A review of the RSV vaccine landscape
Acknowledgements

GSK/Okairos
 Ripley Ballou
 Jean-Francois Toussaint

Novavax
 Greg Glenn

MedImmune
 Filip Dubovsky

NIAID/NIH/VRC
 Barney Graham

NIAID/NIH/LID
 Peter Collins
 Ursula Buchholz
Obstacles to Successful RSV Vaccine Development

- Peak of severe pediatric disease in early infancy
 - suppression of the immune response by maternal Ab
- Heterogenous at-risk populations require different vaccines:
 - Newborns
 - Older infants and young children
 - Elderly
- Imperfect animal models; adult challenge model may be useful for elderly but not highly relevant for pediatric disease
- Specter of enhanced disease
Potentiation of RSV LRI following formalin inactivated vaccine

Adapted from Kim et al., Am J Epidemiol 89:422-434, 1969
Goal for RSV vaccine development

- Safely induce sufficient immunity to protect against serious RSV infection: LRI and apnea
- Induction of sterilizing immunity (i.e. protection against URI) is not required (and may not be feasible)
RSV Vaccine Landscape: 2004 (n=3)

Preclinical
- Live-Attenuated
 - Wyeth

Phase I
- LID/NIAID/NIH
 - Wyeth

Phase II
- LID/NIAID/NIH
 - Wyeth

Phase III
- LID/NIAID/NIH
 - Wyeth

Market Approved

Subunit
RSV Vaccine Snapshot

RSV Vaccine Development

Clinical Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Market Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live-Attenuated</td>
<td>Codagen</td>
<td>LID/NIAID/NIH</td>
<td>LID/NIAID/NIH</td>
<td>MedImmune, LID/NIAID/NIH</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td></td>
<td>RSV</td>
<td>PIV3-3/RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV/Delta-2</td>
</tr>
<tr>
<td></td>
<td>Intravacc</td>
<td>Sanofi Pasteur</td>
<td>St. Jude's Children's Research Hospital</td>
<td>CVS-03/2015</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td></td>
<td>Dohts-G RSV</td>
<td>CVS-03/2015</td>
<td>CVS-03/2015</td>
<td>CVS-03/2015</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Gene-Based Vectors</td>
<td>AlphaVax</td>
<td>Bayerische</td>
<td>Rube-Universitat</td>
<td>University of Pittsburgh</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td></td>
<td>Alphaviruses</td>
<td>Nordic</td>
<td>Adenovirus</td>
<td>Adenovirus</td>
<td>Adenovirus</td>
</tr>
<tr>
<td></td>
<td>AnVacc</td>
<td>Emergent</td>
<td>BLP</td>
<td>Rube-Universitat</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td></td>
<td>Sendax</td>
<td>BLP</td>
<td>Protein</td>
<td>Rube-Universitat</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Nucleic Acid</td>
<td>CynVax</td>
<td>Inovio Pharmaceuticals</td>
<td>MVA</td>
<td>MVA</td>
<td>Rube-Universitat</td>
</tr>
<tr>
<td></td>
<td>RNA</td>
<td>DNA</td>
<td>RNA</td>
<td>RNA</td>
<td>RNA</td>
</tr>
<tr>
<td>Whole-Inactivated</td>
<td>NanVax</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>Novaraz</td>
</tr>
<tr>
<td>Particle-Based</td>
<td>AgIVax</td>
<td>Fraunhofer</td>
<td>Mymetics</td>
<td>University of Massachusetts Medical School</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td></td>
<td>VLP</td>
<td>VLP</td>
<td>VLP</td>
<td>VLP</td>
<td>VLP</td>
</tr>
<tr>
<td>Subunit</td>
<td>Immunovaccine</td>
<td>NH/NIAD/VRC</td>
<td>Remapty</td>
<td>University of Georgia</td>
<td>RSV F protein</td>
</tr>
<tr>
<td></td>
<td>DPX-RSV</td>
<td>RSV pre-F protein</td>
<td>RSV F protein</td>
<td>RSV G protein</td>
<td>RSV F protein</td>
</tr>
<tr>
<td></td>
<td>Instituto de Salud Carlos III</td>
<td>PeptVir</td>
<td>University of California</td>
<td>University of Saskatchewan</td>
<td>MedImmune</td>
</tr>
<tr>
<td></td>
<td>RSV F protein</td>
<td>RSV peptides</td>
<td>SLH protein</td>
<td>RSV F protein</td>
<td>RSV F protein</td>
</tr>
<tr>
<td>Combination/Others</td>
<td>Fudan University</td>
<td>Biomedical Research Models</td>
<td>DNA prime, protein boost</td>
<td>Biomedical Research Models</td>
<td>MedImmune</td>
</tr>
<tr>
<td></td>
<td>DNA prime, protein boost</td>
<td>DNA prime, protein boost</td>
<td>DNA prime, protein boost</td>
<td>DNA prime, protein boost</td>
<td>Med-16397</td>
</tr>
</tbody>
</table>

