Screening, masks and isolation precautions: when and for what microorganisms?

Stephan Harbarth, MD, MS,
Infection Control Programme
University of Geneva Hospitals,
Switzerland

Prologue (1)
• Did you ever save the life of a patient?
• Do you still know his/her name?

Prologue (2)
Contrary to curative, especially heroic medicine, in infection prevention the "saved patient" remains anonymous.

Transmission of nosocomial infections

The 3 major routes of transmission of infectious pathogens

<table>
<thead>
<tr>
<th>Route</th>
<th>Infectious unit</th>
<th>Principle</th>
<th>Examples of transmitted pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>Direct transfer of microorganisms</td>
<td>Physical contact; person-to-person or contaminated environment-to-person</td>
<td>Staphylococcus aureus, Group A Streptococci, Clostridium difficile, Multidrug-resistant microorganisms (ESBL, MRSA, VRE etc)</td>
</tr>
</tbody>
</table>
Transmission of nosocomial infections

Droplet Transmission
- Host defenses
- Nosocomial flora

Airborne Transmission
- Host defenses
- Nosocomial flora

Common Vehicle Transmission
- Host defenses
- Nosocomial flora

The 3 major routes of transmission of infectious pathogens

<table>
<thead>
<tr>
<th>Route</th>
<th>Infectious unit</th>
<th>Principle</th>
<th>Examples of transmitted pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>Direct transfer of microorganisms</td>
<td>Physical contact; person-to-person or contaminated environment-to-person</td>
<td>Staphylococcus aureus, Group A Streptococci, Clostridium difficile, Multidrug-resistant microorganisms (ESBL, MRSA, VRE etc.)</td>
</tr>
<tr>
<td>Droplet</td>
<td>Respiratory droplets > 5 µm</td>
<td>Droplets are deposited on mucous membranes; close contact ≤1m for transmission</td>
<td>Neisseria meningitidis, Influenza virus</td>
</tr>
<tr>
<td>Airborne</td>
<td>Droplet nuclei ≤5 µm or contaminated dust particles</td>
<td>Inhalation of droplet nuclei; remain suspended in the air for long periods; migrate long distances</td>
<td>Mycobacterium tuberculosis, Varicella zoster virus</td>
</tr>
</tbody>
</table>

Strategies for infection control

Antibiotic control
- Restriction of use, guidelines, rotation

Specific measures
- Specifically targeted against VAP
- Specifically targeted against SSI
- Specifically targeted against BSI
Evidence-based practice to reduce CVC-related infections

Number of recommendations by category
- Category 1A: 31
- Category 1B: 31
- Category 1C: 4
- Category 2: 28
- Unresolved issues: 4

2009 CDC guideline draft for prevention of CVC-related BSI

Basic hygiene measures

Hand hygiene
- After contact with blood, body fluids, secretions, excretions, contaminated items immediately before gloving and after removing gloves between patient contacts – between dirty and clean body site care
- For anticipated contact with mucous membranes, non-intact skin

Gloves
- For anticipated contact with mucous membranes, non-intact skin

Mask, eye protection, face shield
- To protect mucous membranes of the eyes, nose and mouth during procedures and patient-care activities likely to generate splashes or spray of blood, body fluids, secretions and excretions

Gowns
- To protect skin and prevent soiling of clothing during procedures and patient-care activities likely to generate splashes or spray of blood, body fluids, secretions and excretions

Patient-care equipment handling
- To ensure that skin, mucous-membranes and clothing are not exposed to equipment soiled with any body fluids
- To ensure that reusable equipment is not reused until it has been appropriately reprocessed
- To ensure that single-use items are discarded properly

Sharp object handling
- Avoid recapping used needles
- Place used sharp objects and needles in puncture-resistant containers

Standard precautions – BASIC MEASURES

Component
- Hand hygiene
- Gloves
- Mask, eye protection, face shield
- Gowns
- Patient-care equipment handling
- Sharp object handling

