HSV Vaccine Development: Current Progress and Future Directions

Carolyn D. Deal, PhD
Chief, Sexually Transmitted Diseases Branch
Division of Microbiology and Infectious Diseases

National Institute of Allergy and Infectious Diseases
National Institutes of Health
Outline

- Unmet medical need for an HSV vaccine
- Current HSV vaccine strategies and pipeline
- HSV vaccine development and low- and middle-income countries (LMICs)
- WHO facilitation of HSV vaccine development
Herpes Simplex Virus-1 and -2

- Double-stranded DNA virus
- HSV-1 and HSV-2 cause distinct but overlapping clinical syndromes and can be differentiated from each other
- Chronic, lifelong infection, persists in trigeminal (HSV-1) or sacral (HSV-1 & HSV-2) ganglia
- Viral reactivation, transmission, and clinical disease may occur throughout the lifespan
Global burden of HSV-2 infection: 417 million infected & 19 million new cases in 2012

Large global burden of HSV-1 infection, increasing role of genital HSV-1

- Estimated 3.7 billion people aged 0-49 with HSV-1 globally
- Increasingly important cause of genital herpes in high-income countries (HICs)
 - Decline in HSV-1 seroprevalence in childhood in HICs
 - More adolescents susceptible to HSV-1 at sexual debut, transmission via oral sex
- Preliminary estimates: 239 million adults with genital HSV-1

Looker K et al, unpublished data, 2015
HSV-2 infection increases HIV risk

- HSV-2 infection: 3-fold increased risk of acquiring HIV
 - HSV recruits CD4+ target cells to genital tract
- HSV-2/HIV co-infection: more likely to transmit HIV
 - Higher viral loads; high levels of HIV in HSV lesions

- HIV also increases frequency and severity of HSV recurrences: the infections fuel each other

Neonatal herpes

- Relatively uncommon but devastating
 - 60% fatality rate without treatment
 - Long-term neurologic deficits common even with therapy
- Incidence rate ~10/100,000 in HICs
 - Data in LMICs limited
Other consequences of HSV infection

- Genital ulcer disease (GUD)
 - HSV most common cause of GUD worldwide
 - Estimated 40-80 million people globally with symptomatic genital HSV-2

- Psychosocial / quality of life issues
 - Impact on sexual relationships

- Keratitis, encephalitis, herpes labialis (HSV-1)
Current HSV-2 prevention strategies insufficient

- Antiviral agents: acyclovir, valacyclovir, famciclovir
 - Episodic: Decrease length of GUD recurrence
 - Suppressive: Daily antiviral therapy decreases risk of GUD and transmission (50%) among heterosexual couples in North America; no benefit in decreasing HIV risk
- Male circumcision
- Condoms: 30% decreased transmission risk if used all the time
- These strategies are not highly efficacious and not widely available, unlikely to interrupt HSV-2 epidemic
- No strategies to prevent HSV-1
Why We Need an HSV Vaccine: The Consequences of Genital HSV Infection

- Lifelong recurrent episodes of painful genital lesions
- Increased likelihood of HIV transmission and acquisition
- Risk of vertical transmission to fetus or neonate that can result in neonatal brain damage or death
Why we need an HSV vaccine: Potential benefits

- Prevention of genital ulcer disease
- Prevention of HSV sexual transmission
- Prevention of neonatal herpes/lower mortality in children under five in the neonatal period
- Important tool to interrupt HIV transmission
- Ideally could also impact huge burden of HSV-1
Previous HSV vaccine efforts
Previous prophylactic vaccine trial

- gD subunit vaccine with alum/MPL adjuvant
- Enrolled >8000 HSV-1/2 seronegative women aged 18-30
 - Vaccine given at months 0, 1 and 6
 - Follow-up for 20 months
- Primary endpoint: genital herpes disease
 - 70 cases of genital herpes observed:
 - 32 HSV-1 (VE=58%, 95% CI=12-80%)
 - 38 HSV-2 (VE=-38%, 95% CI=-167-29%)
- Secondary endpoint: HSV infection
 - 286 seroconversion
 - 179 HSV-1
 - 108 HSV-2

Belshe et al, NEJM 2012
Vaccine efficacy as a function of ELISA titer

- First evidence for correlate of protection against HSV-1 infection

Belshe et al, JID 2014
Current vaccination strategies and pipeline
HSV vaccine strategies

