WHO Advisory Committee on Variola Virus Research

Report of the third meeting

Geneva, Switzerland
3-4 December 2001

World Health Organization
Department of Communicable Disease, Surveillance and Response

This document has been downloaded from the WHO/EMC Web site. The original cover pages and lists of participants are not included. See http://www.who.int/emc for more information.
WHO Advisory Committee on Variola Virus Research

Report of the third meeting

Geneva, Switzerland
3-4 December 2001

World Health Organization
Department of Communicable Disease Surveillance and Response
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Review of variola virus strains in the Russian collection</td>
<td>1</td>
</tr>
<tr>
<td>3. Nucleic acid based diagnostics</td>
<td>2</td>
</tr>
<tr>
<td>4. Sequence analysis of variola virus DNA</td>
<td>3</td>
</tr>
<tr>
<td>5. Sequence of the electromelia virus genome</td>
<td>3</td>
</tr>
<tr>
<td>6. Progress in the development of serological assays.</td>
<td>3</td>
</tr>
<tr>
<td>7. Animal models</td>
<td>4</td>
</tr>
<tr>
<td>8. Drug development</td>
<td>4</td>
</tr>
<tr>
<td>9. Vaccine development</td>
<td>5</td>
</tr>
<tr>
<td>10. Fundamental studies</td>
<td>5</td>
</tr>
<tr>
<td>11. Conclusions and recommendations</td>
<td>5</td>
</tr>
<tr>
<td>Annex 1: Agenda</td>
<td>7</td>
</tr>
<tr>
<td>Annex 2: List of participants</td>
<td>9</td>
</tr>
</tbody>
</table>
Summary

The WHO Advisory Committee on Variola Virus Research reviewed progress of research involving live variola virus. It agreed that considerable progress had been made since it last met. However, despite previous estimates, the Committee noted that significant components of the agreed programme were unlikely to be completed by the end of 2002. Further, during extensive discussion, additional research was identified which would necessitate having access to live variola virus after the anticipated 2002 destruction date. The Committee therefore recommended that the destruction deadline be postponed to enable essential research to be completed. It also recommended that additional research using live variola virus should continue to be carefully monitored and reviewed under the auspices of WHO and that steps should be taken to ensure that all approved research remains outcome focused and time limited.

1. Introduction

1.1 Dr David Heymann, Executive Director, Communicable Diseases welcomed participants to the meeting and asked the Committee to review the progress of research using live variola virus. The main issues to address were:

- The likelihood of completing the research planned prior to this meeting by the end of 2002.
- Any recent developments in variola virus research or in the world situation suggesting the need for additional studies that would extend beyond the end of 2002.

1.2 Dr Peter Greenaway was appointed Chairman and Dr Robert Drillien was appointed Rapporteur. The meeting agenda is given in Annex 1 and meeting participants are listed in Annex 2. The majority of the meeting concerned scientific presentations relating the most recent results from laboratories using live variola virus.

2. Review of variola virus strains in the Russian collection

2.1 The second meeting of this Committee noted that the Centers for Disease Control and Prevention (CDC), Atlanta, held 451 virus isolates derived from a range of continents and countries when smallpox was endemic. The current review and the studies reported concentrated on some 50 isolates, from a total of approximately 120 in the Russian collection, that were not present in the United States collection. Twenty-three isolates from scab material and previously lyophilised samples displayed viability upon tissue culture passage. Isolation of DNA from these strains is ongoing; 2 genomes have been completely cloned, at least 5 others will be cloned by the end of 2002 and other work is being planned.
2.2 The Committee agreed that before the end of 2002 further consideration should be given to the necessity of holding the entire range of isolates currently available in the two repositories.

3. **Nucleic acid based diagnostics**

3.1 A number of methods have been developed over the last few years to enable very sensitive detection of variola virus DNA and distinguish this DNA from that of other orthopoxviruses. PCR-RFLP analysis, multiplex PCR and real time PCR employing the detection of fluorogenic probes are the most promising methods.

3.2 The Committee was informed of a recent laboratory-acquired infection with a non variola orthopoxvirus which provided a demonstration of the performance of PCR-RFLP and real time PCR methods using clinical material from the skin and vesicular fluid. Analysis of DNA samples from the infected worker by extended PCR-RFLP enabled a very precise definition of the virus responsible for the accidental infection.

