TB Vaccine Development Status:
Review of Critical Issues and
Selected Candidates in
Phase 2 or Phase 3

22 June 2017
WHO PD-VAC
Geneva, Switzerland

Lewis K. Schrager, M.D.
North Bethesda, MD
USA
Outline

• Update of global tuberculosis (TB) burden, including drug-resistant TB
• Review of potential target patient populations and clinical endpoints for TB vaccines
• Review the status of four selected TB vaccine candidates in advanced (phase 2 – phase 3) clinical development
• WHO-IVR TB vaccine development workshop, Geneva, 24 May 2017: summary of key issues
TB: Key Statistics (2015)
WHO Global TB Report 2016

- **10.4 million incident TB cases**
 - 5.9 million (56%) men
 - 3.5 million (34%) women
 - 1 million (10%) children
- **1.8 million TB deaths**
 - Kills more people than any other single infectious agent
 - 400,000 TB deaths among HIV+’s (#1 opportunistic killer)
- **580,000 new drug-resistant (DR) TB cases**
 - 480,000 multi-drug-resistant (MDR-TB)
 - 100,000 rifampicin-resistant (RR-TB)
 - ~10% of MDR = extensively drug-resistant (XDR-TB)
 - 45% of DR-TB came from India, China, Russian Federation
 - Extremely expensive to treat
 - MDR: approximately 10x more expensive than drug sensitive cases
 - XDR: approximately 25-32x more expensive than drug sensitive cases
Projected acceleration of TB incidence decline to target levels (World Health Assembly 2014)

Current global trend: -1.5%/year

-10%/year by 2025

-5%/year

-17%/year

Optimize use of current & new tools emerging from pipeline, pursue universal health coverage and social protection

Introduce new tools: a vaccine, new drugs and shorter regimens for treatment of active TB and latent infection, a point-of-care test
Target Patient Populations: Adolescents and Adults

• The major source of *Mycobacterium tuberculosis* (Mtb) transmission
• Preventing pulmonary TB disease = the key to preventing Mtb transmission
 – Necessary to reach the End TB 2035 goals
 – The most effective strategy to prevent Mtb infection and disease in infants and children*

Harris R, et. al., Human Vaccine Immuno 2016
Target Patient Populations: Infants

• Not an important source of Mtb spread
• Efforts ongoing to improve upon BCG
 – Improving safety:
 • BCG contraindicated in immunosuppressed patients or persons with congenital or acquired immune deficiencies
 – Improving efficacy: defining appropriate endpoints = a complex undertaking
 • For new, unmodified BCG vaccines, demonstrating a “take” (TST conversion, local scarring) is sufficient
 • For novel BCG-replacement vaccines, need to demonstrate substantial, clinically significant benefit
 • How to deal with issue of possible non-specific benefits of BCG vaccination?
 – Policy issue: justifying the use of more costly BCG replacement vaccines
Major TB Vaccine Clinical Trial Endpoints (Adolescents, Adults)

1) Prevention of pulmonary TB disease: PoD

– Key public health goal; most widely acceptable TB vaccine registration endpoint

– Issues for phase 2b trials

 • Large, lengthy and costly, even in high TB burden areas
 – IGRA+/- 7000+ participants, 3 year follow-up
 – IGRA+ 3500 participants, 3 years follow-up

 • Vaccine ability to prevent disease among LTBI and non-LTBI vaccinees may differ (needs to be assessed in clinical trials)
Major TB Vaccine Clinical Trial Endpoints (Adolescents, Adults)

2) Prevention of sustained Mtb infection: PoI

- Endpoint utilized in phase 2 “proof of biological activity” trials in higher risk populations
 - “Biological activity” = evidence beyond immunogenicity
 - A strategy to reduce risk of phase 2b trials given lack of immunological correlate of protection, functional assay or human challenge
 - Not intended as the ultimate vaccine indication
- Mainly applicable to Mtb uninfected adolescents in TB endemic areas at high risk of acquiring Mtb
- Use as a licensable indication controversial
 - TB disease occurs in ~10% of Mtb-infected persons
 - Hypothetical concern: might PoI only occur in the 90% of Mtb-infected persons who never will develop TB disease?
3) Prevention of recurrent TB disease: PoR

- Goal: prevent recurrence of TB disease in persons after completing drug treatment
- Opportunity for a more efficient efficacy trial (smaller sample size and duration)
 - 3 to 5 fold higher incidence of future TB after completing treatment for initial case of TB
 - 70%-90% of recurrences occur during first year following treatment completion (efficient efficacy trial scenario)
- Potentially a phase 2 “proof of biological activity” endpoint leading to a phase 2b PoD trial
- Potentially a licensable indication in a formal phase 3 trial
Global Clinical Pipeline of TB Vaccine Candidates