<table>
<thead>
<tr>
<th>Concept</th>
<th>Prophylactic</th>
<th>Therapeutic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Population</td>
<td>High risk HSV-2 seronegative Adolescent platform</td>
<td>HSV-2 seropositive Adolescent/adults</td>
</tr>
<tr>
<td>Goal</td>
<td>Prevent infection –or- Reduce severity of disease</td>
<td>Reduce severity of disease and risk of transmission</td>
</tr>
<tr>
<td>Preferred endpoint</td>
<td>Infection (seroconversion) Disease has been endpoint</td>
<td>Genital shedding and recurrences</td>
</tr>
</tbody>
</table>

If vaccine also prevents HSV-1 infection, may shift to infant platform
Benefits of a Prophylactic HSV Vaccine

Individual Benefits
- Decreased risk of infection
- Remains free of negative psychosocial impact
- Decreased risk of acquiring HIV

Societal Benefits
- Decreased cost of medical care
- Interrupt the cycle of transmission
- Decreased risk of maternal transmission of HSV
Benefits of a Therapeutic HSV Vaccine

Individual Benefits
- Decreased shedding
- Decreased number of outbreaks
- Decreased probability of transmission to partners

Societal Benefits
- Decreased cost of medical care
- Decreased risk of acquiring HIV
- Interrupt the cycle of transmission
- Decreased risk of maternal transmission of HSV and HIV

Partner Benefits
- Decreased risk of infection
- Remains free of negative psychosocial impact

HSV Positive

Vaccine suppresses viral load

HSV Negative Partner
HSV vaccines currently in clinical trials: The Pipeline

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Company</th>
<th>Candidate</th>
<th>Adjuvant</th>
<th>Current Phase</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic peptide complex with HHSP 70</td>
<td>Agenus</td>
<td>HerpV 32 peptides</td>
<td>QS-21</td>
<td>II, therapeutic</td>
<td>17% reduction in HSV shedding</td>
</tr>
<tr>
<td>Recombinant subunit</td>
<td>Genocea</td>
<td>GEN-003 ICP4, gD2</td>
<td>Matrix-M2</td>
<td>II, therapeutic</td>
<td>60 microgram dose + 75 microgram of Matrix-M2 = 55% reduction in shedding</td>
</tr>
<tr>
<td>DNA</td>
<td>Vical</td>
<td>VCL-HB01 gD, UL46/UL46</td>
<td>Vaxfectin</td>
<td>I/II POC therapeutic</td>
<td>Pending</td>
</tr>
<tr>
<td>Replication defective HSV2</td>
<td>Sanofi</td>
<td>HSV529</td>
<td>NA</td>
<td>I, prophylactic therapeutic</td>
<td>Pending</td>
</tr>
<tr>
<td>DNA vaccine</td>
<td>Coridon</td>
<td>Coridon gD, codon optimized</td>
<td>Ubiquitin tagged</td>
<td>II, prophylactic therapeutic</td>
<td>Elicited cellular responses in Phase 1</td>
</tr>
</tbody>
</table>
HSV Vaccines: Preclinical Pipeline

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>PI/Institution/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subunit</td>
<td></td>
</tr>
<tr>
<td>gD/gC/gE (Trivalent glycoprotein)</td>
<td>Friedman, University of Pennsylvania</td>
</tr>
<tr>
<td>HSV-2 gD with nanoemulsion</td>
<td>NanoBio</td>
</tr>
<tr>
<td>Live attenuated, replicating virus</td>
<td></td>
</tr>
<tr>
<td>0ΔNLS-ICP0</td>
<td>Halford, Southern Illinois University</td>
</tr>
<tr>
<td>AD472 (HSV-2 mutated for g34.5, UL43.5, UL55-56, US10, US11, US12)</td>
<td>MedImmune</td>
</tr>
<tr>
<td>HSV-2 mutated for TK, prime/pull</td>
<td>Iwasaki, Yale University</td>
</tr>
<tr>
<td>Inactivated virus</td>
<td></td>
</tr>
<tr>
<td>Inactivated HSV-2 in MPL/alum</td>
<td>Spector, University of California San Diego</td>
</tr>
<tr>
<td>Live attenuated, non-replicating virus</td>
<td></td>
</tr>
<tr>
<td>HSV-2 deleted in gD</td>
<td>Jacobs and Harold, Albert Einstein College of Medicine</td>
</tr>
<tr>
<td>Peptide</td>
<td></td>
</tr>
<tr>
<td>HerpV mixture of synthetic peptides representing HSV-2 antigens</td>
<td>Agenus</td>
</tr>
<tr>
<td>Prime-boost</td>
<td></td>
</tr>
<tr>
<td>HSV-2 gD, DNA prime followed by a liposome-encapsulated antigen boost</td>
<td>BRM</td>
</tr>
</tbody>
</table>
Therapeutic vaccines likely to be available first