3.3 Similar studies have been conducted to more thoroughly investigate a fatal case of laboratory transmitted smallpox that occurred some 20 years ago. In addition, real time PCR has been used to follow viraemia and the presence of virus in tissue in monkeys experimentally infected with variola virus. Finally, it was shown that multiplex PCR can be used to identify variola virus DNA in crust samples and that it can distinguish major and minor strains with as little as 1 pg of sample material. Collaboration between staff at CDC and VECTOR has been initiated to ensure that any future work on virus characterization is adequately coordinated, including the transfer of reagents.

3.4 The results obtained indicate that single gene PCR-RFLP and multiplex PCR detection methods are useful for detecting variola virus in clinical samples. It was noted that real time PCR has greater sensitivity and can therefore detect infection at an earlier stage, however, it uses expensive equipment and, so far, is not able to consistently distinguish between orthopoxvirus species. Extended PCR-RFLP has proven useful to precisely define the origin of an isolate but may require prior tissue culture passage.

3.5 The Committee agreed that significant progress has been made in the area of molecular diagnosis but that there is still scope to improve the sensitivity of the tests available. For example, it would be useful to know how early a variola virus infection might be detected at the prodromal stage. An ultimate goal is the development of relatively cheap hand held detection equipment for variola virus DNA.

3.6 The Committee recognized that the further development of diagnostic procedures was an important area for further work. It encouraged investigators to share diagnostic reagents, essential primer sequences for PCR detection and protocols. This would be particularly useful for differentiating between, for example, variola and varicella virus infections.
4. Sequence analysis of variola virus DNA

4.1 The Committee was informed that the extend PCR method combined with primer walking has been used to obtain the complete genomic sequences of 7 additional variola virus isolates. This brings the total number of full length sequences to 10 (9 major strains and 1 minor strain). A high degree of sequence conservation was detected between isolates even though some had undergone a number of passages in tissue culture. Whilst this suggests that tissue culture passage may have little influence on genome stability, no comparative data from scab material was available. The Committee indicated that it would be important to obtain DNA sequence information from scab material.

4.2 Hypervariable regions containing long T or AT runs have been detected near the left and right termini respectively. This microheterogeneity is thought to reflect the low passage and non clonal features of the virus populations analysed. The biological meaning of these findings, if any, is unclear. As yet, no sequence variability between isolates could be correlated with their known degree of virulence.

4.3 The Committee noted that a considerable amount of nucleic acid sequence information on variola viruses was now available. After discussion it was agreed that gaining further sequence information from the more variable termini had priority over the derivation of additional whole genome sequences. This would be useful for forensic studies if there was ever a deliberate release of variola virus. Reference DNA should be kept for this purpose.

5. Sequence of the ectromelia virus genome

5.1 The sequence of the highly pathogenic ectromelia virus genome (the causative agent of mousepox) was presented and comparisons were made with other orthopoxviruses, particularly variola virus. The data provides the opportunity to study the role of virus genes, some of which are homologues of variola virus genes, in a severe animal poxvirus infection.

6. Progress in the development of serological assays

6.1 Polyclonal and monoclonal antibodies against vaccinia virus have been used in ELISA and manual threshold assays to evaluate their usefulness in the detection of variola virus isolates. So far some 23 virus samples amplified in tissue culture have been studied. Although the methods available appear relatively sensitive they do not allow the detection of all virus isolates. In this respect, polyclonal sera more readily detected all virus strains while monoclonals missed some.

6.2 A human IgM capture assay has been developed as one means to recognize the presence of an orthopoxvirus infection. This method relies on the use of killed variola virus as antigen and hyperimmune mouse ascitic fluid directed against live variola virus as the capture system. Detection of IgM in monkeys infected experimentally with variola between 4 and 6 days after infection (depending on the infectious dose
used) has been achieved. The assay was also used to detect anti-vaccinia IgM 4 days after an accidental human infection.

6.3 The Committee noted that the specificity of the test remains a critical issue but that this could be readily solved by the availability of variola virus specific monoclonal antibodies. The development of such antibodies has been initiated but progress has been slow. The Committee concluded that a variola virus specific serological assay could usefully complement molecular diagnostic techniques, particularly as a second method to detect infection. However, further validation of the test was needed before this goal could be achieved.

