dunwoody, GA, and Diagnostic Microbiology Section, Hospital Infections Program, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Index

Note: Page numbers followed by t or f or n refer to tables or figures or footnotes, respectively

A
Access to laboratory, 163–164
Accident response, 167
Acid production test
N. gonorrhoeae, 66 f, 69 f, 70 t, 71 t, 75–77
N. meningitidis, 70 t, 71 t, 77
See also Carbohydrate utilization test
Acidometric agar, 175
Acquisition of media and reagents, 173
ATCC. See American Type Culture Collection
Aeromonas spp., 147
Aerosols and aerosolization, 164–165
Agar dilution
Etest® comparison, 20, 41, 59–60, 61, 99
H. influenzae, 19, 21
N. gonorrhoeae, 98 t
S. pneumoniae, 53, 59, 61
Agglutination
H. influenzae, 6 f, 7–9, 7n
N. meningitidis, 31 f, 32–35, 35 f
quality control of reagents, 172
S. pneumoniae, 52–53
S. Typhi, 110–111, 112 f
Shigella, 128–130, 131 f
V. cholerae, 149–151
Alkaline peptone water, 175–176, 293–295
American Type Culture Collection (ATCC), 171, 331
Amies medium, 199
Amoxicillin
S. pneumoniae, 62
S. Typhi, 104
Shigella, 133
Ampicillin
H. influenzae, 14, 15 f, 19 t, 26
S. Typhi, 113 f, 117 t, 119 f
Shigella, 132–133, 133, 136 t, 138 f
V. cholerae, 153, 158 t
Antimicrobial susceptibility testing, 1, 2, 86–87
classification of results, 85
diarrheal disease outbreak, 288
H. influenzae, 13–27
N. gonorrhoeae, 82–101
N. meningitidis, 38–43
rationale, 1, 2
S. pneumoniae, 53–61
S. Typhi, 111–118
Shigella, 130–139
V. cholerae, 142, 151–159
See also Quality control, antimicrobial susceptibility testing; specific test; Surveillance
Autoclaves, 165–166
Azithromycin, 63, 64, 84, 97 t, 100 t
B
Bacitracin-chocolate agar, 179
Bile solubility test, 48 f, 50–52
Bismuth sulfite agar, 176–177
S. Typhi, 105
Bleach, 167
Blood, defibrinated, 173
Blood agar, 177
H. influenzae, 6 f
N. meningitidis, 31 f
S. pneumoniae, 46, 47 f, 48 f, 60
S. Typhi, 105
Blood culture broth, 177–178
Blood cultures, 227–228
identifying positive blood culture bottles, 228
inoculation, 228
subculturing, 228–229
Blood specimen collection and transport, 219–223
Bone marrow specimens, 248
Broth microdilution, 259–262
Etest® comparison, 20, 59–60
N. meningitidis, 38
S. pneumoniae, 53, 59

C
Carbohydrate utilization test
N. meningitidis, 31f, 36, 37f
for N. gonorrhoeae, 36t
See also Acid production test
Cary–Blair medium, 199
Catalase test, 66f, 71t, 72, 73f
Cefixime
N. gonorrhoeae, 64, 89, 97t, 98t, 100t
typhoid fever, 104
Cefotaxime, 58t
Ceftriaxone
H. influenzae, 26
N. gonorrhoeae, 89, 97t, 98t, 100t
N. meningitidis, 42
S. pneumoniae, 58t, 62
Cephalosporins
N. gonorrhoeae, 63, 64
Shigella, 133
typhoid fever, 104
Cerebrospinal fluid
collection and transport, 223–226
culturing, 244–248
Gram stain procedure, 241–244
latex agglutination test, 244
primary laboratory procedures, 240–248
Chloramphenicol
H. influenzae, 14, 15f
N. meningitidis, 38, 39f, 42, 42t
S. pneumoniae, 54t, 56, 58t
S. Typhi, 104, 113t, 117t, 119f
Shigella, 133, 136t, 138f
V. cholerae, 142, 153, 158t
Chocolate agar, 178, 229
with bacitracin, 179
H. influenzae, 5, 6f, 7, 9, 17, 19t, 20
N. gonorrhoeae, 64, 66f, 74, 81, 93
N. meningitidis, 31f
quality control, 179
S. pneumoniae, 46, 48f, 56
S. Typhi, 105
Cholera, 141
laboratory supplies for diarrheal disease outbreak, 281, 284–286t, 287
See also Vibrio cholerae
Ciprofloxacin
N. gonorrhoeae, 84, 97t, 98t, 100t
S. pneumoniae, 62
S. Typhi, 113, 117t
Shigella, 132–133, 136f
V. cholerae, 142, 153, 158t
Clindamycin, 62
Clothing, protective, 168
Colistin resistance test, 69f, 70f, 71t, 72–74
Cotrimoxazole. See Trimethoprim-sulfamethoxazole
Culture media abbreviations, 174–175
Cystine trypticase agar, 179–180
N. gonorrhoeae, 75–77
N. meningitidis, 36, 37f

