Laboratories in emergencies

Tim Healing
MSc, PhD, FIBIOL, DMCC, DipClinMicro
Role of the diagnostic laboratory

• Confirm diagnoses
• Support and monitoring of treatment
 – Test for organisms (bacteria, viruses etc)
 – Sensitivity testing
 – Serology
 – Haematology
 – Biochemistry
 – Blood safety and typing
• Screening
• Outbreak investigation
• Lowered costs
• Provision of epidemiological data
 – Surveillance
 – Disease trends
• Health planning
Essential principles for a diagnostic laboratory

- Able to undertake the types of test required
- Able to handle the specimen load
- Safe and comfortable for the staff
The laboratory in emergencies

- Not a priority in acute emergency phase
- Identify most diseases/causes of death clinically: treat presumptively or symptomatically

- After the acute phase a basic lab will help improve diagnosis and quality of care
- The lab can help:
 - to identify causes of infection
 - to monitor treatment
 - for blood safety and typing
 - provide data for epidemiology
 - to identify causes of outbreaks
 - reduce expenditure on drugs
 - provide data for planning and programme assessment

- Establish strict indications for lab testing
Is a basic lab sufficient?

- Usually the type of lab that will be set up in the early stages of an emergency will be basic.
- In many areas where disasters occur there is a risk of exposure to very dangerous organisms.
 - Take account of this when the lab is set up.
 - The tests that can be done may be limited by the potential risk - some tests may not be able to be done because safe working cannot be guaranteed.
- Health emergencies may require advanced lab work or the handling of dangerous pathogens.
Any departure from the most basic type of laboratory implies a marked increase in complexity and expense, and a concomitant increase in the difficulties of maintaining the unit and providing suitable staff.
Communication

- Talk to your lab director
- Make sure you/your staff know:
 - what tests the lab can do
 - what these mean
 - Sensitivity (the proportion of people with disease who have a +ve test)
 - Specificity (the proportion of people without disease who have a -ve test)
 - time involved in different tests
 - specimens required
 - information required
 - any other limitations on lab output
- If specimens have to be sent elsewhere
 - what tests can be done
 - how long will it take
Basic laboratory

- Malaria
 - Smears
 - Rapid diagnostic tests (RDTs)
- Other RDTs
- Blood
 - typing
 - hepatitis B
 - HIV
 - differential counts
 - red cells (sickling etc)
- Bacteria – Gram’s stain
 - Gm +ves, -ves
 - bacterial meningitis (from spinal fluid)
 - TB: Ziehl Neelsen
- Parasites (internal/external)
- Water quality
Malaria microscopy
the need for trained personnel!

- b = *P. falciparum* (trophozoite)
- c = Babesiosis

- j = *P. falciparum* (schizonts)
- k = bacteria

Pictures: WHO Bench Aids
Maintenance of skills

• Technical staff need to be able to examine a certain number of slides/perform a certain number of tests daily to keep their skill levels up

• External QC
 – provision of training material
 – checking of output
Rapid diagnostic tests (RDTs)

• Many different types available:
 – Malaria
 – Dengue
 – HiV
 – Meningitis (Neisseria, S.pneumoniae, viral)
 – HbsAg,
 – Cholera
 – Typhoid
 – Urine
 – Pregnancy
 – Blood typing

• Not all can be done in simple labs or at the bed-side
• Operating temperature range
• Storage conditions
• Sensitivity
• Specificity
Basic lab and bacterial infections

• Cannot do:
 – Culture
 – Sensitivity

• Can do:
 – Gram’s stains
 • Gm+ve/-ve
 – Staphs
 – Streps
 – Bacterial meningitis
 – Mixed infections
 • Yeasts
 – Ziehl Neelsen stain (TB)
Water testing
Oxfam DelAgua kit

- Thermotolerant (faecal) coliforms
- Total coliforms
- Turbidity
- Chlorine
- pH Tests
- Conductivity
The laboratory and epidemiology

- Confirmation of outbreak (e.g. cholera)
- Confirm extent/size of outbreak
- Detailed identification of organism (e.g. *V. cholerae O1 El Tor*)
- Identify source
- Monitor spread & distribution of organism

Lab needs specimens to do this!
Using other laboratories

• If the basic lab cannot do certain essential tests (e.g. confirming a cholera outbreak) you will need to use a lab elsewhere in the country or abroad.

• Need to assess capacity of national laboratory service of host nation as a part of initial assessment, (if communicable disease treatment and control is part of your programme)
 – Types of test
 – QC systems
 – Reporting systems
 – Storage (specimens, media etc.)
 – Transport
 • Internal
 • Abroad
 – Staff & training
 • Can the lab provide suitable staff for you?
Can local labs cope?
Need expert assessment

• Lab of Connaught hospital in Freetown – diagnostic & national ref lab
• Looks good!