7. Animal models

7.1 Adequate animal models using variola virus have been unavailable so far. Recent data demonstrating the infection and lethality of variola virus, administered intravenously or intravenously with an aerosol, in cynomolgus monkeys was presented. It was noted that the induced disease develops at a much faster pace than smallpox in man and that the dose of virus used to date via the intravenous route is particularly high. It was shown that a number of the pathological features of the disease produced in monkeys appear to be similar to those of smallpox in man.

7.2 Additional studies are needed to improve and validate this model. However, for this to be done, the work would need to extend beyond 2002. It was clear that the monkey model has the potential to be employed for testing therapeutic drugs and novel vaccines. It could also provide access to clinical specimens for testing diagnostic procedures. Other surrogate animal models are being pursued in parallel, in particular the infection of monkeys with monkeypox virus and the infection of rodents with cowpoxvirus.

8. Drug development

8.1 Most studies have focused so far on the efficacy of cidofovir as an anti-poxvirus drug. This compound has demonstrable activity against cowpox in mice and against monkeypox in monkeys. The United States currently allows cidofovir to be used in emergencies as an investigational new drug to treat adverse effects following immunization with the current smallpox vaccine and in the unlikely event of smallpox re-emerging.

8.2 A drug development programme based on the chemical modification of cidofovir has been initiated to identify compounds with improved activity and to allow oral administration. Other work involving the in vitro screening of other chemical entities has identified additional compounds with anti-poxvirus activity. Further work on these compounds is needed.

8.3 Most of the anti-poxvirus compounds identified so far target the viral DNA polymerase and it was considered important to identify other viral gene products susceptible to drug intervention. A number of molecules were identified in a
subsequent survey which inhibit a range of orthopoxviruses, including variola virus. Some drugs have selective activity, inhibiting one or more of the orthopoxviruses but not necessarily variola virus. This finding supports the premise that access to live variola virus is necessary if the effective screening of additional lead compounds is to be achieved.

8.4 Further discussion considered the potential use of variola virus recombinants encoding green fluorescent protein as a tool for rapid detection of virus multiplication in drug inhibition assays. It was agreed that an extensive and reasoned risk analysis was needed before this approach could be considered by the Committee’s peer review panel. Approval from WHO’s Biosafety Advisory Group would also be needed before work of this nature can be undertaken.

9. Vaccine development

9.1 The Committee agreed that the best safeguard against smallpox was vaccination. It noted that this strategy had been deployed successfully during the eradication programme but that the smallpox vaccine currently available was associated with a significant number of adverse side reactions. This suggested that, although the current vaccine had proved efficacy and utility, improvements were needed particularly to facilitate the safe and effective immunization of vulnerable sectors of different populations (the immunocompromised, the elderly, pregnant women and children with eczema).

9.2 The Committee therefore encouraged the identification of further research into vaccine strategies that might employ more attenuated vaccinia virus strains, sub-unit vaccines or other promising recombinant DNA methodologies. Results reported at the meeting and in numerous publications with attenuated vaccinia virus recombinants encoding antigens from other pathogens indicate the potential value of deploying alternative vaccine development strategies. It was recognized that access to live variola virus would be necessary to assess the efficacy of new, improved smallpox vaccines and, ultimately, to obtain approval from the regulatory authorities.

10. Fundamental studies

10.1 Some fundamental research with variola virus has been pursued although this area has purposely not received high priority. Research investigating the involvement of chemokine receptors in the spread of variola virus in tissue cultures was described. The Committee took note of these interesting findings.

11. Conclusions and recommendations

11.1 The Committee acknowledged that important progress has been made since its last meeting in health-oriented research involving variola virus. However, it was concluded that much essential research will not be completed by the end of 2002, the currently proposed deadline for variola virus destruction.
11.2 One area of particular concern was the current low level of smallpox immunity in the world population and the consequent necessity to undertake further research on future strategies for dealing with an unexpected outbreak. The Committee therefore felt that further goal oriented research, extending beyond the anticipated 2002 destruction deadline, is justified so that the world population can be adequately prepared for such an unlikely event.

11.3 The Committee noted that a considerable amount of variola virus DNA sequence information was now available. It recommended that further sequence data from the terminal regions of the virus genome should be obtained.

