Immunological Basis of Current and Future Influenza Vaccines

Jacqueline Katz
Influenza Division
Centers for Disease Control and Prevention

8th WHO meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses
August 23-24 2016
Currently Licensed Seasonal Influenza Vaccines

- **Inactivated vaccines**
 - Split, subunit, virosomal, whole virus
 - Trivalent and quadrivalent
 - Egg- or cell-culture-based
 - Standard and high dose
 - Adjuvanted
 - Intramuscular or intradermal delivery

- **Live attenuated**
 - Quadrivalent
 - Egg-based
 - Intranasal

- **Recombinant HA**
 - Trivalent
 - Baculovirus platform
 - Intramuscular
Multiple immune effector mechanisms contribute to protection from influenza infection

- Neutralizing anti-HA (globular head) antibodies prevent infection; serum and mucosal

- Other responses including anti-NA, anti-M2e and T cell responses reduce severity and duration of disease
 - Reduced virus load

Li, Rappouli and Xu. Curr Opin Immunol 2013
Current vaccines target the stimulation of neutralizing antibodies against the globular head of HA - primary mediators of protection

- Neutralizing Abs target epitopes in the globular head around the receptor binding site
 - Block virus binding to receptor

- Hemagglutination-inhibition (HI) assay is a surrogate assay for the detection of neutralizing antibodies

- Microneutralization (MN) or Virus Neutralization (VN)
 - Detects Ab that bind around globular head and block virus attachment/entry
 - More sensitive than HI for detection of low titered seroconversion

- Single Radial Hemolysis (SRH)
 - Detects antibodies that bind virus bound to RBC in the presence of C results in C-mediated lysis
Immune Correlates of Protection against Influenza

- An HI titer of ≥ 40 is associated with a 50% or more reduction in risk of influenza infection or disease in population
 - Mostly from natural or experimental infection studies in younger adults
- Meta-analyses consistently support this threshold titer (deJong et al., 2003; Coudeville et al., 2010)
 - Higher titers are associated with 80-90% reduction
- “Seroprotective” titer (HI≥ 40) has been used as a vaccine immunogenicity criteria and standard for licensure (EMA and FDA)
- HI thresholds in children
 - Higher post-TIV HI titers ($=110$) were associated with 50% probability of protection in children (Black et al. PIDJ 2011)
 - HI titer of 40 derived from TIV immunization was associated with 55% protection against PCR-confirmed B/Victoria infection (Ng et al., JID 2014)
- MN and SRH titer thresholds
 - MN titer of ≥ 40 or 160 was associated with $\sim 50\%$ protection against seasonal influenza A virus infection (Tsang et al., JID 2014; Verschoor et al., PLoS One 2015)
 - For SRH, a $\geq 25 \text{mm}^2$ zone of lysis is considered a 50% protective titer (Delem et al., JID 1978)
2014-15 Post-Vaccination HI Antibody Responses to Circulating Antigenically Drifted H3N2 3C.2a and 3C.3a Viruses Relative to A/Texas/50/2012 Vaccine Virus

Data from WHO CCs and ERLs - Vaccine Consultation, Feb 2015
Serum and Nasal Immunoglobulin Responses

- The serum anti-HA antibody response to influenza vaccination is predominantly IgG, particularly IgG1
 - Lower levels of IgM and IgA are detected
- Natural priming is a major factor that affects the magnitude of the IgG and IgA response
- Vaccine induced IgA and IgG in the respiratory tract is associated with resistance against subsequent infection
 - LAIV elicits stronger nasal wash IgA response and is associated with resistance against infection
 - IIV elicits stronger nasal wash IgG, derived from plasma by transudation, and is associated with reduction in illness

<table>
<thead>
<tr>
<th>Immunity induced by</th>
<th>Protection against</th>
<th>Antibody associated with resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated vaccine</td>
<td>Virus replication Illness</td>
<td>Nasal wash IgA</td>
</tr>
<tr>
<td>Live vaccine</td>
<td>Virus replication Illness</td>
<td>P < 0.025</td>
</tr>
</tbody>
</table>

*NS, Not significant

Clements et al J Clin Micro 1986
NA inhibition antibodies

- Antibodies to NA inhibit virus release from infected cells

- Serum NA inhibition (NI) titers correlate with reduced virus replication and disease symptoms (e.g. Murphy et al., NEJM 1972; Couch et al., JID 1974; Kilbourne et al., J. Virol 1975)

- Vaccine-induced serum NI titers were significantly correlated with resistance to illness or virus replication (Clements et al., J Clin Micro 1986)

<table>
<thead>
<tr>
<th>Immunity induced by</th>
<th>Protection against</th>
<th>Antibody associated with resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated vaccine</td>
<td>Virus replication</td>
<td>Serum NI</td>
</tr>
<tr>
<td></td>
<td>Illness</td>
<td>P < 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P < 0.003</td>
</tr>
<tr>
<td>Live vaccine</td>
<td>Virus replication</td>
<td>Serum HI</td>
</tr>
<tr>
<td></td>
<td>Illness</td>
<td>P < 0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

