CSIR Biosciences
Rabies antibodies for Passive Post-exposure prophylaxis

Tsepo Tsekoa, PhD

17 March 2016

Global Vaccine and Immunization Research Forum
Sandton, South Africa
Rabies virus: Widespread zoonotic disease found across the globe

Presence/ Absence of Rabies worldwide - 2006

- Rabies absent
- Rabies present
- No data available
Rabies virus: Some background

- Rabies was the first of several lyssavirus species to be identified.
- Has 100% fatality rate if left untreated
- 55,000 to 70,000 people die of the disease each year, mainly in Africa, China and India
- Disproportionately affects children: 50% of cases of rabies worldwide are in children
- About 10 million people receive plasma-derived Rabies Immunoglobulin (RIG) as part of post-exposure prophylaxis (PEP)
- A therapy for symptomatic rabies is not available
- Vaccination and post-exposure prophylaxis (PEP) are effective if administered promptly after infection
Rabies Immunoglobulins and monoclonal antibodies for Rabies PEP

<table>
<thead>
<tr>
<th>RIG</th>
<th>mAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply constraints</td>
<td>Available in large quantities</td>
</tr>
<tr>
<td>Batch to batch inconsistency</td>
<td>Consistent product composition</td>
</tr>
<tr>
<td>Large volumes for effective dose</td>
<td>Purification and concentration to address bite wound infiltration</td>
</tr>
<tr>
<td>Safety concerns: Serum sickness, allergy, anaphylaxis</td>
<td>Safety relatively predictable</td>
</tr>
<tr>
<td>Cost and affordability</td>
<td>Can be cost-competitive (not always)</td>
</tr>
<tr>
<td>Limited breadth</td>
<td>Broader and predictable neutralisation pattern (may cover non-rabies lyssaviruses)</td>
</tr>
<tr>
<td>Polyclonal effect</td>
<td>Escape more likely</td>
</tr>
</tbody>
</table>
Neutralizing Abs to Rabies Virus

Glycoprotein (G)
- Major protein on virion surface
- Interacts with specific cell surface receptors

G protein
- Classified by Antigenic Domains
- Majority of neutralizing antibodies directed to antigenic sites II and III
- Changes in G-protein sequence influence virulence
WHO initiative to develop anti-rabies mAbs 2002-present

- **Phase 1** – Select and evaluate potential mAbs

- **Phase 2** – transfer the technology to developing country manufacturers

- **2002 Goal**: To make monoclonal antibody products to replace RIG which are available at the lowest possible price to the public sector of developing countries.
WHO technology transfer of rabies mAbs

Phase 1 – selection & evaluation

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>WHO consultation held - recommends cocktails ≥ 2 mAbs, set criteria for mAbs evaluation, mapped the way forward</td>
</tr>
<tr>
<td>2003</td>
<td>Phase I begins - selection and evaluation of candidate murine anti-G mAb panels from WHO CCs</td>
</tr>
<tr>
<td>2005</td>
<td>MTAs finalized, 5 mAbs donated to WHO (WI 11-12-1; CDC 62-713; ADRI M727-5-1 & M777-16-3; FLI E559), further evaluation of 5 mAbs</td>
</tr>
<tr>
<td>2006</td>
<td>Master cell banking of 5 candidates, cDNA for 62-713 & E559</td>
</tr>
<tr>
<td>2011</td>
<td>Humanized sequence for mAbs E559 and 62-713</td>
</tr>
</tbody>
</table>

Slides courtesy: Martin Friede, WHO
WHO technology transfer of rabies mAbs
Phase 2 – tech transfer

2008
- **Zydus Cadila**, India joins the programme – MTA signed – begins work on a cocktail comprising 62-71-3 and M777-16-3

2009
- **CSIR, South Africa** joins the programme – MTA signed – begins work on a cocktail of 62-71-3 and E559 using tobacco expression system.

2011
- **Span Diagnostics**, India joins the programme – MTA signed – begins work on a cocktail of 62-71-3 and E559

2012
- Phase I for Zydus Cadila candidate begins

2012
- Informal consultation with industry in Sep 2012 to discuss clinical pathway and issues

Slides courtesy: Martin Friede, WHO
International pipeline of Rabies PEP products

RIG Products (Licensed)

- **HRIG products**
 - Imogam (Sanofi Pasteur)
 - Hyperrab

- **ERIG products**
 - Favirab (Sanofi Pasteur)
 - Equirab

- Regional preparations of HRIG and ERIG
 - Asia, South America and Africa
 - South Africa: National Bioproducts Institute

