Conclusions and recommendations

After thorough discussions of the many initial options, the following major themes were proposed:

8.1 Treatment of CFA

Three interrelated research issues were addressed within the clinical theme.

8.1.1 Evidence-based care

This issue focuses on the replacement of current widespread uncertainty and confusion in clinical care with a sound evidence-base derived from rigorous clinical research.

There is a pressing need to mobilize a critical mass of clinical research expertise and to access sufficiently large samples of patients for adequately-powered clinical trials. Initial efforts should include the following:

- trials of surgical methods for the repair of different orofacial cleft subtypes, not just unilateral clefts;
- trials of surgical methods for the correction of velopharyngeal insufficiency;
- trials of the use of prophylactic ventilation tubes (grommets) for middle-ear disease in patients with cleft palate;
- trials of adjunctive procedures in cleft care, especially those that place an increased burden on the patient, family, or medical services, such as presurgical orthopaedics, primary dentition, orthodontics and maxillary protraction;
- trials of methods for the management of perioperative pain, swelling and infection, and nursing;
- trials of methods to optimize feeding before and after surgery;
Global strategies to reduce the health-care burden of craniofacial anomalies

- trials addressing the special circumstances of care in the developing world in respect of surgical, anaesthetic and nursing care;
- trials of different modalities of speech therapy, orthodontic treatment and counselling.

Equally urgent is the need to create collaborative groups, or improve the networking of existing groups, in order to develop and standardize outcome measures. There is an especially urgent need for work on psychological and quality-of-life measures, and economic outcomes.

For rare interventions, prospective registries should be established to hasten collaborative monitoring and critical appraisal, equivalent to Phase I trials. Relevant topics would be craniosynostosis surgery, ear reconstruction, distraction osteogenesis for hemifacial macrosomia and other skeletal variations, midface surgery in craniofacial dysostosis, and correction of hypertelorism.

8.1.2 Quality improvement

Quality improvement focuses on the development and dissemination of methodologies for monitoring and improving the delivery of clinical services.

The international adoption of a set guideline for the provision of clinical services and for the maintenance and analysis of minimum clinical records of cleft care is proposed. Various registries of clinical outcomes have recently emerged and are working independently. Efforts should be made to harmonize these.

8.1.3 Access and availability

Identify strategies to maximize access to adequate levels of care for all affected individuals, irrespective of nationality.

In large parts of the world, routine public health services are unable to afford treatment for CFA. Three general approaches can be identified: high volume indigenous centres of excellence; contracts between non-governmental organizations (NGOs) and local hospitals; and volunteer short-term surgical missions. The long-term benefit of these efforts could be developed by:

- a survey of the charitable organizations involved and the scale of their work;
- an appraisal of the cost-effectiveness and clinical effectiveness of the different models of aid;
• the promotion of dialogue between different NGOs to develop commonly-agreed codes of practice and adoption of the most appropriate forms of aid for local circumstances, with an emphasis on support that favours indigenous long-term solutions;

• the initiation of clinical trials concerning the specifics of surgery in a developing country setting, one-stage operations, optimal late primary surgery, anaesthesia protocols (e.g. local anaesthetic, inhalation sedation), antisepsis;

• the development of common core protocols for genetic, epidemiological and nutritional studies alongside surgery.

8.2 Gene/environment interaction

8.2.1 Epidemiology

The overall conclusions to be drawn from the data presented are as follows:

• there is ample evidence of the distinctly different nature of CL/P and CP, and emerging evidence of distinct differences in sub-groups within these overall conditions;

• there is a great deal of geographical variation which is more apparent for CL/P than CP;

• there is considerable variation in the proportion of cases of OFC with additional congenital anomalies and syndromes;

• it is evident that migrant groups retain rates of CL/P similar to those of their area of origin;

• there is no consistent evidence of time trends, nor is there consistent variation by socioeconomic status or seasonality, but neither of these aspects have been adequately studied;

• there is considerable international variation in the frequency of orofacial clefts, but validity and comparability of data are adversely affected by numerous factors, among which are:
 (a) source population of births considered (hospital versus population),
 (b) time period,
 (c) method of ascertainment,
 (d) inclusion/exclusion criteria, and
 (e) sampling fluctuation;

• there are many parts of the world where we have little or no information on the frequency of OFC, in particular parts of Africa, Central Asia, Eastern Europe, Middle East and Russia.
8.2.2 Etiology

The following points are relevant:

- there are multiple genes involved in OFC;
- analysis should be separated for CL, CL/P and CP as CL/P is not the same as CL only;
- heterogeneity should be expected and therefore different populations will need to be examined for validation of a result;
- nutrition remains an eligible area for research, and the roles of folic acid and multivitamins, including folic acid, vitamins A, B2, B6 and B12, as well as zinc, need further investigation;
- smoking, alcohol, epilepsy, certain medications and environmental factors may explain a small but appreciable portion of birth defects;
- main gaps in knowledge are examination of co-teratogens and gene/environment interaction e.g. with alcohol are there co-teratogens, such as folate deficiency, and is there a threshold beneath which alcohol is safe?

It is important to be able to differentiate the exposure and the genetic predisposition; and identify those at risk to allow selective counselling since general advice regarding alcohol and smoking in relation to disease is not easy to impart in attempting to achieve changes in behaviour.

One major issue in the reporting of associations with exposures is the distinct possibility of publication bias in the literature.

8.2.3 WHO aims and objectives for gene/environment interaction research

The ultimate humanitarian and scientific research objective in CFA birth defects is primary prevention.

The WHO project aims to:

- provide support for planning and development of research protocols that will advance understanding of etiology and inform future prevention initiatives;
- facilitate internet-based research databases;
- support gene/environment interaction studies with international standardization of research protocols to inform the design of future efforts towards primary prevention.
These objectives can be achieved by:

- the reinforcement of existing research collaborations, and
- the setting up of new research collaborations.

8.2.4 Future research challenges

With the availability of the human genome sequence, researchers have increasing opportunities to study the role of genes and GEI in human health and disease. Such opportunities come with major challenges, in three main areas:

- **The first area relates to data**: to identify and, if possible, rank the major data gaps separating our current knowledge from that needed for clinical and public health action.

- **The second area relates to methods**: how to conduct, analyse and present studies of multiple genetic and environmental factors in ways that efficiently fill the data gaps.

- **The third area relates to people and institutions**: how to learn more and more quickly using the unique opportunities inherent in international collaboration.

Common core protocols for data collection and further studies into research methodology to compare various data analysis models are urgently required.

8.3 Genetics

The focus of the genetics component of the WHO Craniofacial Conference was on discussing those technologies, analytic approaches and populations that will best move us forward towards a better understanding of the etiologies of craniofacial abnormalities with particular reference to those that have strong genetic components. While recognizing that the environment and stochastic events play an important and, often, major role in predisposing to craniofacial anomalies, in many situations the role of genetics is compelling.

8.3.1 Phenotype/genotype correlation

- A number of specific single-gene disorders with recognizable Mendelian inheritance, including some holoprosencephaly and craniosynostosis syndromes, serve as benchmarks for ways in which gene identification can proceed from clinical description and family-based studies through traditional cloning and functional analysis.
The definition of non-syndromic cleft lip and palate remains ambiguous, and new gene discoveries leading to improvements in genetic diagnoses will potentially improve sensitivity and specificity of genotype/phenotype correlation.