*NS, not significant; Volunteers selected to have low HAI antibody
NI Ab is an Independent Correlate of Protection Against Infection with A(H3N2) in Vaccinated Adults

Monto et al., JID 2015

<table>
<thead>
<tr>
<th>4-fold rise in titer by</th>
<th>IIV Recipients (n=178)</th>
<th>LAIV Recipients (n=227)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI assay</td>
<td>137/178 (77%)</td>
<td>48/227 (21%)</td>
</tr>
<tr>
<td>MN assay</td>
<td>35/52 (67%)</td>
<td>10/60 (17%)</td>
</tr>
<tr>
<td>NI (ELLA) assay</td>
<td>65/178 (37%)</td>
<td>14/227 (6%)</td>
</tr>
</tbody>
</table>

- NI antibody responses were detected in a higher proportion of IIV than LAIV recipients

- A 2-fold increase in NI titer was associated with a IIV and LAIV effectiveness of 48% and 24%, respectively, in preventing A(H3N2) infection
Generation of Antibody Secreting Cells and Memory B cells

Fig. 3 Generation of antibody-secreting and memory B cells in the germinal center. B cells are activated following encounter with professional antigen-presenting cells displaying viral antigen. Cognate interactions with T follicular helper cells promote the formation of germinal centers in which somatic hypermutation, affinity maturation, and the generation of antigen-secreting cells and memory B cells occur.

Chiu et al., 2014

ELISPOT measures ASC and memory B cells
Effector B cell Responses Following Immunization with Seasonal LAIV or TIV

- Effector IgG ASC responses are detected in a majority of adults and older children vaccinated with LAIV or TIV.
- Elevated effector IgG ASC were detected with significantly higher frequency in LAIV vaccinated adults compared with HI seroconversion.
- In adults, IIV induced a greater quantity of ASC than did LAIV.
 - LAIV induced greater relative levels of IgA ASC.

(Sasaki et al., J Virol 2007)
(Sasaki et al., JID 2014)
CD4+ and CD8+ T Cell Immunity Against Influenza

CD8+ T cells:
- Direct lysis of virus infected cells
- Produce antiviral cytokines/chemokines

CD4+ T cells:
- Aid in activation of APC, CD8+ T cells and B cells
- Produce antiviral cytokines
- Activate innate immune cells to produce more cytokines/chemokines

ELISPOT measures IFNγ produced by T cells

Altenburg et al., Vaccine 2015
Cellular immune correlates of protection

 - Pre-challenge levels of CD4+ T cell IFN-γ responses correlated with reduced virus shedding and less severe disease
 - T cells predominantly recognized NP and M1 epitopes

- Sridhar et al; Nat Med 2013: Natural infection with A(H1N1)pdm09
 - Among seronegative patients, pre-existing CD8+ IFN-γ+IL-2- responses to conserved cross-reactive viral epitopes (NP, M1, PB1) were significantly inversely correlated with a reduced disease severity

![Graphs showing correlations between immune responses and disease outcomes]
CD4 and CD8 T Cell Responses to Vaccination

- Limited evidence of CD8+ IFN-γ T cell stimulation by IIV, particularly in adults
- Vaccination of children (5-9 yrs) with LAIV increased numbers of both CD4+ and CD8+ IFN-γ T cells
- LAIV elicited substantial IFN-γ T cell responses in young children (6 - <36 mo.)
- AT cell threshold of ≥ 100 SFC/10^6 PBMC was associated with 80% probability of protection against infection with A(H3N2)
- TIV elicited CMI responses in children primed by previous infection

He et al., J Virol, 2007

Forrest et al., Clin Vacc Immunol 2008
A Subset of Peripheral Blood CD4 Helper T cells (ICOS+) are Correlated with Antibody Responses to Inactivated Vaccine

- T follicular helper (fh) cells in lymph nodes and tonsils provide specialized help for B cells
 - Express chemokine (CXCR5, CXCR3) and inducible costimulator (ICOS) important for migration and function
 - A subset of blood CD4+ T cells have functional characteristics of Tfh cells

- Increase in blood ICOS+ CXCR3+CXCR5+ CD4 T after seasonal IIIV correlated with rising HI and VN titers in adults and children (Bentebibel et al., Sci Trans Med, 2013)

- Increase in *virus-specific* ICOS+ CXCR5-IL-21+ CD4 T cells stimulated by one dose of adjuvanted H5N1 vaccine were correlated with increased HI titers after second dose (Spensieri et al., PNAS, 2013)
 - Surrogate for vaccine immunogenicity
Comparison of Immune Responses to IIV and LAIV

