WHO DRAFT Target Product Profile:
A vaccine to protect against congenital Zika virus syndrome in neonates, for use during an emergency

Joachim Hombach, Initiative for Vaccine Research, WHO on behalf of the WHO PDVAC ZIKV vaccine working group

6th June 2016
Proposed regulatory strategy for expedient availability of a ZIKV vaccine

- WHO’s aim is to enable availability of a safe, effective vaccine to priority populations, as soon as possible
- Initial development efforts should focus on generating data to support emergency use authorization or accelerated approval, considering the risk:benefit ratio in that particular context
- Development efforts and generation of data that will support conventional licensure, also need to be considered
- This TPP focuses on defining the characteristics of a ZIKV vaccine for emergency use

Timeline of ZIKV vaccine development

World Health Organization
WHO’s Product Development for Vaccines Advisory Committee (PDVAC) oversees activities related to global vaccine R&D including TPPs

- WHO Zika TPP will allow funders, manufacturers and other stakeholders to take into account WHO preferences in their development decision-making

- A PDVAC working group of subject matter experts was established in April 2016 to develop a TPP for a Zika vaccine for use during an emergency

- The draft was posted for public consultation from the 4th - 23rd May 2016

- SAGE members had the opportunity to comment

- Extensive comments from 15 organizations/individuals were received and considered

The TPP focuses on vaccines characteristics for priority populations, during an emergency.

- The TPP prioritizes prophylactic vaccination as a strategy to prevent or reduce congenital Zika virus syndrome in neonates.
- Immunization of women of child-bearing age is considered to be of highest priority.
- Although not the explicit target population, some women may receive the vaccination who are not aware they are pregnant.
- Whilst men contribute to disease transmission and are a target population, they may not be prioritized in the context of constrained resources or vaccine supply.
- Once a vaccine is available, recommendation for use is made by SAGE.
Indication: prevention of Zika virus-associated clinical illness

- Clinical illness refers to a virologically-confirmed case of symptomatic ZIKV illness, as defined by WHO/PAHO

- Prevention of clinical illness, and not ZIKV infection has been retained, considering:
 - Practicality of detecting ZIKV infection in the high proportion of asymptomatic carriers, and the short period of viraemia
 - Sterilizing immunity has not been achieved for other effective flavivirus vaccines

- Does not include prevention of congenital abnormalities and GBS as an indication, but will be assessed as AESIs in clinical studies and post-licensure

World Health Organization
Platform technologies: safety and speed of development (as well as efficacy!) are of primary consideration

• WHO does not intend to discourage the development of replication competent approaches, or novel platforms for ZIKV vaccine development
 – However, in the context of an emergency situation, non-replicating platforms, that have no documented safety concerns and for which related vaccines have been licensed, are likely to be faster to authorization/approval

• Safety and reactogenicity must be at least comparable to other WHO-recommended routine vaccines

• Absence of data may not preclude the exceptional use during pregnancy or in lactating women during an outbreak
 – Therefore platforms that may be contra-indicated will not be prioritised.
Measures of efficacy: Demonstration of prevention of virologically confirmed ZIKV illness

- VE target of 80% accepted. Need to consider minimal VE criterion.
- If feasible, the vaccine should demonstrate efficacy against a well-defined clinical endpoint (virol. confirmed ZIKV illness) in a placebo controlled study.
- However, immunological end-points may be considered if:
 - demonstration of clinical efficacy is unfeasible
 - an acceptable analytically validated immunologic correlate or surrogate of protection is identified (requires availability of preclinical disease models)
 - In this context, vaccine effectiveness studies will be needed.
- Reduction in congenital abnormalities and the effect on GBS will be considered exploratory outcomes, assessed post-licensure.
- A vaccine with impact against transmission is highly desirable although is not a prerequisite in the emergency use scenario.
Dose regimen and duration of protection: ...complexities of cross reactivity with other flaviruses

- Single dose, administered i.m. or s.c. preferred, but up to 2 doses (1mo apart) is acceptable
- Co-administration with other vaccines is not required for emergency use
- Protection for at least 1 year required in an emergency scenario, but multi-year protection is preferred
- If booster doses are required, must be no more frequent than annually or at time of new outbreak
 - It may be necessary to infer duration of protection, and therefore appropriate timing of a booster dose, from immune response kinetics.
 - Recommend measurement of neutralising antibody titres to ZIKV and other flaviviruses, pre- and post-vaccination, over extended follow up, to evaluate the need and timing for booster doses in primed individuals.
Product presentation, storage and stability

• A liquid formulation in mono-dose or multi-dose (5-10) presentations with a maximal dosage volume of 0.5mL for i.m. or s.c. administration is preferred.
• Shelf life of at least 24 months at -20 °C, or preferentially above, and demonstration of at least 6 months stability at 2-8°C is desired.
• Lyophilised doses of 1mL for i.m. and s.c. administration is acceptable, with a shelf life of at least 6 months at -20 °C, and stability for at least 6 hours at 2-8°C.
Feasibility of manufacture and supply

- Process and yield scalable to produce at least 100 million doses per year.
- Capacity and flexibility available to manufacture vaccine as expeditiously as possible following scale-up.
- Dosage, regimen and cost of delivery amenable to high volume and affordable supply
Next steps...

• To consider the TPP in the context of the regulatory considerations at this meeting
• To potentially revise, and then finalise the ZIKV vaccine TPP for emergency use and make this publically available by the end of June 2016
• To develop an accompanying position paper on regulatory considerations for the emergency use TPP
• To revise the TPP and proposed regulatory considerations as appropriate, with the emergence of new data.