There is some emerging evidence that traditional separations between cleft lip, with or without cleft palate, and cleft palate only, may be breaking down, and further work in this area is essential.

It is therefore important in research to be able to sub-phenotype cases of children whose abnormalities are limited to clefts, or clefts and one additional abnormality. Clinical descriptors that will allow breaking this group down into finer detail will be particularly important in facilitating genetic analysis.

8.3.2 Analytical methodologies

Technological and analytic approaches will include new methodologies for genotyping, the strategy by which markers will be chosen for genotyping, and the selection of candidate genes when that approach is being utilized.

The strengths and weaknesses of traditional linkage approaches versus affected pedigree-member approaches and transmission disequilibrium testing (TDT) and linkage disequilibrium were also developed.

The strengths of these approaches often overlap and combinatorial approaches using candidate genes in conjunction with affected pedigree-member linkage and TDT can all be carried out in parallel with one another.

8.3.3 Collection and storage of genetic data

Analysis is driven by sample collection, and there are both strengths and weaknesses in:

(a) rapid, cost-efficient, and small-amount sample collection, as is exemplified by blood spots or cheek swabs; and

(b) whole blood or cell line collections that would allow for more extensive analysis of protein and RNA.

International collaboration is essential in that etiologies are likely to be diverse across populations but with some underlying gene and environmental causes shared in common.

Multi-centre collaborations afford the opportunity for the collection of large numbers of samples to have sufficient power to confirm
linkage or association studies; there are a number of active on-going collaborations.

8.3.4 Parallel research and multidisciplinary approach

- The role of animal models and the insights gained from developmental biology into choosing both genes and pathways involved in CFA genetics have never been more apparent than they are now.
- It will be through the interactive efforts of clinicians, epidemiologists, statisticians, molecular biologists and developmental biologists that we will make our most rapid progress.

8.3.5 Role of the World Health Organization

In the ongoing efforts to globalize CFA research, the WHO group will coordinate work on outlining candidate genes, markers, analytic approaches and animal models of use, and will streamline efforts towards establishing collaborative groups to establish a set of protocols and guidelines for future efforts in this arena.

8.4 Prevention

8.4.1 Primary prevention

Orofacial clefts appear to have substantial environmental causes; the potential for their occurrence thus seems considerable. The pattern of occurrence of orofacial clefts is different from that of neural tube defects so their causes may also be different.

- Maternal tobacco use has been consistently associated with a modest elevation in risk of orofacial clefts but the attributable risk may be of public health importance. Moreover tobacco use is rapidly increasing among women, especially in technologically developing countries, and many women are exposed to passive smoking in the home and workplace.
- Maternal alcohol use, well known as a cause of the fetal alcohol syndrome, has also been associated with risk of isolated orofacial clefts in some, but not all, studies. The type and context of alcohol consumption differs considerably across populations and more consistent methods are needed for the assessment of maternal alcohol intake. The possible increased risk of orofacial clefts and other CFA related to the common exposures of smoking and alcohol use during pregnancy is a message that should be incorporated into health promotion programmes for women of reproductive age.
• **Maternal nutritional factors** have been associated with the risk for orofacial clefts in human population studies, although strong evidence of a causal relationship is still lacking. The most promising candidate nutrients include folic acid and pyridoxine (vitamin B-6) and some evidence also exists of possible roles for riboflavin (vitamin B-2) and vitamin A.

8.4.2 Intervention trials

The current state of equipoise regarding maternal nutrition and orofacial clefts makes intervention trials of specific nutrients an urgent priority. The proven intervention of folic acid supplements in the prevention of occurrence of NTDs must also be acknowledged in the design of prevention trials involving folic acid. No single trial is likely to be definitive and trials are needed in diverse populations in both industrialized and technologically developing countries. Trials in high-risk populations are more likely to detect a treatment effect than trials in low-risk populations, and at lower cost and with greater speed.

8.4.3 Choice of nutrient

The choice of specific nutrient interventions should be based on prior detailed studies of biochemical indicators of nutritional status in the population of interest, and all prevention trials should adhere to current ethical and methodologic standards. Poorly conceived and conducted trials are unethical because they waste limited resources and add further delay to discovering effective interventions.

8.4.4 Recurrence trial

An orofacial-cleft recurrence-prevention trial is far more feasible than a trial of prevention of primary occurrence, but would still require many thousands of high-risk mothers. Orofacial cleft surveillance systems and registries in countries around the world need to be further developed and linked to provide the critical infrastructure for orofacial-cleft prevention trials.
List of participants

Dr Terri Beaty, Johns Hopkins Hospital, 615 N. Wolfe St., Baltimore, MD 21205-2103, USA
E-mail: Tbeaty@phnet.sph.jhu.edu; Tel: +1 410 955 6960; Fax: +1 410 955 0863

Dr Kåre Berg, Director, Institute of Medical Genetics, University of Oslo, Director, Department of Medical Genetics, Ullevål University Hospital, Head, WHO Collaborating Centre for the Community Control of Hereditary Diseases, Oslo, Norway
Tel: +47 22 11 98 85; Fax: +47 22 11 98 99

Dr Lorenzo Botto, Genetic Diseases Branch, Division of Birth Defects & Development Disabilities, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA 30341, USA
E-mail: lcb9@cdc.gov; Tel: +1 770 488 3235; Fax: +1 770 488 3236

Dr Roberto Brusati, Università degli Studi di Milano, Clinica Odontostomatologica Istituto di Scienze Biomediche S. Paolo, Via A. di Rudini No. 8, 20142 Milano, Italy
E-mail: dogarzi@tin.it; Tel: +39 281 360 77; Fax: +39 281 302 00

Dr Eduardo Castilla, Professor, Eclame/Genetica/Fiocruz, WHO Collaborating Centre for the Prevention of Congenital Malformations, CP 926, Rio De Janiero RJ 20001-970, Brazil
E-mail: castilla@centroin.com.br; Tel: +55 21 598 43 58; Fax: +55 21 260 42 82;

Dr Arnold Christianson, Dept of Human Genetics, Faculty of Medicine, P O Box 2034, Pretoria 0001, South Africa
E-mail: christal@medic.up.ac.za; christianson@worldonline.co.za (home); reynhardt@med.up.ac.za (secretary); Tel: +27 12 3192626 (work); +27 11 7282965 (home); Fax: +27 12 3232788,
Global strategies to reduce the health-care burden of craniofacial anomalies

Dr M. Michael Cohen, Dalhousie University, Halifax, Canada NS B3H 3J5
E-mail: remaclea@is.dal.ca; Tel: +1 902 494 6412; Fax: +1 902 494 6411

Dr Christopher Corcoran, Assistant Professor, Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan UT 84322-3900, USA
E-mail: corcoran@math.usu.edu; Tel: +1 435 797 4012; Fax: +1 435 797 1822

Dr Timothy C Cox, NH&MRC R Douglas Wright Fellow & Senior Research Fellow, Department of Molecular Biosciences and Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia, Australia 5005
President, Aust. and NZ Society for Cell and Developmental Biology Inc.
E-mail: timothy.cox@adelaide.edu.au; Tel: +61 8 8303-4812;
Fax: +61 8 8303-3787 (department); +61 8 8303-7534 (CMGD)