<table>
<thead>
<tr>
<th>Immune mediator</th>
<th>Inactivated vaccine</th>
<th>Live attenuated vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum HI antibody</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Serum NI antibody</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Antibody secreting cells</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Nasal IgA</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>CD4 T cells</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>CD8 T cells</td>
<td>-/+</td>
<td>+</td>
</tr>
</tbody>
</table>

Other Limitations:
- Reduced antibody responses to IIV and effectiveness in older adults
- Potential for antibody waning over influenza season
- Potential for blunting of response with frequent vaccination
- Reduced LAIV effectiveness against H1N1pdm09
- Limited cross-protection
USVaccine Effectiveness (VE) Network, 2014-15: Adjusted VE against Influenza A/H3N2 by Age Group and Vaccine Type

Zimmerman et al., 2016, CID in press
Adjuvants

- Oil in water emulsion adjuvants (MF-59 and AS03) contain:
 - Squalene as oil phase
 - Surfactants as emulsifying agents
 - Buffer to provide H₂O phase
 - α-tocopherol (in AS03) as immunostimulant
 - Enhances cytokine production and antigen uptake by monocytes

- Temporal co-localization of adjuvant with antigen required for action

- Enhanced T cell (Th1>Th2) and antibody (IgG1>IgG2)

- Other adjuvants in clinical trials
 - Toll like receptors (TLR) agonists e.g TLR 3, 5 or 7/8
Mode of Action

Injection Site
1. MF59 recruits immune cells

- Recruitment of immune cells
- Differentiation into antigen-presenting cells (APCs)

Lymph Node
3. T-cell activation and B-cell expansion

- T-cell activation
- B-cell expansion
- Antibody release
- Neutralizing flu-specific antibodies

Vaccine-specific Responses
- Increased APC migration
- Increased antigen reuptake

References
- Calabro et al., Vaccine, 2011.

Courtesy of Ethan Settembre
Oil in water adjuvants increase affinity and breadth of antibody response

- Whole genome phage display libraries map antibody response on HA
 - Demonstrate greater breadth of neutralizing Ab elicited by adjuvanted vaccines

- Surface Plasmon Resonance (SPR) demonstrates increased IgG binding affinity

(Khurana et al., Sci Trans Med 2010)
Antigen Targets of Next Generation Influenza Vaccines

- **NA**: less variable than **HA**
- **M2e**: more conserved, Ab-mediated protection
- **NP**: highly conserved, induces CMI
- **M1**: highly conserved, induces CMI
- **PB1, PB2**: highly conserved, induce CMI
- **HA stalk**: highly conserved
- **HA head**: enhance breadth of response
Next Generation Influenza Vaccine Strategies that Target More Broadly Reactive Antibodies

- COBRA: Computationally optimized broadly reactive antigen – HA head

- HA head/stalk chimeras incorporated into IIIV and LAIV

- "Headless" HA

- M2 ectodomain

- Virus-like particles

- Broadly neutralizing Abs against HA globular head; HI/VN activity

- Broadly neutralizing Abs against HA stalk region; FcYR Ab-dependent cell cytotoxicity (ADCC)

- Broadly neutralizing Abs against HA stalk region; ADCC functionality

- Non-neutralizing, broadly cross-reactive Abs; ADCC functionality

- NA antibodies that are more cross-reactive within subtype
Next Generation Influenza Vaccine Strategies that Target Enhanced CMI and Mucosal Responses

- Recombinant protein or peptide based vaccines
 - Improved priming & CMI against targeted T (NP, M1) and B cell (HA) epitopes

- Vectored Vaccines
 - MVA and Ad5 vector-based
 - Improved T cell (NP, M1) and mucosal Ab (HA) responses; neutralizing Abs against HA
 - LAIV
 - ΔM2 and ΔNS strategies
 - Improved T cell and mucosal responses; neutralizing Abs against HA

- DNA/RNA
 - DNA prime, IIV or vectored vaccine boost
 - Improved priming, CMI and broadly neutralizing Abs
Conclusions

- Vaccination with currently licensed influenza vaccines target the stimulation of strain-specific neutralizing anti-HA antibody responses that offer limited protection against emerging variant viruses
 - Responses are highly dependent on vaccine type, age, priming and vaccination history

- Current vaccines also stimulate other desirable immune responses but to a limited degree
 - Responses differ by vaccine type and priming history

- Development of next-generation influenza vaccines should take advantage of new understanding of components of CMI, immune cell repertoire and effect of prior exposure to influenza

- This will require an understanding of immune correlates which will differ for each vaccine type
 - Require robust and standardized assays to measure immune endpoints
Thank You

Jacqueline Katz, PhD
JKatz@cdc.gov

Acknowledgements

CDC
- A Fry
- B Flannery
- J Bresee
- R Garten
- J Stevens
- D Jernigan

GISRS
- WHO CCs and ERLs
- Othmar Engelhardt