D
Defibrinated blood, 173
Desoxycholate citrate agar, 105, 180–181
Diarrheal disease outbreak, 288
antimicrobial susceptibility testing, 288
causes, 287
data form, 280f
fecal specimen processing, 288–297
laboratory supplies for, 281, 282–286t, 287
Disinfectants and germicides, 165, 166–167
Disk diffusion test
H. influenzae, 13–14, 16–18
N. gonorrhoeae, 83, 91–95, 96f
S. pneumoniae, 53, 56–58
S. Typhi, 111–112, 113–118
Shigella, 130–131, 134–139
V. cholerae, 151, 153, 154–159
Dorset egg medium, 199–200, 300
Doxycycline, 141–142, 153
Dry ice, 320–321
Dysentery, 121
laboratory supplies for diarrheal disease outbreak, 281, 282–283f, 287
See also Shigella spp., S. dysenteriae

E
Enoxacin, 132–133
Enteric fever, 103
Enterobacteriaceae spp., 146, 147
Enzyme substrate test, 66f, 68–71, 71t, 77–79, 80f
Erythromycin
S. pneumoniae, 62
V. cholerae, 142, 153
Etest® antimicrobial gradient strip, 331, 22–25ff
accuracy, 20, 53, 59–60
H. influenzae, 13–14, 19–21
N. gonorrhoeae, 95–101
N. meningitidis, 38, 40–41, 42–43
S. pneumoniae, 53, 58–61
storage of test strips, 39, 98

F
Fecal specimens
collection, 275–278
diarrheal disease outbreak response
laboratory processing, 287
laboratory supplies for, 281, 282–286t
documentation, 280f
laboratory processing, 287–288
S. Typhi recovery, 105, 106f, 289–290
Shigella recovery, 291–292
V. cholerae recovery, 143f, 292–296
preparation for shipment, 278–279
transport media, 275–277, 278
Fever of unknown origin, 219
Fire prevention, 166
Flowchart
H. influenzae, 6f
N. gonorrhoeae, 66f, 69f
N. meningitidis, 31f
preparation of McFarland turbidity standard, 210f
S. pneumoniae, 48f
S. Typhi, 106f, 114t
Shigella, 123f
V. cholerae, 143f
Fluoroquinolone
H. influenzae, 26
N. gonorrhoeae, 63, 84
N. meningitidis, 42
Shigella sp., 133
typhoid fever, 104
Formalin, 33–34
See also lyophilization
Furazolidone, 142, 153
V. cholerae, 153f, 157f, 158t

G
GC. See Neisseria gonorrhoeae
GC-chocolate agar, 64, 181–182
GC-susceptibility test medium, 91, 182–183
Gloves, 168
Gonococcal selective media, 183–184
Gonococcus–chocolate agar medium.
See GC-chocolate agar
Gonococcus–susceptibility test medium.
See GC-susceptibility test medium
Gordon and McLeod’s reagent, 30n, 65n, 208
Gram-negative broth, 184
Gram stain test
cerebrospinal fluid, 241–244
H. influenzae, 6f
N. gonorrhoeae, 65, 66f, 69f
N. meningitidis, 31f
reagents, 202–204
S. pneumoniae, 48f
S. Typhi, 105, 106f, 107f
V. cholerae, 145, 146f, 148
Greaves solution, 200
Growth factor requirements
H. influenzae, 5, 6f, 9–13, 10t, 12t
V. cholerae, 142
Growth supplement
H. influenzae, 9
N. gonorrhoeae, 64
S. Typhi, 113, 114f
Haemin. See X Factor

Haemophilus aphrophilus, 10

Haemophilus haemolyticus, 10, 11, 13, 186–187

Haemophilus influenzae, 5–27

antimicrobial susceptibility testing by antimicrobial gradient strip, 13–14, 19–21, 22–25ff
ß-lactamase testing, 14, 26–27, 175ff

control strain, 14–16
by disk diffusion, 13–14, 16–18, 18f
documentation and reporting procedures, 15f, 27
media, 14, 16, 175, 184–185, 196
minimal inhibitory concentration (MIC), 14, 18–21, 23f, 24f, 25ff
quality control, 19f
quality control, 14–16, 171
surveillance, 18–19, 21–26
suspension characteristics, 16–17, 20

