Herpes Simplex Virus
PD-VAC Presentation
9 September 2014

Christine Johnston, MD, MPH
University of Washington

Herpes Simplex Virus-1 and -2

• Double stranded DNA virus
• Chronic, lifelong infection, persists in trigeminal (HSV-1) or sacral (HSV-1 & HSV-2) ganglia
• Viral reactivation, transmission, and clinical disease may occur throughout the lifespan
• HSV-1 and HSV-2 cause distinct but overlapping clinical syndromes and can be differentiated from each other
Global burden of disease

<table>
<thead>
<tr>
<th>Infection</th>
<th>Clinical manifestations</th>
<th>Disease estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV-2</td>
<td>535 million infected, infection rapidly acquired at sexual debut</td>
<td>Genital ulcer disease Neonatal HSV HIV</td>
</tr>
<tr>
<td>HSV-1</td>
<td>>90% of population in LMIC, infection in childhood</td>
<td>Herpes labialis Encephalitis Keratitis GUD Neonatal</td>
</tr>
</tbody>
</table>

Seroprevalence estimates are robust worldwide, updated global estimates pending Disease estimates from HIC, lack of data from LMIC HSV will be included next Global Burden of Disease

HSV-2 prevention strategies

- **Antiviral agents**
 - Acyclovir, valacyclovir, famciclovir
 - Episodic: Decrease length of GUD recurrence
 - Suppressive: Daily antiviral therapy decreases risk of GUD and transmission (50%) among HIV-negative, HSV-2 discordant heterosexual couples in North America

- **Male circumcision**
 - Decreased risk of HSV-2 acquisition in men
 - Decreased risk of GUD in men and female partners

- **Condoms**
 - 30% decreased risk of transmission if used all of the time
 - These strategies are not highly efficacious and are not widely available, unlikely to interrupt HSV-2 epidemic
 - No strategies to prevent HSV-1
Unmet Medical Need: HSV-2 infection

- Prevention of GUD
- Prevention of neonatal herpes
- Prevention of HSV-2 transmission-sex partners
- Interruption of HIV epidemic

- Ideally also prevent HSV-1 infection
 GUD, neonatal herpes
 keratitis, encephalitis, herpes labialis

Impact of HSV-2 vaccine on HIV infection

Model: Impact of a HSV-2 vaccine:
70% coverage, 70% efficacy
10 year duration
Decrease HIV incidence by 30-40%

Zhu Nat Med 2009

Freeman et al, Vaccine 2009
HSV-2 vaccine strategies

<table>
<thead>
<tr>
<th></th>
<th>Prophylactic</th>
<th>Therapeutic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Population</td>
<td>HSV-2 seronegative HSV-1 seropos or seroneg Adolescent platform*</td>
<td>HSV-2 seropositive Adolescent/adults</td>
</tr>
<tr>
<td>Goal</td>
<td>Prevent infection –or- Reduce severity of disease 2(^0) endpoint: HIV acquisition</td>
<td>Reduce severity of disease and risk of transmission</td>
</tr>
<tr>
<td>Preferred endpoint</td>
<td>Infection (seroconversion) Disease has been endpoint</td>
<td>Genital shedding and recurrences</td>
</tr>
</tbody>
</table>

If vaccine also prevents HSV-1 infection, may shift to infant platform

Prophylactic Vaccines

- Over 20,000 participants enrolled in prophylactic vaccine trials

- Most prophylactic vaccines have targeted surface glycoproteins (gD, gB)
 - Subunit vaccines
 - Elicit neutralizing antibody
Prophylactic Vaccines

- gD2t subunit vaccine with alum/MPL adjuvant
- Enrolled >8000 HSV seronegative women aged 18-30 in North America
 - Vaccine given at months 0, 1 and 6
 - Control vaccine: hepatitis A
 - Study lasted ~7 years
- Primary endpoint: genital herpes disease
 - 70 cases of genital herpes observed:
 - 32 HSV-1 (VE=58%, 95% CI= 12-80%)
 - 38 HSV-2 (VE=-38%, 95% CI=-167-29%)
- 286 HSV-1 or HSV-2 seroconversions observed:
 - 179 HSV-1 and 108 HSV-2