Dr Maxine Croft, TVW Telethon Inst for Child Health Research, Company Limited, The University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
E-mail: maxine@ichr.uwa.edu.au

Dr Michael Cunningham, Dept of Pediatrics, University of Washington, RR-306 Health Sciences, Box 356320, Seattle, WA 98195-6320, Australia
E-mail: mcunning@u.washington.morphos.rocketmail.com;
Tel: +206 616 5277; Fax: +206 543 3184

Dr Andrew Czeizel, Department of Human Genetics and Teratology, WHO Collaborating Center for the Community Control of Hereditary Diseases, National Centre of Epidemiology, Bolgarkerek U3, Budapest H-1148, Hungary
E-mail: czeizel@interware.hu; Tel: +36 1 394 4712; Fax: +36 1 363 5272

Dr S. Daack-Hirsch, University of Iowa, Division of Neonatology, 229-1W, Iowa City, IA 52242, USA
Tel: +1 319 335 6897; Fax: +1 319 335 6970

Dr Baman M Daver, 22-23 Bakhtavar annexe, Narayan Dabholkar Marg,
Mumbai 400 006, India
E-mail: bmdaver@bomb8.vsnl.net.in

Dr Virginia Diwewert, Professor, Head, University of British Columbia, 2199 Wesbrook Mall, J.B. macDonald Bldg., Rm 372, Vancouver, BC V6T1Z3, Canada
E-mail: vdiwewert@unixg.ubc.ca; Tel: +1 604 822 3592; Fax: +1 604 822 3562

Dr Albert DeMey, Centre Hospitalier Universitaire Brugmann, Department of Plastic Surgery, 4 Place Van Gehuchten, 1020 Brussels, Belgium
E-mail: albert.demey@chu-brugmann.be; Tel: +32 2 477 2305; Fax: +32 2 478 0091

Dr Hatem El-Shanti, Department of Pediatrics, Jordan University of Science and Technology, P.O. Box 3211, Irbid 22110, Jordan
E-mail: hatem@just.edu.jo; Tel: +962 2 295 111, ext. 3884; Fax: +962 6 5515598
Dr J. David Erickson, Division of Birth Defects and Developmental Disabilities, US Centres for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta GA 30341, USA
E-mail: jde1@cdc.gov; Tel: +770 488 7171; Fax: +770 488 7197

Dr Robert P Erickson, Department of Pediatrics, Univ Arizona Health Sciences Center, 1501 B Campbell Avenue, Tucson, AZ 85724-5073, USA
E-mail: erickson@peds.arizona.edu; Tel: +1 520 626 5483; Fax: +1 520 626 7407

Dr Richard H. Finnell, Director, Molecular Genetics, Munroe Meyer Institute, 985455 Nebraska Medical Centre, Omaha, NE 68198-5455, USA
E-mail: rfinnell@unmc.edu; Tel: +1 402 559 5397; Fax: +1 402 559 4001

Dr David FitzPatrick, Senior Clinical Scientist & Honorary Clinical Geneticist, MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland
E-mail: David.FitzPatrick@hgu.mrc.ac.uk; Tel: +44 131 467 8423; Fax: +44 131 343 2620

Dr Evgeny K. Ginter, Research Centre for Medical Genetics, Director, Institute of Clinical Genetics, Head, WHO Collaborating Centre for The Prevention of Hereditary Diseases, 115478 Moscow, Russia
E-mail: ekginter@mtu-net.ru; Tel: +7 095 111 8580; Fax: +7 095 324 0702

Dr Janine Goujard, INSERM, 123 Bd de Port-Royal, U 149, Paris 75014, France
E-mail: goujard@cochin.inserm.fr; Tel: +33 1 4234 55 75; Fax: +33 1 4326 89 79

Dr Widanto Hardjowasito, Physical Anomalies, Mental Retardation & Growth Studies, Faculty of Medicine, Brawijaya University, Jalan Mayor Jenderal Haryono 171, Malang, Indonesia
E-mail: widanto@mlg.mega.net.id; Tel: +62 341 326068; Fax: +62 341 326068

Dr Catherine Hayes, Assistant Professor, Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston MA 02115, USA
E-mail: catherine_hayes@hms.harvard.edu; Tel: +1 617 432 3507; Fax: +1 617 432 0047

Dr Jacqueline Hecht, Division of Medical Genetics, Department of Pediatrics, The University of Texas Medical School, 6431 Fannin, Houston, TX 77225, USA
E-mail: jhecht@ped1.med.uth.tmc.edu; Tel: 713 500 5764; Fax: 713 796 9984

Dr Pam Houston, Unit of Dental and Oral Health, University of Dundee Dental, Park Place, Dundee DD1 4HR, Scotland
E-mail: m.p.houston@dundee.ac.uk; Tel: +44 1382 425764; Fax: +44 1382 206321

Dr Ethylin W. Jabs, Inst. of Genetic Medicine, Dept of Pediatrics, Johns Hopkins Hospital, 600 N. Wolfe St., CMS C 10-04, Baltimore, MD 21287-3914, USA
E-mail: ewjabs@jhmi.edu; Tel: +1 410 955 4160; Fax: +1 410 955 0484

Dr Marilyn C. Jones, Div of Dysmorphology & Genetics, Children’s Hospital, 3020 Children’s Way #5031, San Diego, CA 92123-2746, USA
E-mail: mjones@chsd.org; Tel: +1 858 576 5840; Fax: +1 858 495 8550
Global strategies to reduce the health-care burden of craniofacial anomalies

Dr Diana M. Juriloff, Dept of Medical Genetics, University of British Columbia, 6174 University Blvd, Vancouver, BC V67 1Z3, Canada
E-mail: juriloff@interchange.ubc.ca; Tel: +1 604 822 5786; Fax: +1 604 822 5348

Dr Nat Khaole, Research Fellow, Dept. of Pediatrics, Div. Of Dysmorphology/Clinical Genetics and Teratology, University of California, San Diego, 200 West Arbor Drive, San Diego CA 92103-8446, USA
E-mail: nkhaole@ucsd.edu; Tel: +1 619 543 2040; Fax: +1 619 543 3561

Dr David P. Kuehn, University of Illinois at Urbana-Champaign, Department of Sp & Hrg Sci, 901 S Sixth, Champaign, Illinois 61820, USA
E-mail: d-kuehn@uiuc.edu; Tel: +1 217 244 2555; Fax: +1 217 244 2235

Dr Edward J. Lammer, Director, Medical Genetics, Oakland Children’s Hospital, 747 52nd St., Oakland, CA 94609-1809, USA
E-mail: cho.dr.ela@cho.org; Tel: +1 510 428 3550; Fax: +1 510 450 5874

Dr S.T. Lee, Senior Consultant Plastic Surgeon & Head, Department of Plastic Surgery, Singapore General Hospital, Outram Road, 169 608, Singapore
E-mail: gzlst@sgh.gov.sg; Tel: +65 326 6048; Fax: +65 220 9340

Dr Robert Levine, Professor, Departments of Medicine and Pharmacology, Yale University School of Medicine, 47 College Ste. 204, New Haven CT 06520, USA
E-mail: robert.levine@yale.edu; Tel: +1 203 785 4687; Fax: +1 203 785 2847

Dr Huiping Zhu Li, Dept of Health Care Epidemiology, Beijing Medical University, Beijing 100083, People’s Republic of China
E-mail: zhuhp@ncmih.bjmu.edu.cn