test selection, 13–14
antiseras, 7
associated diseases, 5
culturing, 5, 7, 184–185, 186–187, 201–202
from cerebrospinal fluid, 246
growth factor requirements, 10f
identification, 5
in cerebrospinal fluid, 240–248
flowchart, 6f
growth factor requirements, 5, 7, 9–13, 10f
hemolytic reactions, 13
media, 178–179
nasopharyngeal swab specimens, 251–254
presumptive, 232, 233f, 234f, 237f
rapid, 5
serotype testing, 5–9, 7n
suspension characteristics, 7–8
Quad ID plates, 7, 11–13, 12f
serotypes, 5, 7
storage media and conditions, 199–200
frozen storage, 301–302
lyophilization, 302–303
recovery from storage, 303
short-term, 300–301
subculturing, 228–229
V Factor, 5, 6f, 9–13, 10f, 11f, 12f
vaccines, 5
vs. H. haemolyticus, 13
X Factor, 5, 6f, 9–13, 10f, 11f, 12f

Haemophilus paraphrophilus, 10

Haemophilus parahaemolyticus, 10

Haemophilus parainfluenzae, 10

Haemophilus test medium, 7, 14, 184–185

Hafnia spp., 127

Handwashing, 164

Heart infusion agar, 185

V. cholerae, 142, 145, 148

Heart infusion rabbit blood agar, 185–186

Hektoen enteric agar, 186

Horse blood agar, 186–187

Hucker modification Gram stain reagents, 202–204

Hydrogen peroxide (H2O2), in superoxol/catalase test, 72

IATA. See International Air Transport Association

Identification

cerebrospinal fluid specimens, 240–248
fecal specimens, 287–297

H. influenzae, 5–13, 232, 233f, 234f, 237f

N. gonorrhoeae, 64–82

N. meningitidis, 230f, 231f, 232, 233f, 236, 238f

antisera, 30–37

positive blood culture bottles, 228
presumptive, 229–240

S. pneumoniae, 46–53, 230f, 232, 233f, 234f, 237f, 238f, 239f

S. Typhi, 104–111, 231f, 238, 240f

Shigella, 121–130

V. cholerae, 142–151

International Air Transport Association (IATA), 310–311

International Civil Aviation Organization, 309–310

International Collaboration on Gonococci, 83, 86n
J
JEMBEC® plates, 200
Joint fluid, 249

K
Kirby-Bauer test, 14
Kligler iron agar, 187–188
S. Typhi identification, 105–108, 106f
Shigella identification, 122, 123f, 125f, 126f
V. cholerae identification, 145, 146–147, 148f
Klingella denitrificans, 68, 70f, 72, 73f, 74, 77, 79
Kovac’s oxidase test
N. gonorrhoeae, 65–67, 66f, 67f
N. meningitidis, 30–32, 31f, 33f
reagent, 208
V. cholerae, 142–145

L
Laboratory procedures and practices
acquisition of media and reagents, 173
blood collection and transport, 219–223
cerebrospinal fluid collection and transport, 223–226
fecal specimen processing, 287–297
preparation of media and reagents, 173–174
quality control of materials, 170–173
response to diarrheal disease outbreak, 281, 282–286f, 287
See also Antimicrobial susceptibility testing; Identification; Safety practices
Loeffler’s methylene blue stain, 204–205
Lumbar puncture, 224, 225f
Lysine iron agar, 188
quality control, 188–189
S. Typhi identification, 108, 110t
Shigella identification, 123f, 125, 125f, 127–128, 129f
V. cholerae identification, 145, 146t, 147–148

M
MacConkey agar, 105, 189
Martin-Lewis agar, 183, 189
McFarland turbidity standards, 209–214
Media
acidometric agar, 175
acquisition, 173
alkaline peptone water, 175–176, 293–295
Amies medium, 199
bismuth sulfite agar, 105, 176–177
blood agar, 6f, 31f, 46, 47f, 48f, 60, 105, 177
blood culture broth, 177–178
Cary–Blair medium, 199
chocolate agar, 229
with bacitracin, 179
with TSA base and growth supplement, 178–179
commonly abbreviated culture media, 174–175
cystine trypticase agar, 36, 37f, 75–77, 179–180
desoxycholate citrate agar, 105, 180–181
Dorset egg, 199–200
GC-chocolate agar, 181–182
GC-susceptibility test medium, 182–183
gonococcal selective, 183–184
gram-negative broth, 184
Greaves solution, 200
Haemophilus test medium, 7, 14, 184–185
heat infusion agar, 142, 145, 148, 185
heat infusion rabbit blood agar, 185–186
Hektoen enteric agar, 186
horse blood agar, 186–187
JEMBEC® plates, 200
Kligler iron agar, 187–188
lysine iron agar, 187–188
MacConkey agar, 189
Martin-Lewis agar medium, 189
modified Thayer-Martin agar, 183–184
motility, 190
Mueller-Hinton agar, 190–191
plus 5% blood, 191–192
phosphate-buffered saline, 192
physiological saline, 193