Field of application
- After contact with blood, body fluids, secretions, excretions, contaminated items immediately before gloving and after removing gloves between patient contacts – between dirty and clean body site care
- For anticipated contact with mucous membranes, non-intact skin
- To protect mucous membranes of the eyes, nose and mouth during procedures and patient-care activities likely to generate splashes or spray of blood, body fluids, secretions and excretions
- To protect skin and prevent soiling of clothing during procedures and patient-care activities likely to generate splashes or spray of blood, body fluids, secretions and excretions
- To ensure that skin, mucous-membranes and clothing are not exposed to equipment soiled with any body fluids
- To ensure that reusable equipment is not reused until it has been appropriately reprocessed
- Avoid recapping used needles

Transmission of Panton-Valentine Leukocidin-Producing Staphylococcus aureus to a Physician during Resuscitation of a Child

Martin Chalamet, Philippe Bidet, Gérard Lina, Mostapha Mokhtari, Marie-Claude André, Dominique Gendre, Édouard Bingen, and Josette Raymond

Clinical Infectious Diseases 2005;41:29-30
Basic hygiene measures

Transmission-based precautions

Exceptions

Influenza

ESBL

Standard precautions

daily work

Transmission-based precautions

CONTACT

<1m.

glove

gown

single room

or cohorting

Transmission-based precautions

DROPLET

- mask when <1meter

- for every patient transfer

single room

or cohorting

Efficacy repeatedly reported

Extended spectrum betalactamase-producing bacteria

J Infect 2003;47:273-95 (review)

Vancomycin-resistant enterococci

Kouffman CA JAC 2003; 51:S23-30 (review)

Methicillin-resistant Staphylococcus aureus

Muto CA et al. ICHE 2003;24:362-86 (review)

Severe Acute Respiratory Syndrome

Park BJ Emerg Infect Dis 2004; 10:244-8

Extended spectrum betalactamase-producing bacteria

J Infect 2003;47:273-95 (review)

Systemic syndromes

Neisseria meningitidis sepsis

Haemophilus influenzae meningitis

Carriage & RTI caused by MDRO

Respiratory infections

Haemophilus influenzae, pneumonia, epiglottitis

Group A streptococci, pharyngitis

Mycoplasma pneumoniae

Pertussis

Serious viral infections

Adenovirus

Influenza

Mumps

Parvovirus B19

Rubella

Transmission-based precautions - DROPLET PRECAUTIONS

Apply for patients known or suspected to have diseases transmitted by large droplets

J.D., 60 ans, BPCO sévère, état fébrile sous CoAmoxiClav depuis 4 semaines suite à une pneumonie à pneumocoques. Dyspnée stade IV, hypoxémique, hypercapnie, toux, expectorations. Hémocultures positives.
Transmission-based precautions - AIRBORNE PRECAUTIONS

| Respiratory infections | Measles | Varicella and disseminated zoster | Tuberculosis, pulmonary and laryngeal |

Transmission-based precautions - PROTECTION

- Mask
- Gown
- Single room mandatory
- High-filtration mask for every transfer
- Special track for garbage (terminal cleansing)
- BE CAREFUL with dust generating activities

Requirements for personal barrier equipment

<table>
<thead>
<tr>
<th>Activity</th>
<th>Gloves</th>
<th>Gown</th>
<th>Mask</th>
<th>Eye protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated contact with any body fluid</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Contact with mucous membrane or non-intact skin</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>During all patient-care activities likely to generate splash or spray of any body fluid</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protection against contact-transmitted pathogens</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Protection against droplet-transmitted pathogens</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protection against airborne-transmitted pathogens</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

1. Blood, bloody or non-bloody body fluid, excretions and secretions, except sweat
2. Surgical mask
3. High-efficiency particulate air (HEPA) respiratory systems, N95 standard mask
... and what about screening for MDR microorganisms?