Dr Andrew Lidral, Asst Professor, Section of Orthodontics, Ohio State University College of Dentistry, Postle Hall, Room 4140, 305 West Twelfth Ave., Columbus, OH 43210, USA
E-mail: lidral.16@osu.edu; Tel: +1 614 292 3526; Fax: +1 614 688 3077

Dr Susi Lieff, Research Assistant Professor, Department of Dental Ecology, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599-7450, USA
E-mail: Susi_-Lieff@dentistry.unc.edu; Tel: +1 919 966 2787; Fax: +1 919 966 6761

Dr Julian Little, Professor, Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Aberdeen AB25 2ZD, Scotland
E-mail: j.little@abdn.ac.uk; Tel: +44 1224 681818 ext. 54485; Fax: +44 1224 849153

Dr Lian Ma, CLP Centre, School of Stomatology, Beijing Medical University, Hai Dian, wei Gong Cun, Beijing 10081, People’s Republic of China
E-mail: lmaa@hkucc.hku.hk

Dr Anil Maderree, Professor and Head, Department of Plastic and Reconstructive Surgery, Nelson R Mandela Medical School, University of Natal, Wentworth Hospital, Private Bag Jacobs, Durban 4026, South Africa
E-mail: madaree@wwh.und.ac.za; Tel: +27 31 460 5202; Fax: +27 31 461 3049
WHO meetings on international collaborative research on craniofacial anomalies

Dr Mary Marazita, Cleft Palate-Craniofacial Centre, The University of Pittsburgh, School of Dental Medicine, 317 Salk Hall, 3501 Terrace Ave., Pittsburgh, PA 15261-1931, USA
E-mail: marazita@cpc.pitt.edu; Tel: +1 412 648 8400; Fax: +1 412 648 8404

Dr Phillip May, Principal Investigator, Centre on Alcoholism, Substance Abuse and Addictions, University of New Mexico, 2350 Alamo SE, Albuquerque NM 87106, USA
E-mail: pmay@unm.edu; Tel: +1 505 768 0107; Fax: +1 505 768 0278

Dr Curtis Meinert, Professor and Director, Centre for Clinical Trials, Johns Hopkins University School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore MD 21205, USA
E-mail: bcolliso@jhsph.edu; Tel: +1 410 955 8198; Fax: +1 410 955 0932

Dr Anne Molloy, Biochemistry Department, Trinity College Dublin, Dublin 2, Ireland
E-mail: amolloy@truxa1.tcd.ie; Tel: +353 1 608 1616; Fax: +353 1 677 2400

Dr Danilo Moretti-Ferreira, Servico de Aconselhamento, Genetico da Universidade Estadual Paulista, Caixa Postal 529, 18618-000-Botucatu S.P. Brazil
E-mail: sag@fmb.unesp.br; Tel: +55 14 6821 31 31; Fax: +55 14 18 21 3744

Dr Osvaldo Mutchinick, Chief, Department of Genetics, Director, WHO Collaborating Centre for Community Genetic Services, National Institute of Nutrition, Vasco de Quiroga 15, Tlalpan, 14000 Mexico, D.F. Mexico
E-mail: osvaldo@servidor.unam.mx; Tel: +52 5 573 1200 x 2425 & 2426; Fax: +52 5 655 6138

Dr Nagato Natsume, 2nd Dept of Oral-Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, 2-11 Suemori-Dori, Chikusa-Ku, Nagoya 464, Japan
E-mail: natsume@fs.dpc.aichi-gakuin.ac.jp; Tel: +81 52 752 5990; Fax: +81 52 752 5990

Ms Pauline Nelson, Department of Oral Health and Development, University of Manchester Dental Hospital, Higher Cambridge Street, Manchester M15 6FH, United Kingdom
E-mail: Pauline.Nelson@man.ac.uk; Tel: +44 161 275 6865; Fax: +44 161 275 6636/6794

Dr Maria Rita Passos-Bueno, Departamento de Biologia, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao 277, Sao Paulo, SP 05508-900, Brazil
E-mail: passos@usp.brpassos@ib.usp.br; Tel: +55 11 818 7563; Fax: +55 11 818 7419

Dr Natalie Prescott, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
E-mail: N.Prescott@ich.ucl.ac.uk; Tel: 020 7905 2221

Dr Jorma Rautio, Plastic Surgeon, Cleft Centre, Department of Plastic Surgery, Töölö Hospital Topeliuksenkatu 5, 00260 Helsinki, Finland
E-mail: jorma.rautio@hus.fi; Tel: +358 9 4718 7448; Fax: +358 9 4718 7570

Dr J.F. Reinisch, Division of Plastic Surgery, Children's Hospital of Los Angeles, P.O. Box 54700, LA, CA 90054, USA
E-mail: JFR654@aol.com; Tel: +1 213 669 4544; Fax: +1 213 669 4106
Global strategies to reduce the health-care burden of craniofacial anomalies

Dr Sjurur Olsen, Danish Epidemiology Science Centre, Statens Serum Institut, 5 Artillerivej, Copenhagen S DK-2300, Denmark
E-mail: sfo@ssi.dk; Tel: +45 32 68 39 55; Fax: +45 32 68 82 42

Dr Antonio Richieri-Costa, Professor, Department of Clinical Genetics, Hospital de Pesquisa e Reabilitacao de Lesoes Labio-Palatais, University of Sao Paolo, Bauru, Brazil
E-mail: richieri@usp.br; Tel: +55 14 235 8183; Fax: +55 14 234 7818

Dr Joy Richman, Dept. of Oral Health Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, B.C. Canada, V6T 1Z3
E-mail: richman@interchange.ubc.ca; Tel: +1 604 822 3568; Fax: +1 604 822 3562

Dr Elisabeth Robert, Institut Europeen des Genomutations, 86 Rue Edmond Locard, F69005 Lyon, France
E-mail: robieg@univ-lyon1.fr; Tel: +33 478 25 82 10; Fax: +33 478 36 61 82

Dr Howard Saal, Division of Human Genetics, Children’s Hospital Medical Centre, 333 Burnett Ave., Cincinnati, OH 45229-3039, USA
E-mail: SAALHM@CHMCC.ORG; Tel: +1 513 636 4760; Fax: +1 513 559 7297

Dr Gunvor Semb, Senior Lecturer in Craniofacial Anomalies, Orthodontic Unit, Department of Oral Health and Development, University Dental Hospital of Manchester, Higher Cambridge Street, Manchester, M15 6FH, United Kingdom
E-mail: Gunvor.Semb@man.ac.uk; Tel: +44 161 275 6791; Fax: +44 161 275 6794

Dr Gary Shaw, Epidemiologist, Research Manager, California Birth Defects Monitoring Program, 1900 Powell Street, Suite 1050, Emeryville, CA 94608-1811, USA
E-mail: gshaw@a.crl.com; Tel: +1 510 653 3303; Fax:+1 510 653 1678

Dr Richard Smithells, Professor Emeritus, University of Leeds, 5 North Grange Mews, Leeds LS6 2EW, United Kingdom
E-mail: dicknjoy@cwcom.net; Tel: +44 113 275 7280; Fax: +44 113 275 7280