Index/Oct 29 REVISED 10/31/03 4:29 PM Page 351
polysaccharide, 193–194
preparation, 173–174
quality control, 169–171
selenite broth, 194
skim-milk tryptone glucose glycerol
transmit medium, 200–201
SS agar, 194
Stuarts medium, 199
sulfide-indole-motility medium, 194–195
suppliers/manufacturers, 214, 215–217
thiosulfate citrate bile salts sucrose agar,
195
Todd–Hewitt broth, 195–196
trans-isolate, 201–202
transgrow, 201
tryptone-based soy agar, 196
tryptone soy broth, 197
tryptone soy sheep blood agar, 197
urea, 197–198
xylose lysine deoxycholate agar, 198–199
See also
index listing for specific medium
Meningitis
antimicrobial resistance, 38
collection and transport of blood cultures, 219
epidemics, 29
H. influenzae, 5, 7
N. meningitidis, 29, 32
S. pneumoniae, 45
Meningococcal disease
epidemic risk, 29
N. meningitidis, 29
Methylene blue stain, 204–205
Metronidazole, 133
Middle ear fluid specimens, 249
Minimal inhibitory concentration (MIC) testing
H. influenzae, 14, 18–21, 23f, 24f, 25f
N. gonorrhoeae, 83, 84, 97f, 99, 100t, 101
N. meningitidis, 38, 40–41, 42–43, 42t, 259–262
S. pneumoniae, 53, 58–61
See also index listing for specific test
Modified Thayer–Martin agar, 183–184, 189
Moraxella catarrhalis, 68, 74, 77
identification, 79
Motility agar test, 190
quality control, 190
S. Typhi, 108–110
Shigella, 125, 125f, 127f
Mueller-Hinton agar, 60, 91, 113, 115, 134, 154, 182, 190–191
H. influenzae, 14
plus 5% blood, 40, 56, 60, 191–192
N
Nalidixic acid
S. Typhi, 113, 113f, 117f, 119f
Shigella, 132–133, 136f, 138f
V. cholerae, 153, 153f, 157f, 158f
Nasopharyngeal swab specimens, 251–254
National Collection of Type Cultures (NCTC), 171, 331
NCCLS, xx, 2, 14, 14n, 41n, 53n, 82n, 85n, 86n, 112n, 131n, 151n
H. influenzae antimicrobial susceptibility testing quality control, 19t
N. gonorrhoeae testing recommendations, 82–83, 84, 85–86, 87, 88, 91–93
N. meningitidis antimicrobial susceptibility testing quality control, 41
S. pneumoniae antimicrobial susceptibility testing quality control, 55, 58t, 59, 61
S. Typhi antimicrobial susceptibility testing quality control, 115–116
V. cholerae antimicrobial susceptibility testing quality control, 153, 156
NCTC. See National Collection of Type Cultures
Neisseria catarrhalis, 26t, 70f, 77
Neisseria cinerea, 70f, 74, 77, 78f
Neisseria elongata, 68, 70f
Neisseria flavescens, 70f
Neisseria gonorrhoeae, 26t, 101–102
antimicrobial susceptibility testing by antimicrobial gradient strip, 95–101
ß-lactamase production, 87, 89, 90–91
classification of results, 85
by disk diffusion, 83, 84, 91–95, 96f
documentation and reporting procedures, 64, 92f, 101
indications for retesting, 101
interpretative criteria, 85–86, 97, 98
media, 91, 182–183
methods, 82–84, 89–90
minimal inhibitory concentration (MIC), 83, 84, 97, 99, 100, 101
nitrocefin test, 90–91
penicillin-tetracycline resistance phenotypes, 87–89, 88
quality control, 84, 91, 93, 95, 99, 171
surveillance, 64, 87, 89
associated diseases, 63
clinical characteristics of infection, 63
culturing, 64, 181–184, 204, 263, 264
acid production test, 70, 71, 75–77, 78
biochemical and enzymatic tests, 68–71, 70

catalase test, 70, 71, 72, 73

colistin resistance test, 72–74
differential, 68
enzyme substrate test, 71, 77–79, 80
Gram stain, 269–274, 273
methods, 68
nitrate reduction test, 70, 71, 79–82, 83
oxidase test, 65–67, 67
polysaccharide production test, 70, 71, 74–75, 76
presumptive, 64–66, 66
procedure, 66, 69
quality control, 68–71, 71, 171
superoxol test, 70, 72, 73
incubation conditions, 265–268
morphology, 269, 270, 272
neonatal and pediatric infection, 63
resistance patterns, 63–64, 84
specimen collection and transport, 263, 266–267
storage media and conditions, 264–265, 303–305
transport media, 201, 264–265
subtyping, 89
transmission, 63
urethral infection, 67–68

