Hemagglutinin-stalk specific antibodies: How to induce them and how to measure them

Florian Krammer
Icahn School of Medicine at Mount Sinai
May 5th 2014

2nd WHO Integrated Meeting on development and clinical trials of Influenza vaccines that induce broadly protective and long-lasting immune responses

Antibodies against the influenza virus HA stalk domain

Antibodies against the stalk domain:

- Rare and not induced/boosted upon regular seasonal vaccination
- Have been isolated from humans and mice
- Cross-reactive between HAs of different subtypes
- Broad neutralizing activity
 - in vitro
 - in passive transfer studies in animals (ferrets, mice)
- Alternative mechanisms of neutralization +ADCC +CDC

Influenza virus hemagglutinin

Globular head domain: mediates binding to host receptors
Stalk domain: mediates fusion of viral and endosomal membranes

The HA stalk is conserved among group 1, among group 2 HAs and among influenza B HAs
Can protective levels of broadly neutralizing antibodies be induced by vaccination?

Chimeric hemagglutinins (cHAs)

Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

Control groups:
- cH9/1 DNA + BSA + BSA
- matched vaccine (pos. contr.)
Induction of protective levels of stalk-reactive antibodies using chimeric HA constructs in mice

Control groups:
- cH9/1 DNA + BSA + BSA
- matched vaccine (pos. contr.)

Vaccination with cHA constructs protects from pH1N1 (A/Netherlands/602/09) challenge

Group 1-Group 2 cross-reactivity is not sufficient to protect from virus challenge

Similar results for A/PR/8/34 H1N1 and A/FM/1/47 challenges

Krammer and Pica et al., JVI, 2013
Conclusions from the animal studies

• A broadly protective immune response to the stalk domain can be induced by vaccine constructs in mice and ferrets
• Chimeric HA constructs protect mice and ferrets from challenge with heterologous and/or heterosubtypic virus strains
• Chimeric HA vaccination impacts on transmission (unpublished)
• The observed protection is antibody mediated
• Good protection from H7 challenge and strong reactivity to H7 HA of H7N9 origin, reduction in lung titers for H10 and good protection from challenge with H6N1
• A trivalent vaccine with an group 1, group 2 and influenza B stalk component will be needed

How can stalk-reactive antibodies be measured?

• Quantitative endpoint titer ELISAs using cHA e.g. ch6/1
 – If cHAs were used for vaccination head domain of ELISA substrate has to be different from head domain in the vaccine
• Neutralization assays using cHA viruses
 – Irrelevant NA (e.g. N3) needed
 – Microneutralization assay
 – Plaque reduction assay
 – Pseudotyped particle entry assay
• Passive transfer into mice and challenge with cHA viruses
 – Catches in vivo relevance
 – FcR-humanized mice can be used to optimally measure ADCC

Support for a cHA based universal influenza virus vaccine from H5N1 clinical trials

Induction of stalk-reactive antibodies by H5N1 vaccination – endpoint titer ELISA

In collaboration with Rebecca J. Cox, UiB
Passive transfer experiments in mice with day 0 and day 42 H5N1 sera and cH9/1N3 challenge

** p=0.0036
*, p=0.0243
*, p=0.0144

Conclusions

• Stalk-based vaccine constructs protect from heterologous and heterosubtypic challenge in animal models
• Assays to measure induction of stalk-reactive antibodies in sera are readily available
• H5N1 vaccination induces high levels of stalk-reactive antibodies in humans providing support for a cHA based vaccine

Acknowledgements

• Peter Palese
• Raffael Nachbagauer
• Teddy John Wohlbold
• Irina Margine
• Natalie Pica
• Rong Hai
• Ariana Hirsh

• Adolfo García-Sastre
• Randy Albrecht
• Rebecca Cox/UiB

Austrian Science Fund