Phase 1
- MTBVAC
 - Biofabri, TBVI, Zaragosa
- Ad5 Ag85A
 - McMaster, CanSino
- ChAdOx1.85A/MVA85A
 - Oxford, Birmingham
- MVA85A/MVA85A (ID, Aerosol)
 - Oxford
- TB/FLU-04L
 - RIBSP

Phase 2a
- RUTI
 - Archivel Farma, S.L
- H1/H56: IC31
 - SSI, Valneva, Aeras
- H4: IC31
 - Sanofi Pasteur, SSI, Aeras
- ID93 + GLA-SE
 - IDRI, Wellcome Trust

Phase 2b
- DAR-901
 - Dartmouth
- VPM 1002
 - SII, Max Planck, VPM, TBVI
- M72 + AS01E
 - GSK, Aeras

Phase 3
- Vaccae™
 - Anhui Zhifei Longcom

Viral Vector
- Protein / Adjuvant
- Mycobacterial – Whole Cell or Extract

Revised on February 2, 2017
Please note: Information is self-reported by vaccine sponsors

Courtesy of Aeras
TB Vaccine Candidate in Phase 3:
Vaccae™ (*M. vaccae*)

Background
- Chinese-developed product: Anhui Zhifei Longcom
- Registered in China as adjunct immunotherapeutic for active TB disease (6 doses required)

Description
- Heat-killed *M. vaccae*
- High pressure homogenized lysate
Vaccae™: Development Status

• Currently in Phase 3 trial in China in TST+ participants
 – Endpoint: prevention of active pulmonary TB disease
 • Clinical endpoint determination
 • Symptoms + CXR
 • Sputum assessment (GeneXpert) obtained non-systematically (not part of endpoint definition)
 – Enrollment: 10,000 TST(+), aged 15-65 years
 – Dosing: 6 doses
• Data initially expected in late 2016
• Plan for data release currently not clear
• Registration intentions outside of China unclear
 – Will require additional Phase 3 efficacy studies
 – Will require reduction in number of doses from the current 6
TB Vaccine Candidates in Advanced Phase 2: DAR-901

• Background
 – Developed at Geisel School of Medicine, Dartmouth U. (Ford von Reyn)

• Description
 – Heat-inactivated *M. obuense*
 – DAR-901 represents broth-grown, scalable variant of SRL172 (agar-grown)
 – SRL172: only TB vaccine to have data reported from a phase 3 trial (2001-2008)
SRL172: Phase 3 Study Review (1)

- Endpoints
 - Primary: prevention of disseminated TB
 - Secondary
 - Prevention of definite TB (including disseminated and pulmonary)
 - Prevention of probable TB (including disseminated and pulmonary)

- Study description
 - 2,013 subjects, 1:1 randomization
 - 5 ID doses over 12 months
 - Followed every 3 months, median 3.3 years
SRL172: Phase 3 Study Review (2)

• Results
 – Safe, immunogenic
 – Hazard ratios for endpoints
 • Disseminated TB: 0.52 (95% CI 0.21-1.34); 7 (vaccine) to 13 (placebo) cases (p = 0.16)
 • **Definite (culture-confirmed) TB**: 0.61 (95% CI 0.39-0.96); 33 (v) to 52 (p) cases (p = 0.03)
 • Probable TB: 1.17 (95% CI 0.76-1.80); 48 (v) to 40 (p) cases (p = 0.46)

• Study terminated after 7 years by data safety monitoring board
 – Significant protection vs. definite TB (39% reduction in culture-confirmed TB)
 – Primary endpoint: 50% reduction (underpowered to reach statistical significance; 70 cases needed)

• SRL172 development terminated due to non-scalability
DAR-901

• Development status
 – Safe, immunogenic in phase 1 dose-escalation study (3 dose ID regimen)
 – Phase 2b study for prevention of Mtb infection (PoI) in BCG-vaccinated, IGRA-negative Tanzanian adolescents
 • N = 650; ages 13-15
 • Powering assumptions
 – Reduction of new Mtb infection (IGRA- to IGRA+) by 50%
 – 7% new Mtb infections/year
 – 80% power, Type 1 error 5%
 • 3 doses (0, 2, 4 months)
 • Status: initiated March 2016 (fully enrolled); fully vaccinated (February 2017); estimated completion December 2018
 • Funding: Global Health Innovative Technology (GHIT) Fund, Japan
 – Ultimate intended indication: PoD (adolescents, adults)

• Development plan
 – PoI phase 2b study completion: 2018
 – Initiate 5 year phase 3 PoD trial: 2019 (seeking pharma partner +- GHIT, for funding)
 – Licensure and subsequent WHO prequalification: 2025
VPM 1002

• Background
 – Originally developed by Stefan Kaufmann, Max Planck Institute
 – Now being developed by Vakzine Projekt Management (VPM), Hannover, Germany and Serum Institute of India (SII), Pune, India