- Encouraging results from current trials
- Advancing to further trials
- Advantages
 - Shorter clinical trial duration
 - Potential path to licensure in 5 years
 - Easy to identify target population
Therapeutic HSV-2 vaccines: A new paradigm for evaluation

- Endpoint: Shedding rate pre/post vaccine
- Participant is compared to themselves
Key questions

- What are the population benefits of a therapeutic vaccine?
- What impact would a therapeutic vaccine have on HIV acquisition and transmission?
- What can we learn from advancing therapeutic vaccines to inform/facilitate development of prophylactic vaccines?
- How will therapeutic vaccine development for HICs be applicable to LMICs?
HSV vaccines and LMICs
HSV burden highest in LMICs with high HIV rates, especially sub-Saharan Africa

Considerations for vaccine strategies for LMICs: Prophylactic vaccines

- Prophylactic vaccines likely the best strategy for LMICs in terms of benefits to individuals and society
 - HSV infection linked to HIV risk, regardless of symptoms
 - Preventing infection ideal

- However:
 - Timeline of development is lengthy
 - Hurdle of previous trials to overcome
Considerations for vaccine strategies for LMICs: Therapeutic vaccines

- Therapeutic vaccines more advanced
 - Timeline to possible licensed vaccine on 5 year horizon
 - Industry investment due to HIC market opportunity
 - Benefits to individual and to society
- Impact on HIV acquisition and transmission unknown
WHO facilitation of HSV vaccine development
Joint WHO and NIAID STI Vaccine Roadmap

- May 2012 - World Health Assembly endorsed the Global Vaccine Action Plan
- April 2013 - WHO and NIAID convened a Technical Consultation on STI Vaccine Development and Introduction
- Focus was five most common STIs
 - HSV
 - *Chlamydia trachomatis*
 - *Neisseria gonorrhoeae*
 - *Trichomonas vaginalis*
 - *Treponema pallidum* (syphilis)
- Identified gaps in knowledge
- Developed a Roadmap to move forward
Global roadmap for STI vaccine development

- Critical next steps from pre-vaccine development through vaccine introduction
Current status of the development pathway of STI Vaccines

Basic Research
- Trichomonas vaginalis
- Treponema pallidum (syphilis)

Preclinical Development
- Chlamydia trachomatis vaccine
- Neisseria gonorrhea vaccine

Clinical Evaluation

Second generation HSV vaccines
- HerpV (synthetic peptide complex with HHSP 70)
- GEN-003 (recombinant subunit)
- VCL-HB01 (DNA vaccine)
- HSV529 (Replication defective HSV2)
- Coridon (DNA vaccine)

First generation HSV vaccines
- Chiron (gD2, gB2 and MF59 adjuvant)
- GSK (gD2 and alum MPL adjuvant)

= therapeutic vaccine
HSV within the STI Vaccine Roadmap: What has been done

- Updated global HSV estimates: HSV-2 estimates published 2015, first ever HSV-1 & neonatal herpes estimates underway
- NIAID workshops and working groups
 - Reagents, animal models, assays, etc.
- WHO Consultation on HSV Vaccine Impact Modelling
 - Recommendations on critical modelling needs, March 2015
- Comprehensive HSV vaccine business case work plan
How can WHO advance HSV vaccine development in the future?

- Preferred product characteristics
- Consensus-building on key endpoints for clinical trials
- Consensus-building on steps needed to evaluate therapeutic vaccines in LMICs
- Better primary data on neonatal herpes in LMICs
- Coordination of updated modeling of the impact of HSV vaccine
 - Incorporating HIV incidence, neonatal herpes, HSV-1 in models
 - Modelling therapeutic and prophylactic vaccines in LMICs
Acknowledgments

- Sami Gottlieb
- Nathalie Broutet
- Birgitte Giersing

- Christine Johnston
- Joshua Schiffer
- Anna Wald

World Health Organization

National Institute of Allergy and Infectious Diseases

NIH
Further Reading