Neisseria lactamica, 26, 68, 70, 74, 77, 78, 79
Neisseria meningitidis, 43
antimicrobial susceptibility testing, 38
by antimicrobial gradient strip, 38, 40–41, 42–43
by broth microdilution, 38
documentation and reporting procedures, 39, 43
media, 42
methods, 38
minimal inhibitory concentration (MIC), 38, 40–41, 42–43, 42
quality control, 41–43, 171
surveillance, 42
suspension characteristics, 40, 42
associated diseases, 29
culturing, 30, 179–180, 201–202, 247
epidemic potential, 29
identification, 34, 68, 77, 79, 208
acid production test, 70
carbohydrate utilization tests, 31, 36, 37
in cerebrospinal fluid, 240–248
colistin resistance test, 70, 74
commercial kits, 37
nasopharyngeal swab specimens, 251–254
outer membrane protein subtyping, 30
oxidase test, 30–32, 33
presumptive, 230, 231, 232, 233, 233
procedure, 30, 31
rapid sugar utilization tests, 37
serogroup, 32–35
superoxol/catalase reaction test, 70
suspension characteristics, 33–34, 35
laboratory-acquired infection, 163
resistance profile, 38
safe procedures in testing, 30, 227
serogroups, 29, 32
storage media and conditions, 199–200
frozen storage, 301–302
lyophilization, 302–303
recovery from storage, 303
short-term, 300–301
subculturing, 228–229
vaccine, 30

Index/Oct 29 REVISED 10/31/03 4:29 PM Page 353
Neisseria mucosa, 70f, 78f
Neisseria polysacchara, 70f
Neisseria sicca, 26f, 70f
Neisseria subflava, 70f, 74, 77
Neisseria weaveri, 68
Nicotinamide adenine dinucleotide.
See V Factor
Nitrate reduction test
mechanism, 79–81
N. gonorrhoeae, 66f, 69f, 70f, 71t, 79–82, 83f
reagents, 205–206
Nitrocefin test
H. influenzae, 26, 175
N. gonorrhoeae, 90–91
reagent preparation, 90, 206–207
Nitrofurans, 133
Nomograph, 241, 241n, 242f
Norfloxacin
Shigella, 132–133
V. cholerae, 142
O
Ofloxacin, 97t, 98t, 100t
Optochin susceptibility test, 46–49, 46n, 48f, 49f, 52
Otitis media, S. pneumoniae, 45
Oxacillin, 54t, 56, 58t
Oxidase testing
Gordon and McLeod’s reagent, 30n, 65n, 208
N. gonorrhoeae, 65–67, 67f
N. meningitidis, 30–32
reagent, 208
V. cholerae, 142–145, 146t
P
Packing and shipping regulations
classification of specimens, 311
coordination with recipient, 309, 322
for diagnostic specimens, 311, 319–320, 320f
goals, 309
for infectious substances, 311, 317–319, 319f
labeling and marking requirements, 312–317t
methods of transport, 309
regulatory organizations, 309–310
scope of, 311
shipper’s declaration form, 311, 321–322
use of dry ice, 320–321
Penicillin
N. gonorrhoeae, 63, 87–89, 88t, 97t, 98t
N. meningitidis, 38, 39f, 41, 42, 42t
S. pneumoniae, 56, 58–59, 58t
Phosphate-buffered saline medium, 192
Physiological saline, 193
Pivmecillinam, 132–133
Pleural fluid specimens, 248
Pneumonia, 219
collection and transport of blood
cultures, 219
H. influenzae, 5
S. pneumoniae, 45
Polysaccharide production test, 66f, 70, 70f, 71t, 74–75, 76f, 193–194
Proteus spp., 127, 128, 148, 188
Providencia spp., 127, 128, 148, 188
Pseudomonas spp., 146
Q
QC. See Quality control
Quad ID plates, 11–13, 12f
Quality control, 169
acidometric agar, 175
alkaline peptone water, 176
antimicrobial susceptibility testing
H. influenzae, 14–16, 15f, 19t
N. gonorrhoeae, 84, 85–86, 91–93, 98t, 99
N. meningitidis, 39f, 41–43, 42t
S. pneumoniae, 55, 58t
S. Typhi, 115–117, 117t
Shigella, 136
V. cholerae, 156–159, 158t
bismuth sulfite agar, 176–177
blood agar, 177
blood culture broth, 177–178
chocolate agar, 179
cystine trypticase agar, 180
desoxycholate citrate agar, 180–181
GC-chocolate agar, 182
GC-susceptibility test medium, 183
gonococcal selective media, 184
gram-negative broth, 184
Haemophilus test medium, 185
heart infusion agar, 185
heart infusion rabbit blood agar, 186
Hektoen enteric agar, 186
horse blood agar, 187
Kligler iron agar, 188
lysine iron agar, 188–189
MacConkey agar, 189
of media, 169–171
motility medium, 190
Mueller-Hinton agar, 191
plus sheep blood, 192
N. gonorrhoeae identification, 71t, 77, 81
polysaccharide medium, 193–194
preparation of McFarland turbidity standard, 210f
of reagents, 172
in reference laboratories, 3
selenite broth, 194
sources of strains for, 171, 331
SS agar, 193–194
sulfide-indole-motility medium, 195
thiosulfate citrate bile salts sucrose agar, 195
Todd-Hewitt broth, 196
triple sugar iron agar, 188
tryptone-based soy agar, 196
tryptone soy broth, 197
tryptone soy sheep blood agar, 197
urea medium, 198
xylose lysine desoxycholate agar, 199
Quellung typing of *S. pneumoniae*, 255–257, 258t
Quinolone resistance, 104