11.4 The Committee noted that effective methods to detect variola virus infections are now available in the two certified laboratories that retain the virus and in a handful of other laboratories. Further work is needed to validate these procedures with clinical material derived from experimentally infected animals. It was acknowledged that if a variola virus outbreak should occur the diagnostic laboratories that are currently prepared could easily be overwhelmed. The Committee therefore stressed the importance of sharing primary detection protocols, diagnostic reagents and training materials with other approved diagnostic/detection facilities.

11.5 The Committee took note of the advances in developing new drugs for smallpox treatment and recommended that collaborative research should be encouraged to develop at least two different formulations of two drugs that had different modes of action.

11.6 The Committee acknowledged that the currently available vaccine preparations had a demonstrable and highly successful track record in protecting populations from smallpox. However, anticipated demands for vaccines that had fewer adverse side reactions indicated that a vaccine development programme to produce an improved, safer, yet as effective preparation is justified. It was felt that such a programme had a high priority given the possibility of a deliberate release of variola virus.

11.7 These considerations emphasized the importance of having access to a validated animal model of human smallpox with which tests to achieve licensure of smallpox drugs and vaccines could be done. This, in turn, underlines the importance of retaining variola virus stocks to assess candidate drugs and vaccines for both efficacy and regulatory purposes. The Committee therefore recommended that research to further refine the recently developed smallpox animal model should be promoted and that data allowing bridging to non-variola animal models should be obtained.

11.8 Finally, the Committee recommended that further research using live variola virus beyond 2002 should continue to be carefully monitored and reviewed under the auspices of the WHO and that steps should be taken to ensure that all approved research remains outcome focused and time-limited.
Annex 1: Agenda

3 December 2001

9:00-9:15 Welcome, purpose of the meeting
Dr David L. Heymann
Executive Director, Communicable Diseases

9:15-9:40 Review of variola virus strains in collection, results of viability studies
Presentation by Dr Lev Sandakhchiev: “Inventory of variola strains in the Russian collection” (20 min)

9:40-10:00 PCR and extend PCR/RFLP analysis of orthopoxvirus DNA
Presentation by Dr Inger Damon: “Update in nucleic acid based diagnostics development” (20 min)

10:00-10:30 COFFEE BREAK

10:30-11:15 PCR and extend PCR/RFLP analysis of orthopoxvirus DNA (cont.)
Presentation by Dr Sergei Shchelkunov: “Current status of PCR and extend PCR/RFLP analysis of orthopoxvirus genome DNA” (15 min)

11:15-12:00 Sequence analysis of variola virus DNA
Presentation by Dr Inger Damon: “Sequence analysis of variola virus DNA” (20 min)

12:00-13:30 L U N C H

13:30-14:30 Progress in development of serological assays
Presentation by Dr David Ulaeto: “Antibodies and gene probes for the detection and diagnosis of variola virus” (20 min)
Presentation by Dr Inger Damon: “Development of an IgM capture assay” (20 min)

14:30-15:30 Review of animal developments
Presentation by Dr Peter Jahrling: “Exposure of cynomolgus monkeys to variola virus” (30 min)

15:30-16:00 COFFEE BREAK
16:00-17:30 Review of antiviral candidate drugs

Presentation by Dr Lev Sandakhchiev: “Search for antivirals active against human pathogenic orthopoxviruses” (20 min)

Presentation by Dr John Huggins: “Joint DoD-DHHS program for development of antiviral therapeutics for treatment of smallpox resulting from terrorist or biological warfare release of variola” (20 min)

4 December 2001

9:00-10:00 General presentations

Presentation by Dr Lev Sandakhchiev: “Development of recombinant vaccines against orthopoxvirus, hepatitis B and HIV under Russian national programs” (20 min)

Presentation by Dr Inger Damon: “Host factors in variola pathogenesis: do cheminoke receptors play a role?” (20 min)

10:00-10:30 COFFEE BREAK

10:30-12:00 General discussion on research progress

12:00-13:30 L UN C H

13:30-15:00 General discussion and preparation of draft recommendations

15:00-15:30 COFFEE BREAK

15:00-17:00 Consensus on recommendations
Annex 2: List of participants

Advisory Committee

Dr Isao Arita, Chairman, Agency for Cooperation in International Health, 4-11-1 Higashi-machi, Kumamoto City, Kumamoto 862-0901, Japan Tel: 00 81 96 367 88 99 Fax: 00 81 96 367 9001 E-mail: info@acih.com