Updated: March 10, 2015

Factors contributing to RSV vaccine development

1. Advances in structural biology and in large scale production of RSV F glycoprotein
Postfusion F has the palivizumab epitope, but prefusion F has the majority of neut epitopes recognized by human sera\(^1\)
Stabilization of antigenic site on conformationally authentic protein results in potent vaccine antigen

Postfusion F in 6-helix bundle conformation

Functional form of RSV F in pre-triggered conformation

Loss or preservation of neutralization sensitive site on the native F trimer

Candidate RSV vaccine is stabilized native F trimer

RSV Postfusion F Structure (JVI 2011)

RSV Prefusion F Structure (Science April 2013)

RSV Vaccine Design (Science November 2013)
RSV F vaccines in clinical development

Postfusion F

<table>
<thead>
<tr>
<th>Developer</th>
<th>Phase</th>
<th>Populations (tested)</th>
<th>Populations (target)</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novavax</td>
<td>2</td>
<td>18-49 y.o., elderly, pregnant women, children 24-71 mos.</td>
<td>elderly, pregnant women, children 24-71 mos.</td>
<td>Alum</td>
</tr>
<tr>
<td>MedImmune</td>
<td>1</td>
<td>elderly</td>
<td>elderly</td>
<td>GLA-Se</td>
</tr>
<tr>
<td>Novartis</td>
<td>1</td>
<td>18-45 y.o.</td>
<td>pregnant women, elderly?</td>
<td>Alum/MF59</td>
</tr>
</tbody>
</table>
RSV F vaccines in clinical development

Prefusion F

<table>
<thead>
<tr>
<th>Developer</th>
<th>Phase</th>
<th>Population (tested)</th>
<th>Population (target)</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSK</td>
<td>1</td>
<td>men; women</td>
<td>pregnant women</td>
<td>Alum +/-</td>
</tr>
<tr>
<td>NIH/VRC</td>
<td>Preclinical</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Factors contributing to RSV vaccine development

1. Advances in structural biology and in large scale production of RSV F glycoprotein
2. Rational design of live-attenuated RSV vaccines
Rational vaccine design: stabilization of empirically-derived attenuating mutations

cps2

- Codon-stabilized version of the previously evaluated RSV 248/404/1030/ΔSH

- Phase I evaluation being completed in 51 RSV-seronegative infants and children (NCT1852266, NCT 1968083)
Rational vaccine design: attenuation based on gene function (I)

\(\Delta \text{NS2} \Delta 1313 \)

- Deletion of the NS2 gene (IFN antagonist) and 1313 codon in L gene
- Phase I evaluation: completely restricted in replication in RSV-seropositive children \((n=15) \); currently being evaluated in RSV-seronegative children \((n=60) \) NCT1893554
Rational vaccine design: attenuation based on gene function (II)

- M2-2 is an RNA regulatory factor
- Deletion of M2-2 results in:
 - decreased RNA replication
 - increased transcription and antigen expression\(^1\) (more Ag/virion)
- RSV Medi-ΔM2-2 is highly attenuated yet immunogenic in RSV-naïve infants and children

Factors contributing to RSV Vaccine Development

1. Advances in structural biology and in large scale production of RSV F glycoprotein
2. Rational design of live-attenuated RSV vaccines
3. New approaches to vectored vaccine development
RSV paediatric vaccine candidate: novel vector approach

ChAd & MVA encoding RSV F, N & M2-1 proteins

Open label dose escalation study in healthy adults (NCT01805921)

Experimental groups
1. PanAd3-RSV IM / MVA-RSV IM
2. PanAd3-RSV IM / PanAd3-RSV IM
3. PanAd3-RSV IN / MVA-RSV IM
4. PanAd3-RSV IN / PanAd3-RSV IM

Doses
PanAd3-RSV: Low 5×10^9 and High 5×10^{10} vp
MVA-RSV: Low 1×10^7 and High 1×10^8 pfu