Vaccine efficacy as a function of ELISA titer

First immune correlate of protection against HSV-1 infection
Lessons from Herpevac

- **Immune Correlates**
 - Neutralizing antibody is a correlate of protection against HSV-1 infection
 - CD4+ T cell responses not a correlate. CD8+ T cell responses not detected

- **Efficiency**
 - Phase III trial required >8000 participants due to low attack rate (~1%)
 - Consider cohorts with higher incidence for future studies
 - Systematic review: Incidence rates in SSA: median 16/100 py in women

- **Endpoints:**
 - Infection vs. Disease
 - Frequency of shedding in those infected
 - Use in HSV-1 seropositive and seronegative, prevention of HSV-1

FEASIBILITY of preventing HSV-1 with HSV-2 based vaccine

Therapeutic HSV-2 vaccines: A new paradigm

- **Endpoint:** Shedding rate pre/post vaccine
- **Participant is compared to themselves**
- **Efficient design, “derisk” investment for industry**
HSV vaccines currently in clinical trials: The Pipeline

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Candidate</th>
<th>Adjuvant</th>
<th>Current Phase</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic peptide complex with HHSP 70</td>
<td>HerpV 32 peptides</td>
<td>QS-21</td>
<td>II, therapeutic</td>
<td>17% reduction in shedding</td>
</tr>
<tr>
<td>Recombinant subunit</td>
<td>GEN-003 ICP4, gD2</td>
<td>Matrix-M2</td>
<td>II, therapeutic</td>
<td>I/II: 51% reduction in shedding in 30ug dose</td>
</tr>
<tr>
<td>DNA</td>
<td>VCL-H801 gD, UL46/UL46</td>
<td>Vaxfectin</td>
<td>I/II POC therapeutic</td>
<td>Pending</td>
</tr>
<tr>
<td>Replication defective HSV2</td>
<td>HSV529</td>
<td>NA</td>
<td>I, prophylactic therapeutic</td>
<td>Pending</td>
</tr>
<tr>
<td>DNA vaccine</td>
<td>Coridon gD, codon optimized, Ubiquitin tagged</td>
<td></td>
<td>II, prophylactic therapeutic</td>
<td>Elicited cellular responses in Phase 1</td>
</tr>
</tbody>
</table>

Testing in HIC only to date

HSV Vaccines: Preclinical Pipeline

<table>
<thead>
<tr>
<th>Candidate Name/Identifier</th>
<th>Replication competent</th>
<th>Replication incompetent</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>OΔNLS-ICP0</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gE2-deletion</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF10 (HSV-1 mutated for UL43, UL49.5, UL55, UL56, LAT)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD472 (HSV-2 mutated for g34.5, UL43.5, UL55-56, US10-12)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJ-2-gD2 HSV-2 gD dominant negative</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HSV-2 mutated for TK, prime/pull</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Inactivated HSV-2 in MPL/alum</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HSV-1 glycoprotein B lentiviral vector</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Recombinant HSV-1 gB intranasal</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>gD/gC/gE (Trivalent glycoprotein)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
HSV Vaccines: Strengths

• Rich pipeline with novel candidates, variety of platforms
 – Efficacy in phase I/II studies of therapeutic vaccines

• Importance of neutralizing antibody and cellular immune response realized

• Prior experience allows optimization of clinical trials design

HSV Vaccines: Weaknesses

• Only 1 prophylactic candidate in phase I clinical trials
 – Therapeutic vaccines are easier to test, smaller design

• Available animal models do not mimic human disease or immune system

• Lack of standardized assays and experimental endpoints

• Need additional data about immune correlates

• Low perception of disease burden

Knipe et al, Vaccine 2014
Role for WHO

• Raise awareness
• Create global case for HSV vaccine
 – Improved disease surveillance in LMIC
 • Ongoing work for neonatal herpes etc
 – Additional modeling of impact to support development of vaccine
• Development of preferred product characteristics

Role for WHO

• Foster collaboration and alliances across disciplines
 – Public-private partnership to advance vaccines
• Encourage investment
• Advocacy
 – Ensure vaccines are developed for use in LMIC, where HSV-2 infections have highest seroprevalence and greatest synergy with HIV
 • Current focus on vaccines in HIC
 • “Derisk” investment for industry