Dr Kalyan Banerjee, Secretary, Maharashtra Association for the Cultivation of Science, G.G. Agarkar Road, Pune-411 004, M.S., India Tel: 0091 20 565 2974 Fax: 0091 20 565 1542 E-mail: bnrjklyn@pn2.vsnl.net.in

Dr Robert Drillien, Directeur de Recherche à l’INSERM, Etablissement de Transfusion Sanguine de Strasbourg, EPI 99-08, 10 rue Spielmann, B.P. 36, Strasbourg Cedex 67065, France Tel: 0033 3 88 21 25 25 Fax: 0033 3 88 21 25 21 E-mail: robert.drillien@etss.u-strasbg.fr

Dr Mariano Esteban, Director, Centro Nacional de Biotecnologia, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain Tel: 0034 91 585 4503 Fax: 0034 91 585 4506 E-mail: mesteban@cnb.uam.es

Dr David H. Evans, Professor and Chair, Molecular Biology and Genetics, The University of Guelph, Guelph, Ontario N1G 2W1, Canada Tel: 001 519 824 41 20 (ext: 2575 or 8919) Fax: 001 519 837 2075 E-mail: dhevans@uoguelph.ca

Dr Hans Gelderblom, Head of Division of Electron Microscopy and Imaging, Robert Koch Institut, Nordufer 20, Postfach 330013, Berlin 13353, Germany Tel: 0049 30 4547 2379 Fax: 0049 30 4547 2334 E-mail: GelderblomH@rki.de

Dr Peter Greenaway, Chief Scientific Officer, Department of Health, UK, Research and Development Division, Skipton House, 80 London Road, London SE1 6LH, United Kingdom Tel: 0044 20 7972 5644 Fax: 0044 20 7972 5670 E-mail: Peter.Greenaway@doh.gsi.gov.uk

Dr James Hughes, Director, National Center for Infectious Diseases, M/S C12, Centers for Disease Control and Prevention (CDC), Bldg. 1, Room 613, 1600 Clifton Road, Atlanta, GA 30333, United States of America Tel: 001 404 639-3401 Fax: 001 404 639-3039 E-mail: jmh2@cdc.gov
Dr André D. Plantinga, Head of the Laboratory for Clinical Vaccine Research, Sector Vaccines (S1), WHO Collaborating Centre for Smallpox Vaccine, National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Antoine van Leeuwenhoeklaan 9, NL-3720 BA Bilthoven, Netherlands Tel: 0031 30 274 2349 Fax: 0031 30 274 4430 E-mail: andre.plantinga@rivm.nl

Professor Lev S. Sandakhchiev, Director General, State Research Center of Virology and Biotechnology, VECTOR, 630559 Koltsovo, Novosibirsk Region, Russian Federation Tel: 007 3832 366010 Fax: 007 3832 367409 E-mail: lev@vector.nsc.ru

Dr Hermann Schatzmayr, Head, Virology Department, Istituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil Tel: 0055 21 598 4274 Fax: 0055 21 270 6397 E-mail: hermann@osite.com.br or hermann@ioc.fiocruz.br

Dr Robert Snoeck, Senior Research Assistant, Katholieke Universiteit Leuven, Rega Institute, Minderbroedersstraat 10, B-3000 Leuven, Belgium Tel: 0032 16 3373 95 Fax: 0032 16 3373 40 E-mail: robert.snoeck@rega.kuleuven.ac.be

Professor Robert Swanepoel, Special Pathogens Unit, National Institute for Virology, Private Bag X4, Sandringham 2131, Republic of South Africa Tel: 0027 11 321 4200 Fax: 0027 11 882 3741 E-mail: bobs@niv.ac.za

Professor Muyembe Tamfum*, Director, Institut National de Recherche Bio-Médicale (INRB), Avenue des Huileries, Kinshasa/Gombe B.P. 1197 Kinshasa 1, Democratic Republic of Congo Tel: 00243 88 45349 E-mail: inrb-congo@maf.org

