Advanced Clinical Evaluation
Of a Zika Virus Vaccine

Kayvon Modjarrad, MD, PhD
Associate Director for Emerging Infectious Disease Threats
Military HIV Research Program / Walter Reed Army Institute of Research

6th June 2016
US DoD Zika Mission Mandate

• ZIKV Countermeasures– DoD Priority
 o Global Health Security = National Security
 o Part of a whole of US government response
 o A number of infections have occurred in US armed forces and their dependents
 o Likelihood of autochthonous transmission within the continental US
US Geographic Overlap of Imported Zika Cases with Vector Range

Potential range of *A. albopictus* and *A. aegypti*
Based on Models by Kraemer et al. (2015)

- Lines are the northern extent of the area with an average monthly minimum daily temperature of 18°C or greater.*

State Reporting
Travel-associated Cases of Zika
- No Cases Reported
- 1 Case Reported
- 2 - 9 Cases Reported
- 10 - 49 Cases Reported
- ≥ 50 Cases Reported

Approved for Public Release
WRAIR ZIKV PIV Development Timelines

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Protection</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Mouse Protection - Flavi Primed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHP Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHP Protection - Flavi Primed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 - Flavi Naïve & Primed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 - Dose Ranging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 - Schedule Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 - VRC DNA Prime / PIV Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Testing - Industry Partner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRECLINICAL

CLINICAL
Clinical Phenotypes

- ~4:1 ratio of asymptomatic to symptomatic outcome
- Predominantly mild clinical phenotype

Clinical Phenotypes

- Adverse neurologic outcomes following infection
 - GBS, ADEM
- Adverse outcomes following infection of the fetus
 - Neurologic
 - Microcephaly, Other neuro impairments (cerebellar, auditory, ocular)
 - Systemic
 - IUFD, growth restriction, placental insufficiency

Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study (Lancet 2016; 387: 1531-39)

Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study (www.thelancet.com Published online March 15, 2016)

Goals of Immunization

- **Reduce clinical burden of infection**
 - Microcephaly and other congenital disorders
 - Neurologic disorders
- **Generate herd immunity**
- **Interrupt virus transmission**
 - Mosquito, sexual, maternal
- **Public benefit**
 - Reduce suffering
 - Reduce health care resource utilization
 - Restore societal normalcy
Prior Flavivirus Vaccines

- A safe and efficacious ZIKV vaccine is plausible

- Licensed vaccines spanning multiple constructs
 - Whole virion, live virus
 - Japanese encephalitis (JE), Yellow fever (YF)
 - Chimeric, live virus
 - JE, Dengue (DEN)
 - Whole virion, inactivated
 - JE, Tick Borne encephalitis (TBE)

- Numerous candidates in pre-clinical and clinical development
Vaccine Platforms

- **There may be multiple effective platforms**, thus possibly requiring multiple TPPs to meet different needs
 - Outbreak control, Long term herd immunity, Special populations

- **Non-replicating** (whole inactivated, DNA, recombinant)
 - Proof of concept for safety, efficacy (JE, TBE)
 - Less breadth, durability, production

- **Replicating** (whole virion, chimeric)
 - Proof of concept for safety, efficacy (YF, JE, DEN)
 - More breadth, durability but more reactogenicity and concern for special populations (HIV, pregnancy, pregnancy)
 - Timing concerns with other vaccines
Zika Specific Considerations

- ZIKV strain selection (contemporary, circulating in Americas)
- Early trials: FIH safety, age de-escalation
- Safety intersecting with goal of preventing adverse neurologic and congenital outcomes
- Safety remote from vaccination
- Safety in pregnancy, immunosuppressed
- Safety and immunogenicity in naïve and primed populations
Pre/Early Clinical Development

- **Down-selection of platform and antigen design**
 - Informed by structural studies and prior Flavivirus vaccine research

- **Preclinical assessment**
 - Animal models needed to study pathogenesis and evaluate efficacy

- **Phase 1 safety and immunogenicity**
 - Zika naïve

- **Phase 2 safety/immunogenicity for regimen/dose**

- **Phase 1 or Phase 2**
 - Flavivirus naïve vs primed
 - Endemic and nonendemic regions
Advanced Clinical Development

- **First option** should remain the pursuit of well-designed randomized controlled clinical trials
 - Other adaptive trials may provide some useful information, though with potential limitations

- Irrespective of design, must consider:
 - **Controls**
 - Placebo ideal, especially when assessing incidence of GBS
 - **Endpoints**
 - Infection, disease, GBS, congenital abnormalities
 - **Surveillance**
 - Infection, all disease, severe disease, specific outcomes
 - **Populations**
 - Broad age range, children, women of child bearing age
Efficacy Trial Design