• Description:
 – Recombinant BCG
 – Listeriolysin gene inserted
 • Enhances BCG immunogenicity
 • Mechanism debated: induction of apoptosis and autophagy, leading to better immune presentation, hypothesized
 – Urease gene inactivated (lowers pH in macrophage, optimizing listeriolysin activity)
VPM 1002: Development Status

• In Phase 2b trial vs. BCG in HIV+ and HIV- infants <12 days old (South Africa)
 – Endpoints: safety; immunogenicity
 – N = 416
 – Primary data analysis: Sept 2017; completion date December 2017

• Phase 2b-Phase 3 trial for prevention of TB disease recurrence (PoR) in adults planned for India
 – Initiation date: July 2017
 – Double blind, randomized, placebo controlled
 – N = 2,000 persons completing TB treatment (1,000 persons per arm)
 – Powering assumptions (Phase 3 trial)
 • 50% reduction in recurrence during the 12 months after vaccination
 • 5% recurrence in placebo arm in 12 months after treatment completion
 • 80% power at 5% significance level
 – Potential for transition to phase 3 trial after safety assessment of first 200 enrollees

• Funded by Serum Institute of India
VPM 1002 - Key Issues

• Potential for most rapid licensure of a new TB vaccine
 – If phase 3 trial initiated for PoR in 2017-2018, could have potential licensure submission by 2020 – 2021
 – Licensure pathway for VPM 1002 BCG replacement indication in infants is under discussion
 • WHO communicated to VPM-SII that evidence of “take”, as per WHO requirement for an unmodified BCG vaccine, would not be sufficient for this new, recombinant vaccine
 • Further discussion required re:
 – Safety, efficacy criteria supporting licensure
 – Defining claims of improved safety, efficacy over BCG
 – Value assessment, justifying use despite increased cost over BCG

• Also being developed as a replacement for BCG treatment of bladder cancer

• Liquid culture manufacture more scalable; potential to reduce concerns over future BCG shortages
H4:IC31

• Background
 – Sanofi Pasteur product
 – Developed in collaboration with Aeras, Statens Serum Institute (SSI)

• Description
 – Fusion protein
 • Ag85B (mycolyl transferase; necessary for maintaining cell wall integrity)
 • TB 10.4 (virulence factor; member of ESAT-6 protein family)
 – IC31 adjuvant (Valneva)
 • T-cell stimulator (TLR9 agonist)
H4:IC31 – Development Status

• In phase 2 “proof of biological activity” trial
• Endpoint: Pol (QFT conversion) in high risk, IGRA- South African adolescents
• BCG revaccination and placebo comparator arms
• Fully enrolled (n=990, 330/arm)
• Power assumptions
 – 50% reduction in Mtb infection (QFT-GIT conversion)/yr. among vaccinated (H4; BCG) compared to placebo
 – 10% incidence of primary Mtb infection/yr.
 – Power 80%; 10% Type 1 error rate (1 sided)
• Primary analysis (64 conversions and 15 month median follow-up): 3Q2016
 – Study continued
 – Results remain blinded
• Final analysis: Q4 2017/Q1 2018
H4:IC31 - Key Issues

• If PoI endpoint targets reached, would open door to a possible phase 2b trial for a PoD indication

• BCG comparator arm included
 – Will provide data on effect of BCG revaccination on preventing Mtb infection in high risk, IGRA-adolescents in Cape Town
WHO-IVR TB Vaccine Workshop
24 May 2017

• WHO-IVR intention to increase activity in TB vaccine arena due to pressing need
 – Define preferred product characteristic (PPC) criteria for TB vaccines
 – Essential to advocate for increased TB vaccine research funding

• Emphasis on necessity for TB vaccine development to meet END TB 2035 goals
 – Decrease from current 100 cases/100K population to 10 cases/100k population
 – PoD indication represents fastest way to impact the TB epidemic
• Recognition of a sluggish TB vaccine pipeline (2010-present)
 – Need new tools, new approaches (e.g., human challenge model)
 – Need to diversify vaccine strategies (e.g., persistent vaccines; aerosol delivery)
 – Need to identify, advance and learn from promising new approaches (e.g., rCMV vaccine in preclinical development)

• Important to manage expectations
 – PoD vaccine efficacy as low as 20% could be cost effective if targeted at adolescents and adults
 – Advanced clinical trials of lower efficacy vaccines will be costly

• Importance of vaccine as a counter to spread of DR-TB strains
 – Need to explore potential drug-vaccine integrated approaches against drug-resistant TB

• WHO role: serve as “honest broker” to help coordinate the field
Acknowledgements

• Sharon Chan, Aeras
• Dara Erck, Aeras
• Ann Ginsberg, Aeras
• Leander Grode, VPM
• Ford von Reyn, Dartmouth U.
• Johan Vekemans, WHO-IVR
• Birgitte Giersing, WHO-IVR
• WHO TB-VAC members