Dr Richard Spritz, Human Medical Genetics Program, University of CO Health Sci Ctr, 4200 E. Ninth Ave. B161, Denver, CO 80262, USA
E-mail: Richard.Spritz@UCHSU.edu; Tel: +1 303 315 7739; Fax: +1 303 315 6932

Dr Claude Stoll, Médecin des Hospitaux, Genetique Medicale Hospital de Hautepierre, Avenue Moliere, 67098 Strasbourg Cedex, France
E-mail: claude.stoll@chru-strasbourg.fr; Tel: +33 388 12 8120; Fax: +33 388 12 8125

Dr Tsunenobu Tamura, Professor, Department of Nutrition Sciences, University of Alabama at Birmingham, 218 Webb Bldg., 1675 University Blvd., Birmingham, Alabama, 35294, USA
E-mail: Tamurat@uab.edu; Tel: +1 205 934 7478; Fax: +1 205 934 7049

Dr Marie M. Tolarova, Director, Program for Prevention of Cleft Lip and Palate, Department of Orthodontics, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA
E-mail: tolarova@sfmail.dental.uop.edu; Tel: +1 415 749 3397; Fax +1 415 929 6549
WHO meetings on international collaborative research on craniofacial anomalies

Dr Inge E.K. Trindade, Hospital de Reabilitacao de Anomalies Craniofaciais, Universidade de Sao Paulo, Rua Silvio Marchione 3-20, 17043-900 Bauru, SP, Brazil
E-mail: ingetrin@usp.br; Tel: +55 14 235 8137; Fax: +55 14 234 7818

Dr Ishwar Verma, Head, Department of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110 060, India
E-mail: icverma@vsnl.com; Tel: +91 11 685 4434

Dr Denis Viljoen, Professor, Department of Human Genetics, South African Institute of Medical Research, James Murray Building, P.O. Box 1038, Johannesburg 2000, South Africa
E-mail: denisv@mail.saimr.wits.ac.za; Tel: +27 11 489 9239; Fax: +27 11 489 9209 or 9226

Dr Takeshi Wada, Chair, JCPA International Relations Committee, Professor of Oral-Facial Disorders and Therapeutics, Division of Functional Oral Neuroscience, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita City, Osaka 565-0871, Japan
E-mail: wada@dent.osaka-u.ac.jp; Tel: +81 6 879 2275; Fax: +81 6 879 2279

Dr Martha Werler, Associate Professor, Boston University, Slone Epidemiology Unit, 1371 Beacon St., Brookline, MA 01890, USA
E-mail: mwerler@slone.bu.edu; Tel: +1 617 734 6006; Fax: +1 617 738 5119

Dr Keith West, Professor, Department of International Health, Johns Hopkins University School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore MD 21205, USA
E-mail: kwest@jhsph.edu; Tel: +1 410 955 2061; Fax: +1 410 955 0196

Dr William N. Williams, Department of Oral Biology, University of Florida, College of Dentistry, P.O. Box J424, Gainesville, FL 32610, USA
E-mail: williams@dental.ufl.edu; Tel: +1 904 846 0801; Fax: +1 904 846 1539

Dr Fung Ki Wong, Karolinska Hospital, Dept of Molecular Med, CMM L8:01, SE 171 76, Stockholm, Sweden
E-mail: Fung-Ki.Wong@cmn.ki.se; Tel: +46 8 51773616; Fax: +46 8 51776180

Dr Diego Wyszynski, Genetics Program, L320, Boston University School of Medicine, 715 Albany St., Boston, Boston, MA 02118, USA
E-mail: dfw@bu.edu; Tel: +1 617 638 5393; Fax: +1 617 638 4275

Dr Antonio Ysunza, Hospital Gea Glez, 4800 Calzada Tlalpan, Mexico DR 14000
E-mail: amysunza@datasys.com.mx

Dr Li Zhu, Professor of Epidemiology and Director, National Centre for Maternal and Infant Health, Peking University Health Science Centre, Room 115, Research Centre Building, 38 College Road, Beijing 100083, People’s Republic of China
E-mail: lzh@public.bta.net.cn; Tel: +86 10 6209 1138; Fax: +86 10 6209 1136
Global strategies to reduce the health-care burden of craniofacial anomalies

Governmental and non-governmental agency representatives

Dr Scott Diehl, OHPRFMEB/DIR/NIDCR/NIH, 45 Center Drive, Natcher Building 45, Room 4AS-43G, Bethesda, MD 20892-6401, USA
E-mail: scott-diehl@nih.gov; Tel: 301/295 1671; Fax: 301/480 8327

Dr Alyssa Easton, Epidemiologist, Office on Smoking and Health, US Centres for Disease Control and Prevention, 4770 Buford Highway NE., Mail Stop K-50, Atlanta GA 30351, USA
E-mail: ace7@cdc.gov; Tel: +1 770 488 5106; Fax: +1 770 488 5848

Ms Delois Greenwood, The Smile Train, 245 Fifth Avenue, Suite 2201, New York, NY 10016, USA
Tel: +1 212 689 9199; Fax: +1 212 689 9299

Ms Beth Marshall, Operation Smile, 6435 Tidewater Drive, Norfolk, VA 23509, USA
Tel: +1 757 321 7645; Fax: +1 757 321 7660

Dr James Mills, Chief, Pediatric Epidemiology Section, National Institute of Child Health and Development, Room 7B03, 9000 Rockville Pike, Bethesda MD 20892-7510, USA
E-mail: jamesmills@nih.gov; Tel: +1 301 496 5394; Fax: +1 301 402 2084

Dr Cynthia Moore, Division of Birth Defects and Developmental Disabilities, US Centers for Disease Control and Prevention, 4770 Buford Highway NE., Atlanta GA 30341, USA
E-mail: cam0@cdc.gov; Tel: +1 770 488 7163; Fax: +1 770 488 7197

Dr Ruth Nowjack-Raymer, Public Health Researcher, Office of Science Policy and Analysis, Office of the Director, National Institute of Dental and Craniofacial Research, Natcher Building, 45 Center Drive, Bethesda MD 20892, USA
E-mail: nowjackr@de45.nidr.nih.gov; Tel: +1 301 594 5394; Fax: +1 301 480 8254

Dr MaryAnn Redford, Director, Clinical Trials Program, National Institute of Dental and Craniofacial Research, Natcher Building, 45 Center Drive, Bethesda MD 20892, USA
E-mail: Maryann.Redford@nih.gov; Tel: +1 301 594 5588

Dr Karen Remlay, Operation Smile, 6435 Tidewater Drive, Norfolk, VA 23509, USA
Tel: +1 757 321 7645; Fax: +1 757 321 7660

Dr Rochelle Small, Program Director, Craniofacial Anomalies and Injuries Branch, National Institute of Dental and Craniofacial Research, Natcher Building, Room 4AN-24K, 45 Center Drive, Bethesda MD 20892, USA
E-mail: rochelle.small@nih.gov; Tel: +1 301 594 9898; Fax: +1 301 480 8318

Mr Baxter Urist, President, The Smile Train, 245 Fifth Avenue, Suite 2201, New York, NY 10016, USA
E-mail: burist@smiletrain.org; Tel: +1 212 689 9199; Fax: +1 212 689 9299
Observers

Dr John Carey, Professor, Division of Medical Genetics, Department of Pediatrics, University of Utah Health Sciences Center, 413 MREB, 50 North Medical Drive, Salt Lake City UT 84132, USA
E-mail: john.carey@hsc.utah.edu