Professor Dr Prasert Thongcharoen, Division of Virology, Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok 10700, Thailand Tel: 0066 2 411 0263 or 0066 2 419 7067 Fax: 0066 2 418 4148 E-mail: siptc@mahidol.ac.th

Dr Henda Triki, Chief, Laboratory of Clinical Virology, Institut Pasteur de Tunis, 13, Place Pasteur, B. P. 74, 1002 Tunis Belvedere, Tunisia Tel: 00216 1 783 022 Fax: 00216 1 791 833 E-mail: henda.triki@pasteur.ms.tn
Dr Lynne Ridler-Wall, ADR (CBD)
Room 5/63 Metropole Building, Northumberland Avenue, London, SW1A 2HB, United Kingdom
Tel: 0044 20 7218 1881 Fax: 0044 20 7218 6481 E-mail: lwall.dgrt@gtnet.gov.uk

Dr Zhi-Yi Xu, Senior Scientist, International Vaccine Institute,
Kwanak P. O. Box 14, Seoul, South Korea 151-600, Republic of Korea
Tel: 0082 (2) 8722 801 Fax: 0082 (2) 8722 803 E-mail: xuzhiyi@ivi.int

Advisers to the Committee

Dr Antonio Alcami, Wellcome Trust Senior Research Fellow, Department of Pathology, University of Cambridge,
Tennis Court Road, Cambridge, CB2 1 QP, United Kingdom
Tel: 0044 1223 33 69 22 Fax: 0044 1223 33 69 26 E-mail: aa258@mole.bio.cam.ac.uk

Dr Inger K. Damon, Poxvirus Section, Viral Exanthems and Herpesvirus Branch/DVRD/NCID,
CDC Mailstop G-18, Building 7 Room 340, 1600 Clifton Road, N. E. Atlanta, GA 30333, United States of America
Tel: 001 404 639 4931 Fax: 001 404 639 3111 E-mail: iad7@cdc.gov

Dr John W. Huggins, Chief, Department of Viral Therapeutics, Virology Division, USAMRIID,
1425 Porter Street, Fort Detrick, MD 21702-5011, United States of America
Tel: 001 301 619 4837 Fax: 001 301 619 4625 E-mail: huggins@ncifcrf.gov

Dr Lauren Iacono-Connors, Senior Advisor to the Center Director, CBER,
Food and Drug Administration,
HFM-1, 1401 Rockville Pike, Rockville, Maryland 20850, United States of America
Tel: 001 301 827 0636 Fax: 001 301 827 0440 E-mail: ConnorsL@cber.fda.gov

Dr Peter B. Jahrling, Senior Research Scientist, USAMRIID, Headquarters,
U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID),
1425 Porter Street, Fort Detrick, MD 21702-5011, United States of America
Tel: 001 301 619 2772 or 4608 Fax: 001 301 619 4625
E-mail: Peter.Jahrling@det.amedd.army.mil

Dr Brian Mahy, Scientific Research Advisor, Center for Infectious Diseases,
Centers for Disease Control and Prevention, 1600 Clifton Road, M/S C12,
Atlanta, GA 30333, United States of America
Tel: 001 404 639 2915 Fax: 001 404 639 3039 E-mail: bxml@cdc.gov
Dr Michael Merchlinsky, Senior Investigator, Food and Drug Administration, Office of Vaccines Research and Review, Division of Viral Products/Laboratory of DNA Viruses, CBER, 1401 Rockville Pike, HFM-457, Rockville, Maryland 20850, United States of America
Tel: 001 301 827 2934 Fax: 001 301 480 1597 E-mail: merchlinsky@cber.fda.gov

Dr Bernard Moss, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, United States of America
Tel: 001 301 496 9869 Fax: 001 301 480 1147 E-mail: bmoss@niaid.nih.gov

Professor Sergei N. Shchelkunov, Head, Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology, SRC VB VECTOR, 630559 Koltsovo, Novosibirsk Region, Russian Federation
Tel: 007 383 2 366428 Fax: 007 3832 36 74 09 E-mail: ssshcel@vector.nsk.su

Professor Geoffrey L. Smith, Wellcome Trust Principal Research Fellow, Professor of Virology, Wright Fleming Institute, Imperial College of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
Tel: 0044 020 7594 3971 Fax: 0044 020 7594 3973 E-mail: glsmith@ic.ac.uk

