ZIKA Vaccine Development Technology Roadmap

2018

Acknowledgements

This work was built on critical input from the WHO Zika vaccine technical roadmap advisory group members:
Alan Barrett, The University of Texas Medical Branch, USA; Amy Lambert, Center for Diseases Control Fort Collins, USA; Anna Durbin, Johns Hopkins University, Baltimore, USA; David Kaslow, PATH, Seattle, USA; Heidi Peyer, PEI, Germany; Carlos Pardo-Villamizar, Neuroviruses Emerging in the Americas Study, Colombia and Johns Hopkins University, Baltimore, USA; Laura C. Rodrigues, London School of Hygiene and Tropical Medicine, UK, and Microencephaly Epidemic Research Group (MERG), Brazil; Wellington Sun, US Food and Drug Administration, USA.

We are grateful to all individuals and represented institutions who contributed to the discussions at the WHO consultation meetings on Zika vaccine development in 2017, and to the members of the WHO Product Development for Vaccines Advisory Committee (http://www.who.int/immunization/research/committees/pdvac).

WHO gratefully acknowledges the many individuals and institutions that will provide comments to this draft at the public consultation stage.

WHO Secretariat
Joachim Hombach, Martin Friede, Annelies Wilder-Smith

Background on Technology Roadmaps

Vaccine development technology roadmaps produced by the World Health Organisation (WHO) aim to provide a strategic framework underpinning priority activities for vaccine researchers, funders and product developments, with the goal to address globally unmet medical needs.

WHO has led a series of initiatives to maintain continuous dialogue between developers, regulators and public health experts to identify how best to achieve rapid, robust, safe, and evidence-based licensing of ZIKV vaccines. The present roadmap states the vision and strategic goals for Zika vaccine development from WHO, with input from public health agencies, academia, industry, regulators, ethicists and financing bodies amongst others. The Zika vaccine ‘Vision’ articulates the prioritized public health need, and the ‘Strategic Goal’ describes a vaccination strategy that will enable realization of that vision. The roadmap also lays out priority activities in the categories of research, product development, key capacities and policy, commercialization and delivery. The objective of this comprehensive framework is for the global Zika vaccine research and development community to accelerate timelines to licensure and use of Zika vaccines, especially in low- and middle-income countries where they are most needed. The present document is not intended to be product type-specific.

WHO will encourage implementation of the finalized roadmap by the Zika vaccine community. Progress in the field will be monitored and the roadmap will be updated if there are significant changes that warrant reassessing the vision, strategic goals or priority activities.

This Zika vaccine technology roadmap will be the first step towards a broader roadmap for Zika virus research and product development.
Introduction

Zika virus (ZIKV) is a flavivirus mainly transmitted by Aedes spp mosquitoes, although sexual transmission has also been reported. Discovered in 1947, it was only known to cause sporadic mild disease in Africa and Asia. In 2007, the first major outbreak occurred in Yap Island with an attack rate as high as 70% of the population. In 2013, during an outbreak in French Polynesia with a similarly high attack rate, the possible association with Guillain-Barré Syndrome was uncovered. By end 2015, clusters of microcephaly as a result of prenatal ZIKV infection were first described in Brazil. In February 2016, WHO declared the clusters of microcephaly and other neurological disorders, associated with ZIKV, a Public Health Emergency of International Concern (PHEIC), and called on the global research and product development (R&D) communities to prioritize the development of vaccines together with improved diagnostics, and innovative vector control strategies for ZIKV research and development.

Although the PHEIC was declared over by the WHO Director-General in November 2016, ZIKV remains an enduring public health challenge requiring intense action, as outbreaks are likely to continue that put susceptible populations at risk. Many uncertainties remain with regard to disease epidemiology and transmission dynamics; hence projecting the future evolution of the ZIKV epidemic and further spread based on current knowledge is difficult. In light of the global decline in cases in the year 2017, combined with poor understanding of all the factors needed to sustain endemic transmission, this technical roadmap will primarily support development of a vaccine with the characteristics proposed within the Target Product Profile (http://www.who.int/immunization/research/development/WHO_UNICEF_Zikavac_TPP_Feb2017.pdf?ua=1). However, if significant changes in the epidemic warrant reassessing this vision, the Zika vaccine roadmap will be updated.

>>Vision

Safe, effective and affordable ZIKV vaccines that prevent congenital Zika syndrome and other serious ZIKV associated clinical complications

>>Strategic Goals

Support development, licensure and WHO-prequalification of high-quality, safe and effective ZIKV vaccines that prevent serious ZIKV-associated clinical complications, and ensure availability and affordability for use in countries where ZIKV is circulating

Outbreak use:

In the context of an ongoing epidemic or an imminent ZIKV outbreak of ZIKV, a mass vaccination campaign may prevent ZIKV-associated disease in women of child-bearing age. The primary public health objective of vaccination for outbreak use is the prevention of prenatal ZIKV infection in order to prevent ZIKV-associated severe birth defects. Other populations, in particular men, may be included in emergency vaccination campaigns if vaccine supply permits.