Mr Gene Charoonruk, Research Assistant, Department of Nutrition and Food Sciences, Utah State University, 8700 Old Main Hill, Logan UT 84322-8700, USA
E-mail: gcharoonruk@cc.usu.edu; Tel: +1 435 797 7478; Fax: +1 437 797 2771

Ms Sandra Daak-Hirsch, Division of Neonatology, The University of Iowa College of Medicine, 140 EMRB, Iowa City IA 52242, USA
E-mail: Sandra-Daack-Hirsch@uiowa.edu; Tel: +1 319 335 9967; Fax: +1 319 335 6848

Ms Marcia Feldkamp, Director, Utah Birth Defect Network, Utah Department of Health, 44 North Medical Drive, P.O. Box 144697, Salt Lake City UT 84114-4697, USA
E-mail: mfeldkam@doh.state.ut.us; Tel: +1 801 584 8443; Fax: +1 801 584 8488

Dr Robert Gillies, Assistant Professor, Department of Geography and Earth Resources, Utah State University, 4820 Old Main Hill, Logan UT 84322-4820, USA
E-mail: rgillies@nr.usu.edu; Tel: +1 435 797 2664; Fax: +1 435 797 2117

Dr Jianjun Zhang, Post-doctoral Research Associate, Department of Nutrition and Food Sciences, Utah State University, 8700 Old Main Hill, Logan UT 84322-8700, USA
E-mail: jjzhang@cc.usu.edu; Tel: +1 435 797 2305; Fax: +1 435 797 2771

WHO Secretariat and Planning Committee

Ms Christina Adam, Assistant, Human Genetics Programme, Department of the Management of Noncommunicable Diseases, WHO, CH-1211 Geneva 27, Switzerland
E-mail: adamc@who.ch; Tel: +41 22 791 3756; Fax: +41 22 791 47 69

Dr David Barmes, Special Expert for International Health, Office of International Health, National Institute of Dental and Craniofacial Health, Natcher Building, 45 Center Drive, Bethesda, Maryland 20892, USA
E-mail: barmesd@iprolink.ch; Tel: +41 22 362 3973; Fax: +41 22 791 4866

Dr Victor Boulyjenkov (Secretary), Scientist, Human Genetics Programme, Department of the Management of Noncommunicable Diseases, WHO, CH-1211 Geneva 27, Switzerland
E-mail: boulyjenkov@who.ch; Tel: +41 22 791 3442; Fax: +41 22 791 47 69

Dr Kevin Hardwick, Office of International Health, National Institute of Dental and Craniofacial Research, Natcher Building, 45 Center Drive, Bethesda MD 20892, USA
E-mail: Kevin.Hardwick@nih.gov; Tel: +1 301 594 2765; Fax: +1 301 402 7033
Global strategies to reduce the health-care burden of craniofacial anomalies

Dr Miriam Hirschfeld, Special Adviser, Home and Long-term care, WHO, CH-1211 Geneva 27, Switzerland
E-mail: Hirschfeldm@who.ch; Tel: +41 791 2507

Dr Peter Mossey (Co-Chairperson and Co-Rapporteur), Senior Lecturer/Consultant in Orthodontics, Dundee Dental School, Park Place, Dundee DD1 4HR, Scotland
E-mail: p.a.mossey@dundee.ac.uk; Tel: +44 1382 425761; Fax: +44 1382 206321

Ms. Elizabeth Mottier-D’Souza, Assistant, Human Genetics Programme, Department of the Management of Noncommunicable Diseases, WHO, CH-1211 Geneva 27, Switzerland
E-mail: mottierdsouzae@who.ch; Tel: +41 22 791 3276; Fax: +41 22 791 4769

Dr Ronald Munger (Co-Chairperson and Co-Rapporteur), Professor, Department of Nutrition and Food Sciences, Utah State University, 4450 Old Main Hill, Logan UT 84322-4450, USA
E-mail: rmunger@cc.usu.edu; Tel: +1 435 797 2122; Fax: +1 435 797 2771

Dr Jeffrey Murray (Co-Chairperson and Co-Rapporteur), Professor, Department of Pediatrics, The University of Iowa College of Medicine, W229 General Hospital, Iowa City IA 52242, USA
E-mail: jeff-murray@uiowa.edu; Tel: +1 319 335 6897; Fax: +1 319 335 6970

Dr Nancy Sassano, Project Manager, Department of Nutrition and Food Sciences, Utah State University, 4450 Old Main Hill, Logan UT 84322-4450, USA
E-mail: nsassano@cc.usu.edu; Tel: +1 435 797 0904; Fax: +1 435 797 2771

Dr William Shaw (Co-Chairperson and Co-Rapporteur), Professor, Department of Oral Health and Development, University Dental Hospital of Manchester, Higher Cambridge Street, Manchester M15 6FH, United Kingdom
E-mail: Bill.Shaw@man.ac.uk; Tel: +44 161 275 6865; Fax: +44 161 275 6636

Mr. Gary Neuenswander, Media Specialist, Agricultural Experiment Station, Utah State University, 4845 Old Main Hill, Logan UT 84322-4845, USA
E-mail: gary@agx.usu.edu; Tel: +1 435 797 2187; Fax: +1 435 797 3321

Global strategies to reduce the health-care burden of craniofacial anomalies

The Cochrane Collaboration. (http://www.cochrane.org)

WHO meetings on international collaborative research on craniofacial anomalies

Global strategies to reduce the health-care burden of craniofacial anomalies

Fogh-Andersen P (1942) Inheritance of harelip and cleft palate: contribution to the elucidation of the etiology of the congenital clefts of the face, Busck, Copenhagen.

Global strategies to reduce the health-care burden of craniofacial anomalies

Global strategies to reduce the health-care burden of craniofacial anomalies

National Health Service (2001) North West Regional Office, commissioning background paper, Warrington, United Kingdom.

Global strategies to reduce the health-care burden of craniofacial anomalies

Romanoff AL, Bauernfeind JC (1942) Anatomical Record, 82: 11.

World Health Organization, WHO International Classification for Functioning and Disability (ICIDH-2) http://www.who.int/icidh

Annex 1: European Collaboration on Craniofacial Anomalies (EUROCRAN)

Background

In 2000 a partnership of 14 European centres was awarded funding under the European Commission’s Framework V Programme for research to carry out the EUROCRAN project. EUROCRAN, which will run for four years – between 2000 and 2004 – brings together researchers from a range of clinical/scientific disciplines with the shared aim of improving the management and understanding of craniofacial anomalies (CFA). This will be achieved through five interrelated work packages (see Annex 2).

Participation

The work described in the work packages will be achieved through the development of common core protocols and with the involvement of participating centres from the European Union, the European Economic Area and the states of Central and Eastern Europe.

If you would like to participate or require more information please contact:

Pauline Nelson
Projects Co-ordinator
Department of Oral Health and Development
University Dental Hospital of Manchester
Manchester M15 6FH
United Kingdom
Tel: +44-161-275-6865
Fax: +44-161-275-6636/6794
E-mail: Pauline.Nelson@man.ac.uk

Further materials compiled by EUROCRAN is included as follows:

Annex 2: Work packages
Annex 3: Policy statements
Annex 4: Practice guidelines
Annex 5: General principles governing record-taking (provisional)
Annex 2: Work packages

Work package 1: Surgical trial

A multi-centre randomized trial of the primary surgery for infants with complete unilateral cleft lip and palate will compare four surgical methods in three concurrent trials. Infants will be randomized to a surgical method common to all three trials or the usual local method. Surgeons will do an approximately equal number of their usual method and the common method according to the randomization scheme maintained at the trial coordinating centre.

