Global Vaccine and Immunization Research Forum

Vaccine Research and Development: Challenges and Opportunities

Anthony S. Fauci, M.D.
Director
National Institute of Allergy and Infectious Diseases
National Institutes of Health
March 4, 2014

Decade of Vaccines

Historical Success

Future Directions

Challenges and Advances in Selected Areas
- HIV
- Influenza
- RSV
- Malaria

DECADE of VACCINES
C O L L A B O R A T I O N

Purpose: Discover, develop, and deliver vaccines globally in the next ten years through enhanced collaboration across the international community

Outcomes:
- Global Vaccine Action Plan (2011) – integration of research & development, delivery, global access, public & political support
- Special supplement of Vaccine (2013) – case studies and future directions

Goals of the Decade of Vaccines (2011-2020)

- Achieve a world free of poliomyelitis
- Meet global and regional elimination targets
- Meet vaccination coverage targets in every region, country and community
- Develop and introduce new and improved vaccines and technologies
- Exceed the Millennium Development Goal 4 target for reducing child mortality
Goals of the Decade of Vaccines (2011-2020)

- Achieve a world free of poliomyelitis
- Meet global and regional elimination targets
- Meet vaccination coverage targets in every region, country, and community
- Develop and introduce new and improved vaccines and technologies
- Exceed the Millennium Development Goal 4 target for reducing child mortality

Decade of Vaccines

- Historical Success

Future Directions

- Challenges and Advances in Selected Areas
 - HIV
 - Influenza
 - RSV
 - Malaria

WORLD HEALTH

Global Smallpox Cases, 1920-2010

The Impact of Vaccines Around the World: Declining Mortality 1990-2010

- Measles: 80%
- Polio: 99%
- Tetanus: 78%
- Diphtheria: 54%

Source: World Health Organization

Vaccine Implementation: The GAVI Experience (2000-2013)

From GAVI’s Founding in 2000 to 2013:

- US $8.4 billion committed to countries
- 440 million additional children immunized
- An estimated 6 million prevented deaths

Conceptual Basis for Traditional Vaccine Development

Mimic Natural Infection ➔ Recapitulate Natural Immunity
Decade of Vaccines
Historical Success
Future Directions

Challenges and Advances in Selected Areas
- HIV
- Influenza
- RSV
- Malaria

Future Directions in Vaccine Research

Challenges:
- Inadequate immune response to natural infection (ex: HIV, Malaria)
- Strain Diversity (ex: Influenza)

New Paradigm:
- Go beyond recapitulation of natural immunity
- Induce "unnatural immunity"

21st Century Vaccinology: Selected Scientific Tools

- Rapid genomic sequencing of relevant pathogens
- Reverse vaccinology – genetic expression of all possible immunogens
- Structure-based vaccine design – crystallography; Cryo-EM
- New vaccine platforms – ex: nanoparticles, vector expression
- B cell lineage vaccine design – single cell cloning of B cell repertoire; deep sequencing of B cell Ig genes
- Harnessing the innate immune system – effective adjuvants

Decade of Vaccines
Historical Success
Future Directions

Challenges and Advances in Selected Areas
- HIV
- Influenza
- RSV
- Malaria

The Search for an HIV Vaccine - 27 Years and Counting

First FDA-approved HIV vaccine clinical trial, 1987 - gp160 subunit candidate

HHS News

Dr. Robert E. Windom, assistant secretary for health, today announced that the National Institute of Allergy and Infectious Diseases is beginning tests in human volunteers of an experimental vaccine against acquired immunodeficiency syndrome (AIDS). This is the first clinical study of an AIDS vaccine to be approved by the Food and Drug Administration and to be conducted in the United States.
First Signal of Efficacy in an HIV Vaccine Clinical Trial

Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand
S Rerks-Ngarm, JH Kim, NL Michael et al. for the MOPH–TAVEG Investigators

Modest (31%) Efficacy in RV144 Trial Correlates with Non-Neutralizing Antibodies to Epitopes in the V1-V2 Region of HIV Envelope

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial
BF Haynes et al.

Increased HIV-1 Vaccine Efficacy Against Viruses with Genetic Signatures in Env V2
R M Roland, JH Kim et al.

Immunity
Volume 36, Issue 1, January 15, 2012

Vaccine Induction of Antibodies Against a Structurally Heterogeneous Site of Immune Pressure Within HIV-1 Envelope Protein Variable Regions 1 and 2
HX Liu, BF Haynes et al.

Broadly Neutralizing Antibodies

HIV Epitopes Targeted by Broadly Neutralizing Human Antibodies

Challenges to Developing an HIV Vaccine that Induces Broadly Neutralizing Antibodies (BNAbs)
- Conserved glycoprotein-rich regions on HIV envelope are often poorly immunogenic
- BNAbs are elicited in a minority of HIV-infected individuals and only 2 years (or longer) after infection
- Most BNAbs demonstrate a high degree of somatic mutation
- Certain BNAbs have other unusual traits such as autoreactivity

Co-Evolution of Virus and Antibody in an HIV-Infected Individual

The “Paradox” of the Evolution of Broadly Neutralizing Antibodies

As HIV evades the evolving HIV-specific antibodies, it ultimately stimulates broadly neutralizing antibodies.