 \textit{But}

• No:
 – electricity
 – water
 – fridges
 – safety cabinets
 – etc

• Little storage – no temperature controlled storage
Transport of specimens

• Whether you are using a local laboratory or one in another country you will need to set up a system of transporting specimens.
• This may already exist in country – check as part of the initial assessment
A laboratory should have:

- A suitable building or room(s) appropriately laid out and furnished.
- Good infrastructure (water, drainage & waste disposal, power, environmental control etc.)
- Adequate numbers of staff trained in the tests to be undertaken.
- SOPs covering the tests to be undertaken & all other lab activities.
- QC (internal and external) to ensure consistency and accuracy of output.
- A safety policy based on the tests undertaken and the risks posed by the organisms present in the area.
- The appropriate equipment, reagents, media, glassware and disposables.
- Technical, engineering and logistic support.
- Good access and external communications.
The laboratory building

- Poor conditions will affect work efficiency
- Structurally sound
- Secure
- Windows - security grilles/mosquito screens/sun screens (not curtains!!)
- Well painted (oil paint)
 - easy to clean/disinfect
 - prevent dust falling onto work surfaces.
- Good benches
 - stable
 - suitable height (90 cm usually).
 - chemical resistant (acids, alkalis, stains, solvents, disinfectants)
- Good seating
Water & drains

- Adequate supplies essential
- Cover tanks
- Purification system?
- Still/deioniser
- Good drainage (large soakaways, no risk of contaminating water table)
- If town drainage is used, trap lab waste system
Waste disposal

- Treat liquid microbiological waste with heat or chemicals before discard
- Burn infectious solid waste
- Provide sharps bins and burn when full
Power

- Electricity supply - depends on number of items of equipment and run duration.
- This affects type/size of generator.
- Backup generator essential.
- Automatic switch-on system may be needed.
- Battery bank (with inverters) may be needed.
- Solar power?
- Gas (propane/butane) may be needed for Bunsen burners and/or gas refrigerators.
- Lab may take power from system used to supply clinical unit
Temperature control

- PPE is uncomfortable in high temperature (>30 °C) or humidity.
- Many rapid tests perform unpredictably above 28–30°C
- Equipment works better when cool
- Difficult to control in tents or labs built from plastic sheeting
- May require an air conditioners
- Avoid fans - can blow organisms around
- May need heating rather than cooling
Ventilation

• Helps control temperature
• Directional airflow to protect workforce
• Usually provided via doors and windows
• Don’t vent lab air into areas where people may be at risk.
• When determining lab site and layout note:
 – prevailing wind direction,
 – the situation of other buildings, paths, etc.
 – use made of the space around the building
• Ducted air extraction may be needed
Vector/pest control

• Keep pests out of the lab
 – fit windows with insect screens
 – control rodent access

• May interfere with lab work or contaminate media, specimens etc.

• Can spread pathogens from the lab to the outside.
• Initially use trained staff
 – no time to train lab assistants
 – possibility of using local staff
• Need staff experienced in relevant fields
 – parasitology
 – haematology
 – biochemistry
 – bacteriology
 – virology
• Experienced lab head (technical skills, external liaison, personnel management, stock control, etc).
• When situation stabilizes, increase staff & train/retrain local staff
Standard Operating Procedures (SOPs)

• All procedures undertaken in a lab should be laid down in SOPs.
• These should include:
 – types of tests done and methods
 – risk and hazard assessments
 – safety procedures
 – protocols for internal and external QC
 – protocols stock control
Quality Control

• Internal
 – Tests on new batches of reagents, stains etc.
 – Use of standard slides, cultures etc.
• External (national/international)
 – Examination of a % of lab specimens by external lab
 – Provision of QC specimens by external lab
Safety

• Implications for lab design and working.
• Depends on:
 – basic safety precautions
 – good staff training
 – adherence to safety requirements
 – maintaining and sustaining safety equipment
• Safety levels depend on:
 – types of tests done (whether high risk work is appropriate at local level)
 – types of organism present (pathogenicity, mode of transmission, etc)
• Safety manual
• Safety equipment
 – PPE
 – first aid
 – eyewash
 – fire extinguishers
 – safety shower
Equipment

• Must be
 – suitable
 – safe to operate
 – simple to
 • install,
 • operate,
 • maintain,
 • decontaminate
 • clean.
Fridges and Freezers

- Electrical (compression fridges)
- Multi fuel (absorption fridges)
- Solar refrigerators are available
- Ice-lined fridges useful where electricity supplies intermittent
- Use top opening equipment where possible
- May not be suitable for lab to share other fridges (specimens and antimicrobials/vaccines may not mix!)
Mobile laboratories

- Varying levels of complexity
- Available “off the shelf”
- Can just be a 4WD used to transport staff and equipment to different sites
- Same requirements as other labs
- Limitations:
 - size
 - storage capacity
 - infrastructure
 - temperature control
References

WHO documents
• WHO EMRO (1994). Health laboratory facilities in Emergency and Disaster Situations.
• WHO EMRO (2000) Selection of basic equipment for laboratories with limited resources.
• Bench Aids
 – Bench Aids for the Diagnosis of Intestinal Parasites (1994).
 – Bench Aids for the diagnosis of filarial infections (1997)
 – Bench Aids Bench Aids for the Diagnosis of Malaria Infections (2000)
• Basic Laboratory Methods in Medical Parasitology (1991)
• Maintenance and Repair of Laboratory Diagnostic, Imaging and Hospital Equipment (1994)
• Safety in Health-Care Laboratories (1997).
• Guidelines for the Collection of Clinical Specimens during Field Investigation of Outbreaks. (2000)
• Manual of basic techniques for a health laboratory. (2003)
• Communicable diseases control in emergencies - A field manual. (2005)

Others
• Davis J, Lambert R. Engineering in emergencies. ITDG publishing. 2002