Work package 2: Gene/environment study

A population-based multi-centre case-parent triad study to investigate gene/environment, and gene/gene interactions and genetic susceptibility polymorphisms operating in the etiology of orofacial clefting (OFC) will be carried out. Mothers with affected babies who are participating in the study will complete a structured interview regarding diet and other exposures in the periconceptual period. In addition samples will be taken from the mother, father and child for DNA extraction and genotyping. Gene variant analysis will then be carried out to investigate the interaction between:

- maternal nutritional factors and maternal/fetal metabolism genes;
- genes coding for xenobiotic metabolism enzymes and environmental teratogens;
- developmental genes (growth factor genes, homeobox genes) and environmental factors.
Work package 3:
A chromosomal approach to identifying OFC genes

A cohort of European patients with OFC associated with apparently balanced chromosomal rearrangements will be identified and their breakpoints/clinical phenotypes catalogued. A bank of immortalized cell lines will be established from a sub-set of these patients where two or more instances of a specific breakpoint has been associated with OFC. Both high throughput molecular cytogenetic techniques and available sequence data from the Human Genome Project will be used to identify genes that have been interrupted by two or more breakpoints. These genes will be fully characterized and screened for mutations and polymorphisms that may be used in Work Package 2.

Work package 4:
Molecular diagnosis of monogenic craniofacial anomalies

The aim is to develop sensitive molecular assays for the mutations underlying a number of craniofacial malformation syndromes using Treacher Collins Syndrome (TCS) as a paradigm. This expertise will be disseminated to other molecular laboratories in the EUROCRAN group such that it will be available on a local basis.

Work package 5:
Directory of resources

A European Craniofacial Anomalies Directory of resources for European teams will be created. The Directory will include:

- a register of clinical teams, their reported clinical protocols and research interests, governmental and non-governmental agencies involved in the treatment and research of CFA, European CFA surgical missions to developing countries, model research protocols and examples of successful grant applications;
- a dynamic database/website of emerging data from Work Packages 2 and 3 such as chromosomal breakpoints, candidate genes and study protocols;
- a "good practice" set of clinical records for consecutive cases of OFC including cephalometric radiographs, dental casts, photographs and speech samples so that teams can compare local outcomes to the reference set;
- a prospective registry of complex treatment outcomes using distraction osteogenesis as an exemplar.
Annex 3: Policy statements

(1) The professional involved in cleft care should provide basic information on cleft care and on the proposed treatment to any potential patient and/or patient’s guardian. Basic information should contain at least:

- a general explanation of the condition, the reasons for treatment, what may or may not be achieved, the stages of treatment including examination, record collection and general protocols – this may be supplemented by leaflets, booklets or other kinds of information;
- an explanation of why a specific treatment is considered necessary for the individual patient, what specifically is involved: method, timing, duration cost, what the specific goal is and possible side effects.

(2) When a treatment is considered, the professional engaged in cleft care should take into consideration the desires and attitudes of the patient and/or those of the patient’s guardian. The professional should also pay attention to and inform the patient/patient’s guardian of the risks and benefits inherent in the potential alternative treatment options, including no treatment or no further treatment.

(3) If requested, it is the professional’s responsibility to provide a procedure for obtaining a second opinion for the patient. If requested, this procedure should be communicated to the patient before treatment starts.

(4) After an episode of treatment, the professional engaged in cleft care should inform the patient and/or patient’s guardian on:

- outcome of treatment relative to the defined goal;
- undesirable effects of treatment;
- expected future development.

(5) The professional engaged in cleft care should analyse and document any complaints or praise expressed by the patient and/or the patient’s guardian.

(6) The professional engaged in cleft care should give consideration to the burden of the treatment. Considerations should include financial as well as non-financial burden, such as treatment duration, effort from the patient and/or patient’s guardian and discomfort as a result of treatment.
(7) During the process of treatment, the professional involved in cleft care should continuously evaluate treatment progress against the planned treatment and act accordingly.

(8) Organizations and institutes responsible for the provision of cleft care should:

- encourage the cleft professional to follow the policies described above and to acknowledge the patient’s rights;
- recognize and encourage the professional’s right to provide treatment that can be expected to improve the patient’s condition whilst minimizing adverse effects;
- recognize and encourage that decisions on treatment priority should be based on criteria proposed by the cleft professionals in consultation with the patient and/or patient’s guardian. This is especially so in a situation with insufficient treatment resources;
- recognize and encourage that access to treatment should not depend on the patient’s ability to pay;
- recognize that cooperation of the patient with the advice and instructions of the cleft professional is necessary in order to achieve a successful result.
Part I: Health-care needs

(1) **Neonatal emotional support and professional advice:** In the event of prenatal diagnosis and as soon as possible after the birth of a child with a cleft, parents should be given emotional support and advice about the child’s future management by a specialist in cleft care.

(2) **Neonatal nursing:** Difficulties in feeding are common in the early days of life and specialist advice on feeding should be provided.

(3) **Surgery:** Primary surgery to close clefts of the lip and/or palate should be performed by an experienced and qualified surgeon according to a protocol agreed by the team. Further corrective procedures may be necessary for some patients in later years and should be performed by an experienced and qualified surgeon according to a protocol agreed by the team.

(4) **Orthodontic/orthopaedic treatment:** For children with cleft lip and palate orthodontic/orthopaedic treatment should be available when necessary and should be performed by an experienced orthodontist.

(5) **Speech and language therapy:** Early assessment of speech and language problems, advice to parents and the availability of corrective therapy by an experienced speech and language therapist should be provided.

(6) **Ear, nose and throat (ENT):** ENT problems should be identified at an early stage and the necessary therapy should be provided.

(7) **Clinical genetics/paediatric developmental medicine:** As cleft lip and/or palate may be associated with other anomalies early assessment and diagnosis is necessary. Genetic counselling for patients and families should be available.

(8) **Emotional support and professional advice for the growing child and its parents:** Emotional support and professional advice for parents, patients and their environment is often necessary and should be available.

(9) **Dental care:** Regular dental care should be available.

(10) **National register:** A national register should be in place for accurate recording of children born with cleft lip and/or palate and related craniofacial anomalies.
Part II: Organization of services

(1) Cleft care should be provided by a multidisciplinary team of specialists.

(2) Members of the team should have special training in cleft care.

(3) The team should agree on the stages of treatment including the examination, record collection and general protocols.

(4) There should be one person responsible for quality improvement and communication within the team.

(5) Coordination of the care of individual patients is important since numerous specialities are involved. This should be the responsibility of one member of the team.

(6) The number of patients referred to the team should be sufficient to sustain the experience and specialist skills of all team members and to allow evaluation/audit of the team’s performance within a reasonable period of time. It has been recommended that cleft surgeons, orthodontists and speech therapists should treat at least 40-50 new cases annually. However, it is recognized that individual member states have the right to provide care for their own population.

Part III: Finances

Resources should be available to cover the following care for children with cleft lip and palate:

(1) Emotional support and professional advice during the neonatal period.