Routine use:

Introduction of the vaccine into the routine immunization schedule of at-risk countries as a broad-based or universal vaccination campaign of the general population, extending from early childhood to adults, followed by routine immunization in childhood vaccination
programs. The primary public health objective of vaccination for routine use is to establish population immunity in order to prevent congenital Zika syndrome and other ZIKV related complications.

Priority Areas:

Research

(1) Further quantify the unmet medical need for a ZIKV vaccine and its potential public health impact

Urgently define the regional and national burden of congenital Zika syndrome in Asia, Africa and Latin America

Investigate the extent of population immunity including the effect of other flaviviruses

Better define disease transmission dynamics including the role of non-vector transmission

Model possible geographic spread and progression of ZIKV transmission

Develop predictive models for early detection of outbreaks and define triggers to initiate an outbreak response vaccination program

(2) Better define the clinically relevant outcomes of ZIKV infections

Urgently define and address epidemiological, biological, and environmental knowledge gaps related to congenital Zika syndrome

Develop risk estimates for CZS by gestational age, asymptomatic versus symptomatic prenatal infection, and other factors that influence the risk

Define the full spectrum of CZS at birth and during at least the first 5 years of life, including delayed outcomes, long-term consequences and estimated life expectancy

Determine the full public impact of CZS with an estimation of DALYs

Determine the risk and clinical spectrum of ZIKV-associated neurological and other complications beyond CZS

Cross-Cutting Product Development Related Priority Areas

Refine animal models for evaluation of clinically relevant human disease outcomes

Develop and endorse standardization of virologic and immunologic assays for vaccine development

Prioritize improved surveillance tools that differentiate ZIKV from other flaviviruses

Develop more sensitive and specific diagnostic products through use of Target Product Profiles
Explore immunological correlates of vaccine-induced protection and surrogate efficacy endpoints for risk and protection of ZIKV infection

Vaccine development

Vaccine candidates:

Establish a systematic approach for assessing vaccine candidates taking into account safety (including in pregnancy), duration of protective immunity, interactions with other relevant flaviviruses, number of doses, rapidity of onset of protection, stability, immune correlates, back-validation from clinical to nonclinical models and head-to-head comparisons

Outbreak use:

Characterize candidate ZIKV vaccine candidates for safe use, including pregnant women

Develop a ZIKV vaccine suitable for outbreak settings, including rapid onset of protective immunity

Collect data pre- and post-licensure specific to safety and immunogenicity for all ZIKV vaccine candidates including in pregnant women

Routine use:

Develop a Target Product Profile for ZIKV vaccines for routine use including the need for long duration of protection

Consider developing a multi-component ZIKV vaccine (eg with yellow fever, JE, or dengue virus) to ensure better uptake in countries with low ZIKV endemicity given the serious consequences of prenatal infections

Vaccine evaluation:

Establish standardized definitions for adverse events of specific interest

Develop clinical development plans that include case definitions and endpoints for pivotal trials, systematic collection of relevant biomarkers, indicators and outcomes of safety and efficacy, including in pregnant women.

Explore accelerated regulatory pathways with immune correlates/surrogates as endpoint

Prepare clinical trial protocols and generic ethics approvals during the inter-epidemic period to accelerate implementation of a phase 3 trial at a time of a new outbreak

Develop guidelines on best timing on sampling, frequency of sampling and choice of bodily fluids for case ascertainment in clinical trials

Make ZIKV vaccine trial results publicly available within 12 months of the last subject’s final visit pertaining to primary endpoint data (http://who.int/ictrp/results/reporting).

Key capacities
Build GCP Clinical Trial Capacity for vaccine evaluation, monitoring of AEFIs and vaccine effectiveness

Support capacity strengthening in ethical, regulatory and pharmacovigilance oversight of clinical vaccine trials and post-licensure

Research and establish baseline rates of disease and common adverse fetal outcomes to prepare for optimal safety and efficacy surveillance.

Strengthen and use existing adapted recommendations and ongoing initiatives on safety surveillance for vaccines for use in pregnancy

Strengthen laboratory capacity for diagnostics for flavivirus infections

Develop diagnostic algorithms for congenital Zika syndrome and ensure that affected areas had the capacity to follow such algorithms, including ultrasound capabilities in reproductive health care systems

Consolidate for each at risk country relevant reproductive health data such as age of sexual debut, age at first pregnancy, pregnancy spacing, age-specific rates for births, unplanned births, still births, neonatal deaths and other indicators that are relevant to inform immunization recommendations and to monitor vaccine impact.

Strengthen birth defect surveillance in countries at risk

Strengthen surveillance for Guillain-Barre Syndrome

Establish or strengthen regional diagnostic reference laboratories for arboviruses

Ensure access to low cost vaccine manufacturing under current Good Manufacturing Practices (cGMP) for late stage development and commercial production.

Policy, commercialization and delivery

Establish cost-effectiveness and, dependent on outbreak or endemic situations, develop research and implementation financial investment scenario to support appropriate funding and policy decision-making at the global and national level

Define scale-up needs and develop GMP Manufacturing capacity to meet these needs

Secure financing for procurement and deployment of ZIKV vaccines once available

Ensure post-licensure pharmacovigilance and effectiveness evaluations

Develop advocacy and communication plans to enhance vaccine uptake.