SARS

Dr. Cathy Roth
Coordinator, Biorisk Reduction for Dangerous Pathogens
Global Alert and Response
HSE, WHO

17 February 2010
Chain of transmission among guests at Hotel M—Hong Kong, 2003

Data as of 3/28/03

* Health-care workers; † All guests except G and K stayed on the 9th floor of the hotel. Guest G stayed on the 14th floor, and Guest K stayed on the 11th floor; § Guests L and M (spouses) were not at Hotel M during the same time period as index Guest A, but were at the hotel during the same times as Guests G, H, and I, who were ill during this period.
A brief history of SARS
Probable cases of severe acute respiratory syndrome (SARS) with onset of illness November 2002 to 31 July 2003.
The problem...

- Rapid international spread of an unknown agent
- SARS caused unprecedented levels of morbidity and mortality among HCW
- Health systems exhausted and almost exceeded surge capacity
- Transmission events from recognised and unrecognised cases
Emergence factors – SARS-CoV

- Genetic change in an animal coronavirus?
- Adaptation of existing virus to new hosts and inter-species transmission?
- Changes in agriculture and animal husbandry practices
- Human behaviour – the exotic wildlife trade

- **27 November**
 - Guangdong Province, China: Non-official report of outbreak of respiratory illness with government recommending isolation of anyone with symptoms (GPHIN)

- **11 February**
 - Guangdong Province, China: Report from the MOH of an outbreak of atypical pneumonia

- **14 February**
 - Guangdong Province, China: Official confirmation of an outbreak of atypical pneumonia with 305 cases and 5 deaths (China)

- **19 February**
 - Hong Kong, SAR China: Official report of 33-year male and 9 year old son in Hong Kong with Avian influenza (H5N1), source linked to Fujian Province, China (FluNet)
Intensified surveillance for pulmonary infections, WHO 2003

26 February
- Hanoi, Viet Nam: Official report of 48-year-old business man with high fever (> 38 °C), atypical pneumonia and respiratory failure with history of previous travel to China and Hong Kong

4 March
- Hong Kong, SAR China: Official report of 77 medical staff from Kwong Wah Hospital reported with atypical pneumonia

5 March
- Hanoi, Viet Nam: Official report of 7 medical staff from French Hospital reported with atypical pneumonia

15 March
- Singapore and Ontario: Official reports of atypical pneumonia fitting same case definition

WHO Global Alert
SARS – why it was different

- Rapid spread with HCW at high risk
- High case fatality
- Unknown aetiology
- No specific therapy
- Rapid international spread
- North-North transmission pattern
- Time pressure/window to eliminate
Factors affecting the epidemiology and size of the 2002-03 epidemic

- Delayed verification of the epidemic in Guangdong
- International travel
 - Hotel M seeded the outbreak outside Guangdong province
 - Random event, undetermined route(s) of transmission
- Superspreading events
- Transmission amplification in health care settings
- HCW behaviour (infection control practices, working while ill in some settings)
- Atypical presentations seeding new outbreaks
Descriptive epidemiology

- 8098 cases; 53% female, 21% healthcare workers
- 774 deaths attributed to SARS; global CFR 9.6%
- 20-25% of cases required intensive care
- All age groups affected (age range 0-100 years, median age 40 years)
- Adult case fatality age dependent - range 0% to >50% in cases >55 yrs
Routes of transmission

- Infectious dose unknown
- Droplet and contact transmission primary routes
- Animal-to-human transmission – exact mechanism unknown
- Evidence of limited aerosol spread e.g. hospital and airline data
- Other environmental contamination e.g. Metropole Hotel, Amoy Gardens
Risk factors for hospital-acquired SARS

- Virus characteristics
- Delayed recognition of cases
- Failure to recognise clusters
- Delays in isolation or failure to isolate
- Missed cases, especially if presentation atypical
- PPE not used or PPE breakthrough
SARS transmission - HCWs