« Ever give a talk on MDRO screening? »

STOP

STOP admission screening and preemptive isolation

Patient X, transferred from Lybia...
... can kill patient Y (next bed)

Spread of KPC-containing *Klebsiella pneumoniae* from Greece - Travelling

Epidemiology and Genetics of ESBL-containing Bacteria

Reservoirs – colonized and infected patients, biofilms (esp. g-tubes), environmental sites (esp. urinals)

Modes of Transmission

- Plasmid spread among bacteria
- Bacterial spread among patients

Risk Factors – debility, nursing home residence, decubitus ulcers, g-tubes, urinary catheters, antibiotics (β-lactam, ceph, FQ), lapses in hand and environmental hygiene

Genetics – ESBLs can be generated by a single amino acid mutation in a variety of common beta-lactamases
UMMC ESBL

• Among patients who acquired a ESBL *Klebsiella pneumoniae*, 78% were similar in PFGE type and had overlapping hospital length of stay.

• Among patients who acquired a ESBL *E. coli*, 39% were similar in PFGE type and had overlapping hospital length of stay.

Reasons for ESBL epidemic

- Human migration
- Food chain
- Cross transmission
- Antibiotic overuse

Screening for resistance

- Rate of laboratories that detect ESBL correctly:
 - 42% of ICARE laboratories
 - 51% of NISS laboratories
 - 2% of WHO laboratories
 - 85% of EARSS laboratories
 - 40% of SARI laboratories

Steward CD et al. DMID 2000;38:59
Hageman JC et al. ICHE 2003;24:356
Tenover et al. JCM 2001;39:241
Steward et al. JCM 2001;39:2864
Meyer et al. Infection 2003;31:208

Sensitivity of ESBL screening

- Rectal Screening:
 - Of 28 ESBL-carriers 11 were identified by rectal screening (39,3%)
 - No good data available
 - Sensitivity of different screening sites
 - Comparison stool/rectal swabs
 - Frequency of swabbing

Thouerez et al. ICHE 2004;25:838-41

Screening programs in endemic settings

- Screening and isolation of ESBL positive patients
 - patient to patient transmissions 4.7% of cases

Kola A et al. JHI 2007

- Screening for 3rd gen. cephalosporin resistant Enterobacteriaceae once weekly without isolation
 - patient to patient transmissions 6.8% of adult cases and 12.8% of paediatric cases

von Baum et al. CMI 2004;10:436

Source: European Antimicrobial Resistance Surveillance System (EARSS), 2009

Third-generation cephalosporin-resistant *Escherichia coli*, blood and CSF, 2008

Country with:

- Significant increase (2005-2008)
- Significant decrease (2005-2008)

Sensitivity of different screening sites:

- Comparison stool/rectal swabs

Frequency of swabbing:

- Patient to patient transmissions 4.7% of cases

Kola A et al. JHI 2007

Source: European Antimicrobial Resistance Surveillance System (EARSS), 2009
• Situation 2006:
 • Low nosocomial ESBL-E transmission rate
 • High prevalence of ESBL-E carriage among patients from regions with endemic rates or previously identified carriers
 • On-admission screening should be considered for high-risk populations

Bilan du dépistage BLSE réalisé au SMIG pour toute admission entre le 15.03.10 et le 11.06.10

1623 admissions:
- 1111 frottis anaux dont 51 nouveaux cas BLSE
 → portage BLSE à l’admission: 4.6%
 → acquisition BLSE à la sortie: 5.5%

Risk factor analysis:
- We were unable to develop a risk profile with sufficient accuracy to predict previously unknown carriage of ESBL
- Diabetes mellitus, connective tissue disease and liver failure as independent risk factors for ESBL-E carriage upon admission (area under the ROC curve, 0.68)
- Missing info: Transmission in the community? Travel history? Outpatient antibiotics? Food?