R

Reagents

acquisition, 173
Gram stain (Hucker modification), 202–204
Loeffler’s methylene blue stain, 204–205
nitrate reduction test, 205–206
nitrocefin, 206–207
oxidase, 208
preparation, 173–174

quality control, 172
sodium desoxycholate, 209
suppliers/manufacturers, 214, 215–217t
Reference laboratories

purpose, 3, 86
resource and capability requirements, 2, 3–4, 59
WHO recommendations, 1, 3, 288
Refrigeration equipment, 166
frozen storage of specimens, 299, 301–302, 304, 306–307
Regulations, shipping. See Packing and shipping regulations
Relative centrifugal force (RCF).

See Nomograph

Rifampicin

N. meningitidis, 38, 39f, 41, 42, 42t
S. pneumoniae, 62
Rifampin. See Rifampicin

S

Safety practices

accident response, 167
aerosolization, 164–165
autoclave use, 165–166
blood collection and transport, 220
cleaning, 166
decontaminating spills, 167
disinfectants and germicides, 165, 166–167
disposal of contaminated materials, 165
eating in laboratory areas, 164
fire prevention, 166
formalin use, 33–34
handwashing, 164
laboratory access, 163–164
laboratory reference resources, 168
N. meningitidis, 30, 33–34
pipetting, 164
protective clothing, 168
refrigeration equipment maintenance, 166
requirements for BSL-2 facilities, 163
sharps handling and disposal, 164
shipping of specimens, 309–322
sources of risk, 163
staff vaccination, 227
typhoid fever prevention, 103
Salmonella Enteritidis, 103
Salmonella Paratyphi, 103, 110†, 111
Salmonella Typhi, 103, 118–120, 189
antigen response, 103, 110–111
antimicrobial susceptibility testing
antimicrobial agents for, 113†
by disk diffusion, 113–117
documentation and reporting
procedures, 105, 107†, 119†
indicators for supplemental testing, 113
interpretive criteria, 117†, 118
laboratory resources for, 112
medium, 113, 115–116, 176–177
methods, 111–112
procedure, 114†
quality control, 115–117, 171
in vivo performance and, 112
clinical course of infection, 103
culturing, 105, 184, 186
diagnosis of typhoid fever, 104
distribution in infected host, 103
identification, 194, 198–199
culturing medium, 180–181
documentation and reporting
procedures, 105, 107†
in fecal specimens, 287–288, 289–290
iron agar tests, 105–108, 109†
methods, 105, 108
motility agar test, 108–110
presumptive, 231†, 238, 240†
procedure, 105, 106†
slide serology, 110–111, 112†
specimen collection, 104–105
urea screening, 110
laboratory-acquired infection, 163, 227
storage of isolates, 306–307
transmission, 103
typhoid mortality and morbidity, 103
vaccines, 103, 227
Salmonella–Shigella agar, 194
Selenite broth, 194
Sheep blood agar, 177
S. pneumoniae, 56
See also Blood agar
Shigella spp., 132, 133, 139
antimicrobial susceptibility testing, 130–131
antimicrobial agents for use in,
132–133, 133†
documentation and reporting
procedures, 132, 135, 138†
general guidelines, 131–132
inoculum suspension characteristics, 134
medium, 134
procedure, 134–136
quality control, 136, 171
sources of error, 136, 137–139
surveillance, 132
in vivo performance and, 133
antisera, 128
boydii, 121, 122, 128
clinical characteristics of infection, 121
culturing, 186
dysenteriae
clinical characteristics, 121
identification, 130†, 189, 199
in fecal specimens, 291–292
serologic, 128–130
flexneri, 121, 122, 130†, 181, 188, 294†,
295†
identification, 189, 198–199
agglutination, 130, 131†
culturing medium, 180–181
documentation, 124†
in fecal specimens, 287–288, 291–292
iron agar tests, 122, 126†
lysine iron agar screen, 125, 127–128,
129†
methods, 122
motility agar test, 125, 127†
procedure, 121–122, 123†
serologic, 128–130
urea medium screens, 127
laboratory-acquired infection, 163
recovery in fecal specimens, 287–288,
291–292
sonnei, 121, 130†
storage of isolates, 306–307
subgroup and serotype classification, 121,
130†
Shipping regulations. See Packing and
shipping regulations
Sickle cell disease, 45
Silica gel disease, 301
Skim-milk tryptone glucose glycerol transport medium, 200–210, 252–254, 305
Slide agglutination. See Agglutination
Sources of prepared media and reagents, 214, 215–217
Spectinomycin, 63, 97f, 98t, 100t
Spills, 167
SS agar, 194