Dr David Ulaeto, Scientific Leader, DERA-CBD, Biomedical Sciences, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
Tel: 0044 1980 613898 or 613888 Fax: 0044 1980 613 284 E-mail: dulaeto@dstl.gov.uk

Observers

Dr Kenneth Bernard, MD, Office of the Assistant Secretary for Health, Room 701-H DHHS, 200 Independence Avenue, S. W. Washington D.C. 20201, United States of America
Tel: 001 202 205 3841 Fax: 001 202 690 7425 E-mail: kbernard@osophs.dhhs.gov

Dr Peter D. E. Biggins, Head of IRS, DERA -CBD, CB Systems, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
Tel: 0044 1980 613 395 Fax: 0044 1980 613 987 E-mail: pdebiggins@dstl.gov.uk

Dr Nicolay Fetisov, Counsellor, The Permanent Representative of the Russian Federation to the United Nations Office and Other International Organizations at Geneva, Avenue de la Paix 15, 1211 Geneva 20, Switzerland
Tel: 0041 22 733 18 70 Fax: 0041 22 734 40 44

Dr Daniel Garin, Centre de Recherches du Service de Santé des Armées, Unité de Virologie, 24 Avenue des Maquis du Grésivaudan, BP 87, 38702 La Tronche Cédex, France
Tel: 0033 4 76 63 68 44 Fax: 0033 476 63 68 44 E-mail: Daniel.Garin@wanadoo.fr
Dr Deborah E. Kleijne, RIVM (National Institute for Public Health and the Environment), Department: LVO/pb 70, PO-box 1, 3720 BA Bilthoven, Netherlands
Tel: 0031 30 274 2305 Fax: 0031 30 274 4430 E-mail: deborah.kleijne@rivm.nl

Dr James LeDuc, Centers for Disease Control and Prevention,
Division of Viral and Rickettsial Disease, 1600 Clifton Road, MS – A30, Atlanta, GA 30333, United States of America
Tel: 001 404 639 3574 Fax: 001 404 639 3163 E-mail: jwl3@cdc.gov

Dr Svetlana Marennikova, State Research Centre of Virology and Biotechnology, VECTOR, 633159, Koltsovo, Novosibirsk Region, Russian Federation
Fax: 007 3832 367 409

Dr James Meegan, PhD, National Institutes of Health, National Institute of Allergy and Infectious Diseases,
4 Center Drive, Building 4, MSC 0445, Bethesda MD 20892-0445, United States of America
Tel: 001 301 496 7453 Fax: 001 301 496 8030 E-mail: jmeegan@niaid.nih.gov

Dr Hermann Meyer, Institut für Mikrobiologie, Sanitätsakademie der Bundeswehr,
Neuherbergstr. 11, 80937 Munich, Germany
Tel: 0049 89 3168 3910 Fax: 0049 89 3168 3292
E-mail: hermann.meyer@micro.vetmed.uni-muenchen.de

Ms Helen Nellthorp, First Secretary, Specialised Agencies, Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the United Nations Office and other International Organizations at Geneva, Rue de Vermont 37-39, 1211 Geneva 20, Switzerland
Tel: 0041 22 918 23 76 Fax: 0041 22 918 24 44
E-mail: helen.nellthorp@fco.gov.uk

Dr Jean-Claude Piffaretti, Instituto Cantonale Batteriosierologico,
Via Guiseppe Buffi 6, 6904 Lugano, Switzerland
Tel: 0041 91 923 25 22 Fax: 0041 91 922 09 93
E-mail: jean-claude.piffaretti@ti.ch
Dr Masami Sakoi, Deputy Director, International Affairs Division, Ministry of Health, Labour and Welfare, Japanese Government, 1-2-2, Kasumigaseki, Chiyoda-ku, Tokyo, 100-8916, Japan
Tel: 0081 3 3595 2403 Fax: 0081 3 3301 2532
E-mail: sakoi-masami@mhlw.go.jp

Secretariat

Dr David Heymann, Executive Director EXD/CDS
Dr Guénaël Rodier, Director, CSR
Dr Mike Ryan, Coordinator GAR
Dr Ray Arthur, CSR/GAR
Dr Cathy Roth, CSR/GAR
Dr Riccardo Wittek, CSR/GAR
Dr Mohamed H. Wahdan EMRO