(2) Neonatal nursing.

(3) Surgery.

(4) Orthodontic/orthopaedic treatment.

(5) Speech and language assessment and therapy.

(6) Ear, nose and throat treatment.

(7) Clinical genetics/pediatric developmental medicine.

(8) Emotional support for the growing child and its parents.

(9) Travel expenses.

(10) General dental care including cleft related prosthodontics.
Annex 5: General principles governing record-taking (provisional)

1. **Records for treatment planning/monitoring**

 - Clinical records should be taken for individual patients to allow treatment planning, monitoring treatment progress and treatment evaluation.
 - The timing and nature of these records will depend on the clinical protocols followed by individual teams.
 - Treatment and associated record-taking protocols should be agreed and clearly set out by the cleft team.

2. **Records for quality improvement/research**

 Additional records may be taken for a number of other reasons:
 - follow-up of a series of patients to provide an overview of the outcome of care;
 - to allow retrospective comparisons of different protocols;
 - as part of a prospective clinical trial with ethical approval;
 - as part of an agreed protocol for intercentre quality-improvement comparisons or comparison against known standards;
 - as part of an agreed research protocol;
 - other reasons, such as medico-legal, second opinion.

3. **Safeguards**

 - Exposure of patients to unnecessary radiation should be avoided.
 - Research and quality-improvement records should only be taken when there is an established written protocol on how they will be put to use.
 - Research and quality improvement records should not be taken without the consent of the patient/parent/guardian.
 - Research and quality improvement records should coincide as far as possible with the records for treatment planning/monitoring (statement 1 above).
4. Timing of minimum records

Table 1: Complete cleft lip and palate (UCLP & BCLP)

<table>
<thead>
<tr>
<th>Timing</th>
<th>Models</th>
<th>Lateral skull radiograph</th>
<th>Photographs</th>
<th>Speech/ tympanometry</th>
<th>Audiometry</th>
<th>Patient/parent satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary surgery</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓*</td>
<td>✓*</td>
<td></td>
</tr>
<tr>
<td>5/6 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18+ years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

* = If hard palate is closed.

Table 2: Cleft palate only

<table>
<thead>
<tr>
<th>Timing</th>
<th>Models</th>
<th>Lateral skull radiograph</th>
<th>Photographs</th>
<th>Speech/ tympanometry</th>
<th>Audiometry</th>
<th>Patient/parent satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary surgery</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5/6 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>15/16 years</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Cleft lip only

<table>
<thead>
<tr>
<th>Timing</th>
<th>Models</th>
<th>Photographs</th>
<th>Patient/parent satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary surgery</td>
<td>✓*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>✓*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5/6 years</td>
<td>✓*</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10 years</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18+ years</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

* = Only in cases with cleft of the alveolus as well as cleft lip.

Table 4: Alveolar bone grafting

<table>
<thead>
<tr>
<th>Timing</th>
<th>Intra-oral x-ray</th>
<th>Photographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just before bone graft</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6 months after graft</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>After canine fully erupted</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 5: Pharyngoplasty

<table>
<thead>
<tr>
<th>Timing</th>
<th>Speech sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just before operation</td>
<td>✓</td>
</tr>
<tr>
<td>One year after operation</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 6: Orthognathic surgery

<table>
<thead>
<tr>
<th>Timing</th>
<th>Lateral cephalogram</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just before operation</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>One year after operation</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5. Record-taking methodology (provisional)

Discussion of the precise method of record taking is continuing. The following however, provide a suggestion that is currently being used widely in Europe.

5.1 Photographs

Background: The vast majority of surgeons and orthodontists use still photographs for documentation of clefts. Very few clinicians use video recording of clefts pre- or post-operatively. If photographs of clefts which appear in any publication are examined it is clear that there is no uniformity or standardization of the way in which such photographs are taken. For comparative studies the following views are recommended.

Basic views to be taken:
- Frontal, both laterals, inferior (columellar) view.
- Three-quarter (¾) facial (oblique) view.

Dynamic views:
- During smiling and whistling – in the cooperative older patient, these views will give an idea of function of the circum-oral musculature.
- Video recording will be better for assessing circum-oral movement but this will also need to be standardized and cannot be used routinely at present.

Lighting and background:
- Lighting for the studio should be two fill-in lights and the main light synchronized with the camera. In the ward or operating theatre a single flash unit is appropriate.
- The background should be blue.
Framing of the picture:
- For frontal view, the camera should be set at a ratio of 1:8.
- For lateral view, the camera should be set at a ratio of 1:8.
- For inferior view, the camera should be set at a ratio of 1:4.

Camera and lens:
- Suggested camera is Nikon F3 with a 105mm lens or equivalent.
- Film type and speed need not be standardized.

5.2 Dental casts

Background: Dental casts need to be made from well-taken impressions which include all teeth, the palate and the buccal sulcus. For comparative studies the casts need to be prepared in a standard manner so that the source of the models cannot be identified.

Preparation: Models should be:
- cast in vacuum-mixed white stone, for example Crystacal R;
- hand trimmed, using a fine wheel to the standard heights and angles shown in Figures 1-3 below;
- finished with wet and dry paper (not soaped).

Figure 1: Base angles of a dental cast
Figure 2: Dental casts of a 10-year old
Figure 3: Dental casts of a 5-year old

5.3 Speech

Background: A fundamental problem for speech and language pathology has been the lack of an acceptable framework for measuring speech. Various groups have proposed procedures for measuring, recording and reporting speech data cross-linguistically, but to date there is no one recognized method.

Proposals have come from Henningsson and Hutters (1997), and also from Dalston, Marsh, Vig, Witzel and Bumstead (1988). In Britain, Sell, Harding and Grunwell (1994) developed the Great Ormond Street speech assessment (GOS.SP.ASS) tool. This is now a nationally-agreed speech
assessment tool for cleft palate and/or velopharyngeal incompetence in English. From GOS.SP.ASS, Razzell, Harding and Harland (1987) devised the Cleft Audit Protocol for Speech (CAPS), a more succinct protocol specifically designed for audit purposes.

Ages: 3-4 years; 5-6 years; 10 years; 15-16 years (cleft palate only); 18+ years (UCLP and BCLP)

Equipment: A good quality audio recording using a high quality microphone.

Variables:

- **Intelligibility:** a rating should be made upon spontaneous speech. The CAPS scale can be used to judge how "understandable" a person's speech would be to familiar and unfamiliar listeners (there are however flaws with this method).

- **Nasality:** the presence/absence and degree of hypernasality, hyponasality, audible nasal emission and nasal turbulence can be judged and rated on a five-point scale (see CAPS). An agreed instrumental method for assessing nasality has yet to be recommended.

- **Assessing articulation:** set sentences and single words containing consonant sounds in different word positions (beginning, middle and end) should be repeated, for example "Bob is a baby boy" or equivalent in the native language, and recorded for CAPS. Targeted sounds are*: p, b, t, d, s, f, tʃ, dʒ, k, g.

Errors made can be broadly categorized or grouped according to CAPS:

- front of mouth oral-sound errors;
- back of mouth oral-sound errors;
- non-oral sounds;
- passive errors;
- immaturities.

References:

* Depending on the speech sound in each language, but should contain plosives, fricatives and a nasal consonant (p, b, t, d, k, g, f, s, n).