Storage and handling
agar medium, 173–174
antimicrobial disks, 117, 135, 139
blood specimens, 219–223
cerebrospinal fluid, 223–226, 247–248
disposal of contaminated materials, 165
Etest® antimicrobial gradient strips, 19, 59, 98
formalin, 33–34
H. influenzae antisera, 7
N. gonorrhoeae specimens, 64, 263–268
N. meningitidis antisera, 32
N. meningitidis isolates, 30, 33–34
need for storage, 299
reagents, 172
S. pneumoniae isolates, 59
sharps, 164
short-term storage, 299, 300–301, 306
transport and storage media, 199–202
transport of biohazard materials, 166
See also Packing and shipping regulations
Streptococci, α-hemolytic viridans, 46–49
Streptococcus pneumoniae, 62
antimicrobial susceptibility testing
by antimicrobial gradient strip, 53, 58–61
by disk diffusion, 53, 56–58
documentation and reporting procedures, 54f, 62
media, 55, 56, 60
methods, 53
minimal inhibitory concentration (MIC), 53, 58–61
quality control, 55, 171
surveillance, 45, 58–59, 62
Sulfonamide drugs
H. influenzae, 16
N. meningitidis, 38, 41, 42
S. pneumoniae, 55
S. Typhi, 118
Shigella, 133, 135, 139
V. cholerae, 153
Superoxol test, 72, 73f
N. gonorrhoeae, 66f, 69f, 70f, 71f, 72, 73f
Surveillance, 86–87
H. influenzae, 18–19, 21–26
susceptible populations, 45
vaccines, 45
Streptomycin, 133
String test reagent, 209
V. cholerae identification, 145, 146, 147f
Stuarts medium, 199
Subtype characterization, 89
Sulfide-indole-motility medium, 125f, 194–195
Streptococcus, α-hemolytic viridans, 46–49
Streptococcus pneumoniae, 62
antimicrobial susceptibility testing
by antimicrobial gradient strip, 53, 58–61
by disk diffusion, 53, 56–58
documentation and reporting procedures, 54f, 62
media, 55, 56, 60
methods, 53
minimal inhibitory concentration (MIC), 53, 58–61
quality control, 55, 171
surveillance, 45, 58–59, 62
associated disease, 45
culturing, 46, 47f, 195–196, 201–202
in cerebrospinal fluid, 246
identification, 46
bile solubility test, 50–52
in cerebrospinal fluid, 240–248
commercial kits, 52
nasopharyngeal swab specimens, 251–254
optochin susceptibility test, 46–49, 49f, 52
presumptive, 230f, 232, 233f, 233t,
234f, 237–238, 239f
procedure, 48f
serotyping and Quellung typing, 52–53, 255–257, 258f
vs. viridans streptococci, 46–49
screening, 45
storage media and conditions, 199–200
frozen storage, 301–302
long-term strategies, 301
lyophilization, 302–303
recovery from storage, 303
short-term, 300–301
subculturing, 228–229
Streptococcus, α-hemolytic viridans, 46–49
Streptococcus pneumoniae, 62
antimicrobial susceptibility testing
by antimicrobial gradient strip, 53, 58–61
by disk diffusion, 53, 56–58
documentation and reporting procedures, 54f, 62
media, 55, 56, 60
methods, 53
minimal inhibitory concentration (MIC), 53, 58–61
quality control, 55, 171
surveillance, 45, 58–59, 62
associated disease, 45
culturing, 46, 47f, 195–196, 201–202
in cerebrospinal fluid, 246
identification, 46
bile solubility test, 50–52
in cerebrospinal fluid, 240–248
commercial kits, 52
nasopharyngeal swab specimens, 251–254
optochin susceptibility test, 46–49, 49f, 52
presumptive, 230f, 232, 233f, 233t,
234f, 237–238, 239f
procedure, 48f
serotyping and Quellung typing, 52–53, 255–257, 258f
vs. viridans streptococci, 46–49
screening, 45
storage media and conditions, 199–200
frozen storage, 301–302
long-term strategies, 301
lyophilization, 302–303
recovery from storage, 303
short-term, 300–301
subculturing, 228–229
susceptible populations, 45
vaccines, 45
Streptomycin, 133
String test reagent, 209
V. cholerae identification, 145, 146, 147f
Stuarts medium, 199
Subtype characterization, 89
Sulfide-indole-motility medium, 125f, 194–195
Streptococcus, α-hemolytic viridans, 46–49
Streptococcus pneumoniae, 62
antimicrobial susceptibility testing
by antimicrobial gradient strip, 53, 58–61
by disk diffusion, 53, 56–58
documentation and reporting procedures, 54f, 62
media, 55, 56, 60
methods, 53
minimal inhibitory concentration (MIC), 53, 58–61
quality control, 55, 171
surveillance, 45, 58–59, 62
N. gonorrhoeae, 64, 86–87, 89
N. meningitidis, 42
S. pneumoniae, 45, 58–59, 62
Shigella, 132
V. cholerae, 152

