Novel Heterologous Prime-Boost Vaccine Strategies for HIV

Dan Barouch
April 18, 2012
Desired Features of a Next Generation HIV-1 Vaccine Candidate

• The RV144 study suggests that an HIV-1 vaccine is possible

• However, improved vaccine regimens will likely be required, and a diversity of concepts needs to continue to be explored

• Key features desired in a next generation HIV-1 vaccine include:

 ➢ Vectors that avoid high levels of vector-specific NAbs and can be combined into a heterologous prime-boost regimen

 ➢ Antigens that elicit both humoral and cellular immunity and that optimize immunologic coverage of global virus diversity
Biological Differences Among Ad5, Ad26, and Ad35 Vaccine Vectors

<table>
<thead>
<tr>
<th></th>
<th>Ad5</th>
<th>Ad26</th>
<th>Ad35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Subgroup</td>
<td>Group C</td>
<td>Group D</td>
<td>Group B</td>
</tr>
<tr>
<td>Seroprevalence</td>
<td>High</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>NAb Titers</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Cellular Receptor</td>
<td>CAR</td>
<td>CD46</td>
<td>CD46</td>
</tr>
<tr>
<td>Tropism</td>
<td>Hepatic</td>
<td>Non-hepatic</td>
<td>Non-hepatic</td>
</tr>
<tr>
<td>DC Maturation</td>
<td>Low</td>
<td>Intermediate</td>
<td>High</td>
</tr>
<tr>
<td>Innate Profile</td>
<td>Proinflammatory</td>
<td>Type I IFN</td>
<td>Type I IFN</td>
</tr>
<tr>
<td>Adaptive Phenotype</td>
<td>IFN-γ</td>
<td>Polyfunctional</td>
<td>Polyfunctional</td>
</tr>
<tr>
<td>Immunologic Potency</td>
<td>High</td>
<td>High</td>
<td>Intermediate</td>
</tr>
<tr>
<td>NHP Protective Efficacy</td>
<td>++</td>
<td>++</td>
<td>+ (phase 1)</td>
</tr>
<tr>
<td>Human Safety</td>
<td>? (phase 2b)</td>
<td>+ (phase 1)</td>
<td>+ (phase 1)</td>
</tr>
<tr>
<td>Human Immunogenicity</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

References:

International Seroepidemiology of Ad5, Ad26, Ad35, and Ad48 in Pediatric and Adult Populations (N=4,381)
Immunogenicity and Protective Efficacy of Adenovirus/Poxvirus Regimens in Rhesus Monkeys
IPCAVD-MHRP Collaboration

• 40 rhesus monkeys immunized with the following vectors expressing SIVsmE543 Gag, Pol, Env (N=8/group)
 • DNA/MVA
 • MVA/MVA
 • Ad26/MVA
 • MVA/Ad26
 • Sham

• Prime at week 0 (or week 0, 4, 8 for DNA)
• Boost at week 24
• Low-dose, heterologous, neutralization-resistant IR SIVmac251 challenges at week 52
• No vaccine regimen has previously been reported to afford protection in this highly stringent challenge model

Heterologous Vector Regimens Partially Resist Heterologous, Repetitive, IR SIVmac251 Challenges
Heterologous Vector Regimens Partially Resist Heterologous, Repetitive, IR SIVmac251 Challenges

<table>
<thead>
<tr>
<th></th>
<th># Challenges for 50% Infection</th>
<th>P-Value vs Sham*</th>
<th>Hazard Ratio (95% CI)</th>
<th>Per-Exposure Vaccine Efficacy</th>
<th>Per-Exposure Risk of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA/MVA</td>
<td>2</td>
<td>0.006</td>
<td>0.19 (0.06-0.61)</td>
<td>81%</td>
<td>0.26</td>
</tr>
<tr>
<td>MVA/MVA</td>
<td>1</td>
<td>0.56</td>
<td>0.73 (0.25-2.13)</td>
<td>27%</td>
<td>0.61</td>
</tr>
<tr>
<td>Ad26/MVA</td>
<td>3</td>
<td>0.004</td>
<td>0.17 (0.05-0.57)</td>
<td>83%</td>
<td>0.25</td>
</tr>
<tr>
<td>MVA/Ad26</td>
<td>3</td>
<td>0.006</td>
<td>0.20 (0.06-0.63)</td>
<td>80%</td>
<td>0.26</td>
</tr>
<tr>
<td>Sham</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.72</td>
</tr>
</tbody>
</table>

*Chi-square test, proportional hazard model
Ad26/MVA and MVA/Ad26 Regimens Lower Setpoint Viral Loads Following SIVmac251 Infection
Immunogenicity and Protective Efficacy of Ad35/Ad26 Regimens in Rhesus Monkeys

- We next evaluated directly whether Env was required for vaccine-mediated protection against SIVmac251 acquisition
- 40 rhesus monkeys immunized with Ad35 prime, Ad26 boost regimens expressing the following antigens
 - SIVsmE543 Gag-Pol (N=16)
 - SIVsmE543 Gag-Pol-Env (N=16)
 - Sham (N=8)
- Ad35 Prime at week 0
- Ad26 Boost at week 24
- Low-dose, heterologous, neutralization-resistant IR SIVmac251 challenges at week 52

Ad35/Ad26-SIVsmE543 Gag-Pol-Env Partially Resists Heterologous, Repetitive, IR SIVmac251 Challenges
Ad35/Ad26-SIVsmE543 Gag-Pol-Env Partially Resists Heterologous, Repetitive, IR SIVmac251 Challenges