Limitations of both studies JAMA vs. Ann Intern Med

- No conventional cultures to confirm positive results of the molecular tests
- No random assignment of individual wards to the study arms
- No discharge screening for MRSA

MRSA screening

Table: MRSA Screening Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim</td>
<td>Evaluate the efficacy of universal rapid MRSA screening</td>
<td>Examine the effect of screening & decolonization on MRSA rates</td>
</tr>
<tr>
<td>Country</td>
<td>Switzerland</td>
<td>USA</td>
</tr>
<tr>
<td>Setting</td>
<td>Surgery</td>
<td>Hospital-wide</td>
</tr>
<tr>
<td>Design</td>
<td>Cross-over</td>
<td>Before-after</td>
</tr>
<tr>
<td>Control group</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rapid test</td>
<td>Yes (homemade)</td>
<td>Yes (commercial)</td>
</tr>
<tr>
<td>Decolonization</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>Total study period</td>
<td>24 months</td>
<td>45 months</td>
</tr>
<tr>
<td>Admission MRSA prevalence</td>
<td>5.1%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Baseline MRSA infection rate</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Hand hygiene compliance</td>
<td>Excellent</td>
<td>Unknown</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Rapid MRSA screening did not reduce nosocomial MRSA infections</td>
<td>Universal admission screening reduced MRSA disease</td>
</tr>
</tbody>
</table>
Aim
Evaluate the efficacy of universal rapid MRSA screening

Country
Switzerland

Setting
Surgery

Design
Cross-over

Control group
Yes

Rapid test
Yes (homemade)

Decolonization
Yes

Total study period
24 months

Admission MRSA prevalence
5.1%

Baseline MRSA infection rates
Medium

Hand hygiene compliance
Excellent

Conclusion
Rapid MRSA screening did not reduce nosocomial MRSA infections

Author, Journal, Year
Harbarth, JAMA 2008

Results of the STAR*ICU Trial

Strategies to Reduce Transmission of Antimicrobial Resistant Bacteria in Adult Intensive Care Units

W. Charles Huskins, MD, MSc
Mayo Clinic College of Medicine, Rochester, MN

Conducted by the Bacteriology and Mycology Study Group (BAMSG)
19 US academic medical centers

Results

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MRSA or VRE</th>
<th>MRSA</th>
<th>VRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard control</td>
<td>p = 0.35</td>
<td>p = 0.59</td>
<td>p = 0.53</td>
</tr>
<tr>
<td>Intensive control</td>
<td>p = 0.35</td>
<td>p = 0.59</td>
<td>p = 0.53</td>
</tr>
</tbody>
</table>

Incidence Density of New Colonization / Infection Events in Intensive vs. Standard Control Strategy ICUs

- Compared with culture screening, use of rapid screening tests was not associated with a significant decrease in MRSA acquisition rate (RR 0.87, 95% CI 0.61–1.24).

Tacconelli E et al. Lancet Infect Dis 2009; 9: 546-54
Possible reasons for failure

- Central laboratory facility
 - No rapid testing available
- High rates of acquisition in both arms
- No intensive search & destroy
 - No uniform decontamination approach
 - No environmental control
 - No HCW screening
- Universal gloving policy

Possible explanations

Conclusions

- Promote hand hygiene compliance
- Use barrier precautions (gloves & gowns, hand antiseptics) for caring of colonized patients, especially with ESBL-producing *Klebsiella* spp
- Prevent outbreaks arising from transfer of patients to other units, hospitals
- Screen high-risk patients
- Educate health care staff on importance of control of ESBLs
- Outbreaks: group together patients with ESBL-producing organisms in cohorts

IC questions for speakers

- What are the most appropriate infection control measures to be applied for hospitalised patients with ESBL colonisation or infection?
- What strategies should be applied to improve hand hygiene compliance in hospitals with high rate of MDR microorganisms?

Message for the Quinolone-Fans...

Leave the Queen Alone!

Merci!