Antibody-based Products

- Serum Institute of India (Phase III Clinical Trials complete)
- Crucell (Phase II Complete)
- Zydus (Phase I/II)
- MTTI/NCPC (Phase I)
- **CSIR (R&D/Preclinical)**
- HUMAbs (Switzerland)
- Fraunhofer (Germany)
CSIR Plant-made E559/62-71-3 Rabies mAbs

Transiently expressed in Nicotiana plant transiently or stably transformed virus vector

<table>
<thead>
<tr>
<th>Name</th>
<th>GnGn</th>
</tr>
</thead>
<tbody>
<tr>
<td>E559 (HC)</td>
<td>95 %</td>
</tr>
<tr>
<td>62-71-3 (HC)</td>
<td>95 %</td>
</tr>
<tr>
<td>E559 (LC)</td>
<td></td>
</tr>
</tbody>
</table>

- Mannose
- GlcNAc

Tsekoa et al., accepted for publication. Plos (2016)
Licensing rabies mAbs

• Preclinical and phase I/II pathway known
 – In vivo, in vitro animal studies, hamster challenge, phI/II safety, PK, sera neutralization across broad range of isolates

• Phase III efficacy challenging (not clear what is required)
 – Placebo controlled not ethical
 – head to head with RIG required?
 – Large numbers to power trials (rabies confirmed through dog brain analysis)
 – Achieving informed consent and enrolment
 – RIG is 100% effective, so superiority cannot be established (i.e. what is the benefit?)

Slides courtesy: Martin Friede, WHO
If your child was bitten by a rabid dog...
Would you give informed consent to enter into a clinical trial?

RIG
100% efficacy proved in humans

mAb efficacy in humans not yet determined

Slides courtesy: Martin Friede, WHO
How can we balance?

- **Risk** to the individual to participate in the trial

- **Benefit** to the masses (safer, cheaper, increased availability)

Slides courtesy: Martin Friede, WHO
Historical clinical development of RIG

- Never evaluated in "phase III" clinical studies¹
 - 1954: Iran, 29 ppl bitten by a rabid wolf, treatment started within 30h, 2 treatment groups, vaccine alone or combination of serum & vaccine.
 - Excluding those with less severe wounds, in the 18 severe: 3 of 5 who received vaccine alone died, of the 13 individuals given both vaccine & serum, only 1 died

- Highly purified ERIG F(ab´)2 fragments (Favirab), Sanofi Pasteur: 2 studies conducted in 1990s, no rabies exposed patients²
 1. Compared safety & serum concentrations of either Favirab or Pasteur Anti Rabies Serum in healthy adults.
 2. Simulated PEP in healthy volunteers using rabies vaccine and PARS or Favirab
 - Both studies completed in 1995, Favirab™ licensed in France in 2000

Slides courtesy: Martin Friede, WHO
Alternative approaches

- Animal rule (FDA)?
- Conditional MA (EMA)?
- SII approach for phase III – head to head with RIG, risk and age de-escalation, limited number of dog bite victims (N=200), lack of rabies verification.

- Post market surveillance to:
 - Ensure cross protective across genotypes

Slides courtesy: Martin Friede, WHO
Challenges of uptake

- Switching from RIG to mAbs?
 - Decision by policy makers
 - Cost effectiveness needed
 - Treatment guidelines needed
 - Training of HCWs
 - Procurement/supply
 - WHO model essential medicines list
 - Shelf-life and stockpiling
CSIR Plant-made E559/62-71-3 Rabies mAbs
Next Steps and Challenges

IND-enabling pre-clinical studies followed by phase I
- Funding chasm
- Clinical grade pilot manufacturing capacity

Regulatory path
- Ethical considerations
- “Unfamiliar” plant-based manufacturing for a lethal indication coupled with an existing 100% efficacious alternative (RIG)
- How do you adequately show non-inferiority to existing RIG?
Acknowledgements

CSIR Biosciences
Rachel Chikwamba, Ereck Chakauya, Fanie Marais, Therese Stark, Stoyan Stoychev, Sindi Buthelezi

ARC-OVI Rabies Reference Centre
Claude Sabela, Wonderful Shumba, Baby Phahladira

Mapp Biopharmaceutical
Kevin Whaley, Michael Pauly, Larry Zeitlin

Kentucky Bioprocessing
Steve Hume, Josh Morton, Ernie Hiatt, Barry Bratcher

BOKU Austria
Herta Steinkellner

WHO Collaborating Centres Rabies
Thomas Muller (FLI, DE), Charles Rupprecht (CDC-ATL)

NRF Innovation Fund/Technology Innovation Agency (South Africa)

World Health Organization (WHO)