<table>
<thead>
<tr>
<th>Areas</th>
<th>Total cases</th>
<th>Case fatality ratio (%)</th>
<th>Number of HCW affected (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>251</td>
<td>17</td>
<td>109 (43)</td>
</tr>
<tr>
<td>China</td>
<td>5327</td>
<td>7</td>
<td>1002 (19)</td>
</tr>
<tr>
<td>China, Hong Kong SAR</td>
<td>1755</td>
<td>17</td>
<td>386 (22)</td>
</tr>
<tr>
<td>China, Taiwan</td>
<td>346</td>
<td>11</td>
<td>68 (20)</td>
</tr>
<tr>
<td>Singapore</td>
<td>238</td>
<td>14</td>
<td>97 (41)</td>
</tr>
<tr>
<td>Vietnam</td>
<td>63</td>
<td>8</td>
<td>36 (57)</td>
</tr>
</tbody>
</table>
Risk factors (cont)

- The number of SARS cases admitted
- Type of HCW
- Incomplete contact tracing
- Involvement in high risk procedures
- Transfer of patients
- Transport of patients
SARS superspreading events

Controlling the SARS epidemic

- Effective “traditional” public health measures implemented before aetiological agent known
- Active case finding, case isolation and case management
- Stringent infection control and use of PPE
- Contact tracing, contact education and voluntary home quarantine
- Applied research (clinical, laboratory, epidemiology)
- Transparency and risk communication
- Continued vigilance through effective surveillance
SARS - coordination and communications through networks

- GOARN: multi-country field response
 - 115 experts from 26 institutions in 17 countries

- Virtual network for SARS aetiology
 - 13 laboratories in 9 countries

- Virtual SARS network of clinicians
 - 50+ clinicians in 14 countries

- Virtual network of epidemiologists
 - 32 epidemiologists, 11 institutions, daily telephone conference

- SARS Modelling group
GOARN Deployments

<table>
<thead>
<tr>
<th>Country</th>
<th>Persons Deployed</th>
<th>Total Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR China</td>
<td>28</td>
<td>643</td>
</tr>
<tr>
<td>Hong Kong SAR</td>
<td>9</td>
<td>198</td>
</tr>
<tr>
<td>Singapore</td>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>Vietnam</td>
<td>11</td>
<td>372</td>
</tr>
<tr>
<td>Others</td>
<td>6</td>
<td>343</td>
</tr>
</tbody>
</table>

61 Deployments 1,667 Days

51 Individuals * 6.5 work-years

* In addition, 16 WHO HQ staff were deployed to seven countries
WHO and SARS - communications

- Guidelines and technical info on website continually updated
- Zoonotic group
 - links with OIE and FAO
- Communication group
 - 14 press releases, 13 press conferences, numerous interviews
 - up to 3,500 press stories per day
 - 62 Web situation reports
 - up to 10 million hit per day
- Global WHO Senior Management Group - met daily
 - telephone conference twice a week (HQ, ROs, WROs)
 - 18 travel recommendations
The course of the epidemic

Probable cases of SARS by week of onset
Worldwide* (n=5,910), 1 November 2002 - 10 July 2003

WHO issues travel advisory 15 March
WHO issues global alert 12 March

* This graph does not include 2,527 probable cases of SARS (2,521 from Beijing, China), for whom no dates of onset are currently available.
SARS since 5 July 2003 (n=17)

- Difficult to predict whether SARS will re-emerge in epidemic form

- 4 SARS alerts since then; 3 resulting from breaches in laboratory biosafety, one possibly from transmission from a putative animal reservoir
SARS transmission
Laboratory incidents

- Singapore, Aug-Sept 2003 (n=1)
- Taipei, December 2003 (n=1)
- Beijing & Anhui province, March 2004 (n=11)
- Focussed attention on need to enhance laboratory biosafety world-wide
Lessons learnt from SARS
The impact of SARS