<table>
<thead>
<tr>
<th></th>
<th># Challenges for 50% Infection</th>
<th>P-Value vs Sham*</th>
<th>Hazard Ratio (95% CI)</th>
<th>Per-Exposure Vaccine Efficacy</th>
<th>Per-Exposure Risk of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gag-Pol</td>
<td>2</td>
<td>0.46</td>
<td>0.71 (0.29-1.74)</td>
<td>29%</td>
<td>0.44</td>
</tr>
<tr>
<td>Gag-Pol-Env</td>
<td>4</td>
<td>0.002</td>
<td>0.20 (0.07-0.55)</td>
<td>80%</td>
<td>0.20</td>
</tr>
<tr>
<td>Sham</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.53</td>
</tr>
</tbody>
</table>

*Chi-square test, proportional hazard model
Ad35/Ad26 Regimens Lower Setpoint Viral Loads Following SIVmac251 Infection

PEAK (DAY 14)

- **Gag-Pol**: Log SIV RNA
- **Gag-Pol-Env**: Log SIV RNA
- **Sham**: Log SIV RNA

SETPOINT (DAY 84)

- **Gag-Pol**: Log SIV RNA
- **Gag-Pol-Env**: Log SIV RNA
- **Sham**: Log SIV RNA

death
Protective Efficacy of Heterologous Ad26/MVA and Ad35/Ad26 Regimens in Rhesus Monkeys

- Ad26/MVA and Ad35/Ad26 regimens afforded protection against acquisition of stringent, heterologous, neutralization-resistant SIVmac251 challenges with per-exposure VE=80%

- Ad26/MVA and Ad35/Ad26 regimens also resulted in 2 log reductions in setpoint viral loads in infected animals

- Env (when added to Gag-Pol) appears critical for acquisition effect against SIVmac251

- Different immune correlates for blocking acquisition of infection compared with virologic control

- Clinical studies evaluating Ad26/MVA regimens expressing HIV-1 mosaic antigens planned
What are Mosaic Antigens?
Algorithm to Generate a $k=4$-Valent Mosaic Vaccine

Input: Single clade or M group

Iterations improve the populations, improve the cocktail

Fischer et al. Nat. Med. 2007; 13:100-106
The Ad26 mosaic vaccine yielded many more Gag, Pol, and Env (A) epitope-specific T lymphocyte responses as well as (B) numbers of epitope response regions to PTE peptides than did the Ad26 M consensus, clade B + clade C, or optimal natural clade C vaccines.

Ad Vectored Mosaic Env Antigens Elicit Noninferior ELISA and NAb Responses Compared with Consensus or Natural Sequence Env Antigens in Rhesus Monkeys

The mosaic vaccine elicited comparable ELISA and Tier 1 C (MW965.26) NAb titers ($P = NS$) and increased Tier 1 B (SF162.LS) NAb titers compared with the M consensus and optimal natural C clade vaccine ($P = 0.02$)

HIV-1 Vaccine Clinical Development Strategy

1. Develop “prototype” novel Ad vectors expressing a single test antigen (VRC EnvA) for a rapid assessment of vector safety and immunogenicity in humans

2. Develop “complete” vaccine products involving optimal heterologous prime-boost regimens expressing multiple HIV-1 antigens (mosaic Gag/Pol/Env) for clinical development
Conclusions

• Ad26/MVA regimens afford partial protection against acquisition and virologic control following heterologous, neutralization-resistant SIVmac251 challenges in rhesus monkeys

• Stable Env gp140 trimers induce substantially higher NAb responses than corresponding gp120 monomers in guinea pigs

• Preclinical studies are in progress to assess whether Env trimer protein boosts augment protective efficacy

• A prototype Ad26.ENVA.01 vector has proven safe and immunogenic in humans in both the U.S. and sub-Saharan Africa

• We propose clinical development of Ad26/MVA expressing HIV-1 mosaic antigens, with or without a stable Env trimer boost
Acknowledgements

• Beth Israel Deaconess, Harvard Medical School
 – Peter Abbink
 – Kara Brandariz
 – Rebecca Dilan
 – Justin Iampietro
 – Hualin Li
 – Jinyan Liu
 – Diana Lynch
 – Lori Maxfield
 – Lauren Peter
 – Elizabeth Rhee
 – Raphael Dolin
 – Michael Seaman

• Brigham & Women’s, Harvard Medical School
 – Lindsey Baden
 – Jane Kleinjan
 – Kathleen Krause
 – Alka Patel
 – Robert Tucker
 – Stephen Walsh
 – Daniel Worrall

• New England Primate Research Center
 – Angela Carville
 – Keith Mansfield

• LANL
 – Bette Korber

• Children’s Hospital Boston, Harvard Medical School
 – Bing Chen

• Crucell Holland BV
 – Jaap Goudsmit
 – Sandra Kik
 – Maria Grazia Pau
 – Jerry Sadoff
 – Hanneke Schuitemaker
 – Mo Weijtens
 – Gerrit Jan Weverling
 – Jort Vellinga

• Safety Monitoring Committee
 – Paul Goepfert
 – Michael Keefer
 – Peter Wright

• MHRP
 – Jerome Kim
 – Mary Marovich
 – Nelson Michael
 – Merlin Robb

• Ragon Institute
 – Bruce Walker

• CAVD, Gates Foundation
 – Nina Russell

• DAIDS, NIAID, NIH
 – Alan Fix
 – Michael Pensiero

• NIAID
 – Vanessa Hirsch