Immunogen Design Mimicking Natural HIV Infection

The Threat of Influenza

- Seasonal Influenza – annual burden:
 - USA
 - up to 49,000 deaths
 - more than 200,000 hospitalizations
 - $27 billion in medical costs plus lost earnings
 - Global
 - 250,000 to 500,000 deaths

- Pandemic Influenza
 - 1918, 1957, 1968, and 2009
 - 1918 “Spanish Flu” pandemic caused 50 to 100 million deaths worldwide

Decade of Vaccines

- Historical Success

- Future Directions

Challenges and Advances in Selected Areas

- HIV
 - Influenza

- RSV

- Malaria

Issues Related to Influenza Vaccines

- Lack of life-long immunity following infection and/or vaccination

- Invariable “drift” of seasonal influenza strains requiring “timetable” approach to vaccine development

- Imprecision in predicting seasonal strain

- Cost ($2-4 billion) to prepare seasonal influenza vaccines de novo each year

- Inability to stockpile vaccines for several years

- Potential for emergence of pandemic strain
Generating Broadly Neutralizing Antibodies: Targeting the Stem

- Most antibodies bind to epitopes of highly variable head region
- Antibodies that neutralize multiple strains bind to a highly conserved region (red) in the stem region

Influenza A Hemagglutinin (HA)

THE LANCET Infectious Diseases
Volume II
December 2011

DNA Priming and Influenza Vaccine Immunogenicity: Two Phase 1 Open Label Randomized Clinical Trials
J.E. Ledgerwood, G.J. Nabel, B.S. Graham, et al. and the VRC 306 Study Team

- Initial immunization with DNA vaccine boosts effectiveness of traditional influenza vaccine and could help prepare for future pandemics

Generating a More Potent Immune Response Using Nanoparticles

- Ferritin self assembles into nanoparticles to which hemagglutinin can be affixed
- Offers the ability to show more antigen on stable platform

Decade of Vaccines

Historical Success

Future Directions

Challenges and Advances in Selected Areas
- HIV
- Influenza
- RSV
- Malaria

RSV Causes Significant Global Mortality and Morbidity

Global Annual Burden of Disease

- Causes 6.7 percent of deaths in children aged 1 month-1 year
- Nearly ¼ of children under age one hospitalized with RSV will develop asthma

33.8 Million Acute Lower Respiratory Infections
3.4 Million Hospitalizations
60,000-200,000 Deaths

Proof of Concept: Palivizumab

- Palivizumab is a monoclonal antibody vs. Fusion protein
- Used for periodic prophylaxis of severe RSV for premature infants
- Shown to reduce RSV hospitalizations by 82%

Fusion Protein (F) is a Promising Antigen

- Part of the viral spike
- Required for RSV entry into cell
- Conserved across strains

F Protein Adopts Two Primary Conformations: Pre- and Post-Fusion

- Pre-Fusion (Unstable)
- Post-Fusion (Stable)

Broadly Neutralizing Antibodies Bind More Readily to the Pre-Fusion Form

Pre-Fusion F Protein Stabilized Using Structure-Based Vaccine Design

Neutralization in Non-human Primates
Decade of Vaccines

Historical Success

Future Directions

Challenges and Advances in Selected Areas
 - HIV
 - Influenza
 - RSV
 - Malaria

The Global Burden of Malaria, 2012

- 627,000 malaria deaths, 90% in Africa
- 207 million malaria cases
- Ongoing transmission in 97 countries
 - Almost half the world’s population is at risk
- Every 60 seconds a child <5 years old dies from malaria

Source: WHO, World Malaria Report 2013

Vaccine for Malaria (and Other Parasitic Diseases): Unique Challenges

- Large eukaryotic genomes
- Complex life cycles
- Antigenic variations
- Lack of lifelong protection resulting from natural infection
- Immune evasive techniques
- Special consideration for formulation and delivery in developing nations

Malaria Vaccine Products in Clinical Trials, 2013

<table>
<thead>
<tr>
<th>Phase 1a</th>
<th>Phase 2a</th>
<th>Phase 1b</th>
<th>Phase 2b</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Studies</td>
<td>Clinical Studies</td>
<td>Clinical Studies</td>
<td>Clinical Studies</td>
<td>Clinical Studies</td>
</tr>
<tr>
<td>Phase 2b</td>
<td>Phase 2b</td>
<td>Phase 2b</td>
<td>Phase 2b</td>
<td>Phase 2b</td>
</tr>
<tr>
<td>Phase 2a</td>
<td>Phase 2a</td>
<td>Phase 2a</td>
<td>Phase 2a</td>
<td>Phase 2a</td>
</tr>
<tr>
<td>Phase 1a</td>
<td>Phase 1a</td>
<td>Phase 1a</td>
<td>Phase 1a</td>
<td>Phase 1a</td>
</tr>
</tbody>
</table>

NIAID supported concepts: 11/07 = 41%

P. falciparum vaccines:
- Pre-erythrocytic
- Blood-stage
- Transmission-blocking

Vision:
“Safe, effective vaccines against *P. falciparum* and *P. vivax* that prevent disease, death and transmission to enable eradication”

Strategic Goals:
1. Vaccines with 75% efficacy against clinical malaria, ready for deployment.
2. Vaccines that reduce transmission of the parasite

New England Journal of Medicine

First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children

The RTS,S Clinical Trials Partnership
A. Olotu, P. Bejon et al.

Four-Year Efficacy of RTS,S/AS01E and Its Interaction with Malaria Exposure

Initial phase 3 trials in 5-17 month old infants showed safety, immunogenicity and 50% efficacy

Protection waned over time. 4-year efficacy was 16.8%.
Investigational Malaria Vaccine Found Safe and Protective in Early-Stage Clinical Trial

Protection Against Malaria by Intravenous Immunization with a Nonreplicating Sporozoite Vaccine
R.A. Seder, S.L. Hoffman and VRC 312 Study Team et al.

Beyond the Decade of Vaccines: Research and Development

The Perpetual Challenge of Discovery, Delivery, and Implementation