- First recognized as a global threat in mid-March 2003
- International spread of SARS successfully contained in less than four months
- International community challenged
- $US30-140 billion economic cost
- $R_0 \approx 2-4$ before control measures were implemented i.e., not a highly infectious disease
- Revision of IHR - global governance
SARS and globalisation

- Potential for international spread greatly amplified in an interconnected world.
- Economic consequences likewise amplified.
- Severe new diseases - emergencies that exceed the surge capacity of countries and regions.
- International networks – rapid response, surge capacity, technical cooperation.
- National and international systems must interconnect
International Health Security
IHR(2005), a paradigm shift

From **control at borders** to **containment at source**

From **diseases list** to **all threats**

From **preset measures** to **adapted response**
Annex 2 Decision instrument

Events detected by the national surveillance system

- Four notifiable diseases
- Any public health event of potential international public health concern
- Important epidemic-prone diseases

Is the public health impact of the event serious?
Is the event unusual or unexpected?

ask
1. Is there a significant risk of international disease spread?
2. Is there a significant risk of travel or trade restrictions?

If yes to any of these 2 questions
Notify WHO under the IHR (2005)

The IHR (2005) came into force on 15 June 2007
Improving detection and assessment

- Ever increasing number of search engines and information sources – information overload
- Challenges
 - Boost signal, reduce noise
 - Improve positive predictive value of incoming information
 - Move from threat detection to systematic and scientific risk assessment
 - ICT innovations for epidemic threat detection, data retrieval and synthesis
 - Disciplines and tools for decision support
 - Information systems for data capture, communication between countries, Regions, and HQ - EMS, EIS
 - IT tools for data analysis to support field response - FIMS
Lessons for Operations

- Preparedness for alert and response operations
 - High level political commitment to strengthening national and international disease control capacity
 - Clear command and control structures
 - Systematic operational and risk communications systems
 - Multidisciplinary teams trained in field response

- Courage to make and implement decisions rapidly and effectively, often with limited information
Building on lessons learnt – an iterative process

- Evaluation of the measures used during the epidemic to strengthen the evidence base
- Modelling studies to determine which interventions worked and when
- Discarding measures that were not cost-effective (e.g. entry screening)
- Building key elements into future outbreak responses
Key issues in preparedness planning

- Assessment of the risk of emerging infectious diseases
- Minimum level of preparedness
- Criteria/indicators to assess the value of preparedness activities
- Ranking the [cost-]effectiveness of facility-based and public health interventions
- Optimal timing of public health interventions
- Feasibility, affordability, and acceptability of public health vigilance
- Determining the best bang for the buck
Health Security Issues (1)

- “Inverse vulnerability”
- Government credibility and civic order
- Economic impact
- Urgency of decision-making
- Information management and risk communication
- Border permeability and effectiveness of public health measures
Health Security Issues (2)

- Protecting healthcare delivery systems during the crisis
- Defensible public health standards for epidemiology, laboratory diagnosis, safe clinical management, and infection control
- Protecting public safety - ethics and acceptability of control measures
- International co-ordination post-event: surveillance, scientific exchange, prophylaxis, therapeutics, fostering applied research for public health needs - incl. prospective research planning
For discussion

- No country, advanced or developing, has adequate systems in place to control a fast spreading, new, epidemic disease

- SARS was controlled, but through a massive international effort which stretched WHO and countries to the limit, and would not be sustainable over a prolonged period

- Many countries now developing early warning systems, but the requirements for containment demand also the public health knowledge and infrastructure to manage the event
For discussion

- Containment of the health impact of natural, accidental or deliberately caused outbreaks can only be achieved through operationally-focused public health infrastructure.

- Investment in systems is needed at national and international levels.

- Collaborative networks and multisectoral approaches offer the most resilient and cost-effective prospects.

- Modelling, behaviour change and effective risk communication will be key to social mobilisation for control.
THANK YOU