Tetracycline
N. gonorrhoeae, 63, 87–89, 88t, 97t, 98t
S. pneumoniae, 62
Shigella, 133
V. cholerae, 141–142, 153, 153t, 157t, 158t
Thiosulfate citrate bile salts sucrose agar, 195
Todd–Hewitt broth, 195–196
Trans-isolate medium, 201–202, 247–248, 247f
Transgrow medium, 201
Transport media, 199–202, 264–265
for cerebrospinal fluid cultures, 248
for fecal specimens, 275–277
for nasopharyngeal swab specimens, 252–254
Trimethoprim-sulfamethoxazole
H. influenzae, 14, 15t, 19t
N. meningitidis, 39t, 42, 42t
S. pneumoniae, 54t, 55, 56, 58t, 60
S. Typhi, 104, 113t, 117t, 118, 119f
Shigella, 132–133, 133, 135, 136t, 137t, 138f, 139
V. cholerae, 142, 153, 153t, 157t, 158t
Triple sugar iron agar, 187–188
S. Typhi identification, 105–108, 109f
Shigella identification, 122, 123f, 125t
V. cholerae infection, 146–147, 148f
Tryptone-based soy agar, 177, 178, 196
H. influenzae, 10, 12
requirements for V. cholerae, 142, 145
quality control, 196
Tryptone soy broth, 197, 228
Tryptone soy sheep blood agar with
gentamicin, 197
Turbidity standards, 209–214
Typhoid fever, 103, 104

U
United Nations Committee of Experts on
the Transport of Dangerous Goods, 309
Urea medium, 197–198
quality control, 198
S. Typhi, 110
Shigella, 125, 125t, 127, 127f
Urine specimens, 249

V
V Factor, 5, 6f, 9–13, 10f, 11f, 12f
Vaccine Alliance, 62n
Vaccines
H. influenzae, 5
for laboratory personnel, 227
N. meningitidis, 30
S. pneumoniae, 45
S. Typhi, 103
Vancomycin, 62
Venipuncture, 220–221, 222f
Venipuncture, 220–221, 222f
Vibrio cholerae, 141–142, 152, 153t, 159
antimicrobial susceptibility testing, 151
agents for use in, 152, 153t
documentation and reporting
procedure, 152, 157f
epidemic response, 142, 151–152
inoculum characteristics, 154–155
medium, 154, 175–176
procedure, 154–156
quality control, 156, 158t, 171
sources of error, 156–159
special considerations, 152–153
surveillance, 152
enrichment in alkaline peptone water,
293–295
epidemic response, 142, 149, 151–152
geographic distribution, 141
identification, 142, 195, 208
culturing medium, 142
documentation, 144f
epidemic response, 149
in fecal specimens, 287–288, 292–296
Gram stain, 148
iron agar tests, 146–148, 148f
methods, 142, 145, 146f
microscopy, 149
oxidase test, 142–145
presumptive, 149
procedure, 143f
serologic, 149–151
string test, 146, 147f
laboratory-acquired infection, 163
serogroups and biotypes, 141, 149
storage of isolates, 306–307
Viridans streptococci, 46–49

W

Widal test, 104
World Health Organization
recommendations for reference laboratories, 1, 3, 59, 288

X

X Factor, 5, 6f, 9–13, 10t, 11f, 12f
Xylose lysine desoxycholate agar, 198–199

Z

Zinc powder, 79–80, 81, 82, 206