- Endemic zones (>5% incidence of infection)
 - 20% clinically symptomatic (mild)
- Double-blind, placebo-controlled
- Multiple endpoints to consider
 - Clinical – Symptomatic disease in adults/children, GBS, congenital complications
 - Virologic – Serum & urine PCR in symptomatic & asymptomatic
 - Immunologic – Seroconversion in symptomatic & asymptomatic
- Powered on incidence of confirmed disease
 - Neurologic complications constitute secondary, exploratory endpoints
Clinical & Laboratory Endpoints

• Symptomatic disease with confirmed laboratory diagnosis
 • Serum PCR, Urine PCR, Seroconversion
 • Timing of diagnosis
 • Underestimation of true incidence
 • If interested in reduction in viral load, then have to look at asymptomatic cases
 • Potentially with frequent urine PCR
 • Depending on the assay, serologic cross-reactivity may not be a major problem
 • Symptomatic disease may include any clinical manifestation
 • May include subset analyses for specific complications
Efficacy Trials in settings of low attack rates

- Prior dengue vaccine RCTs implemented in dengue endemic regions
 - SE Asia and Latin America
 - Any disease, any severity, any serotype
 - 2.5% - 4.5% average clinical attack rate

- Conducting a ZIKV vaccine trial in settings with a clinical attack rate of 20% is feasible

- Because of mild illness, will require a sophisticated active surveillance system
 - Hospital, clinic, community based
Correlates of Protection

- Correlates of protection may be needed if efficacy trials with standard clinical endpoints become infeasible.
- Most likely to comprise a threshold titer of neutralizing antibodies, per previous Flavivirus vaccines

- Yellow Fever Vaccine
 - Protective titer $\geq 1:10$
 - Effective against 7 viral genotypes

- JE and TBE Vaccines
 - Protective titer $\geq 1:10$
 - High efficacy rates

- Dengue and WNV vaccines
 - E protein induced neutralizing antibody
Immunologic Assays

- Microneutralization assay, based on qualified dengue assay.
 - ELISA based readout
 - Moderately high throughput
 - Zika feasibility established
 - Require human Zika anti-serum to further characterize
 - Cross-reactivity to dengue appears minimal

- Flow based neutralization assay
 - High-throughput
 - Zika feasibility established
 - Currently utilizing for serosurvey
 - Will harmonize with MN assay
 - Cross reactivity to dengue appears minimal
Viral Assays

- **RT-PCR**
 - Optimized for high sensitivity
 - Only tested on ZIKV spiked samples
 - Currently establishing quantitative standards

- **Sequencing**
 - Primer directed next NGS for high-throughput and deep variant analysis.
 - Optimization and fine tuning
 - Biological viral load
 - Established methods for Vero & mosquito cell lines
Detection of Zika Virus - Urine

- Detection of virus in 6 patients in blood, urine by RT-PCR
Detection of Zika Virus - Blood

Table 1
ZIKV RT-PCR results for patients with both samples collected.

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saliva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>52 (28.6%)</td>
<td>16 (8.8%)</td>
</tr>
<tr>
<td>Negative</td>
<td>35 (19.2%)</td>
<td>79 (43.4%)</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Proportion of positive samples (Y axis in %) according to the number of days after symptoms onset (X axis) for the 182 patients with saliva, blood or both samples tested by ZIKV RT-PCR.
Supporting Activities

- Solidify a diligent **active surveillance system** for Zika viral infection – symptomatic, asymptomatic

- **Cohort studies** to
 - Determine persistence of virus across multiple biologic compartments
 - Longitudinally characterize convalescent immune response in Zika infected survivors.

- Bridge human cohort studies to animal studies to identify potential humoral and/or cellular **correlate of protection**.

- **Standardize assays** to measure ZIKV viral load and specific immune responses in Flavivirus naïve and primed individuals
Vaccine Development Challenges

- Immunopathology incompletely understood
- No known correlate/surrogate of protection
- Incomplete understanding of potential immunologic interactions with a prior flavivirus exposure
- Relatively mild clinical disease with notable and unique exceptions such as GBS and congenital disorders
- No well characterized animal model of disease
Summary Points

- Much of what is known about ZIKV comes from experiments conducted in the 1950-1960s
 - Research on other Flaviviruses can be informative
 - Past and current flavivirus vaccine development efforts have demonstrated a ZIKV vaccine is plausible

- Multiple vaccine platforms may be effective for different endpoints and populations
Summary Points

- RCTs remain the gold standard
 - Modified designs can serve as alternatives to design limitations

- Epidemiologic studies of incidence, clinical attack rates, viral kinetics and correlates of protection after infection are needed to inform design and endpoints of trials

- Active surveillance systems will be key to capturing clinical endpoints, both mild and severe
Acknowledgments

WRAIR
Stephen Thomas
Rick Jarman
Ken Eckels
Robert Putnak
Leyi Lin

MHRP
Nelson Michael
Merlin Robb

DHHS
Julie Ledgerwood
Barney Graham
Hillary Marston
Bob Walker
Rick Bright

DHHS
Dan Barouch
Rafael Larocca
Peter Abbink