10 volunteers/group
(2 & 8 volunteers at low & high dose)

The vaccine candidates were well tolerated & immunogenic
Current clinical trials of RSV vaccines

Total=13

- live-attenuated
- live vectored
- RSV F subunit

Source: clinicaltrials.gov
MedI 18897: a vaccine-like mAb

- mAb directed at site 0 on RSV F
- YTE mutation extends half-life to several months
- Currently being evaluated in 32-34 wk GA infants <12 months old (NCT02290340)
Global priority populations for RSV vaccines: RSV-naïve infants and young children
Burden of Acute RSV Infection Extends Beyond Early Infancy (0-4 months)
>1 RSV vaccine type needed; >1 PPC

- **Maternal immunization**
 - Subunit and other nonreplicating vaccines
 - Alum or nonadjuvanted

- **Passive prophylaxis**
 - Next generation RSV F mAbs

- **Infant immunization**
 - Live vaccines (native virus and vectors)
Some clinical trial considerations for vaccines developed for protection of infants and RSV-naïve children
Clinical endpoints: Define appropriate parameters for a variety of clinical settings

- Hospitalization and medically-attended lower respiratory tract illness (MA-LRI) have been used as endpoints for trials of palivizumab and motavizumab in high-resource countries.

- Consider illness endpoints (RSV-LRI, RSV-hypoxemia) and facilities-based endpoints (RSV-hosp, RSV-ER visit, etc).
 - active vs passive case finding

www.savethechildren.org.uk
Consider potential efficacy determinants in low-resource settings

• In resource limited settings, RSV exposure, disease, and vaccine efficacy may be influenced by
 – Crowding
 – Limited access to water
 – Indoor air pollution

• Maternal illnesses that may affect transplacental transmission of antibody
 – HIV
 – Hypergammaglobulinemia
 – Placental malaria
Strengths and weaknesses of the global RSV vaccine portfolio

RSV Vaccine Snapshot

<table>
<thead>
<tr>
<th>PRECLINICAL</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
<th>MARKET APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVE-ATTENUATED</td>
<td>Codagenix</td>
<td>LID/NIAID/NIH</td>
<td>LID/NIAID/NIH</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
</tr>
</tbody>
</table>
| Intravacc | PIV-1/RSV | VaxGen | LIPI
Vero | RSV |
| Delta-C RSV | PIV-1/RSV | VaxGen | LIPI
Vero | RSV |
| **GENE-BASED VECTORS** | Bavarian Nordic | GenVec | RSV | MedImmune |
| AlphaVax | MVA | Adenovirus | RSV | LIPI
Vero |
| Alphazyme | MVA | Adenovirus | RSV | LIPI
Vero |
| AmVax | Emergent BioSolutions | Janssen Pharmaceutical | RSV | LIPI
Vero |
| Sendai virus | MVA | Adenovirus | RSV | LIPI
Vero |
| **NUCLEIC ACID** | CureVac | Inovio Pharmaceuticals | Novartis | Novartis |
| RNA | DNA | RNA | DNA | DNA |
| **WHOLE-INACTIVATED** | NanoBiis | Patentlife | Ruhr-Universität Bochum | Novovac |
| RSV | DNA | DNA | DNA | DNA |
| **PARTICLE-BASED** | AgiVax | Fraunhofer | Mynvax | NanoBiis |
| VLP | VLP | VLP | VLP | RSV Nanoparticle |
| Artificial Cell Technologies, Inc. | VLP | VLP | VLP | RSV Nanoparticle |
| Peptide microparticle | VLP | VLP | VLP | RSV Nanoparticle |
| Emory University | VLP | Virosome | VLP | RSV Nanoparticle |
| Mucos | BLP | VLP | VLP | RSV Nanoparticle |
| TechnoVax | VLP | VLP | VLP | RSV Nanoparticle |
| **SUBUNIT** | Immunovaccine | NIH/NIAID/VRC | Renoptys | GlaxoSmithKline |
| DPX-RSV | RSV pre-f proteins | RSV peptides | RSV F protein | RSV F protein |
| Instituto de Salud Carlos III | RSV peptides | RSV G protein | RSV protein | RSV protein |
| RSV F protein | RSV peptides | RSV G protein | RSV protein | RSV protein |
| **COMBINATION/OTHER** | Biomedical Research Models | Fudan University | MedImmune | MedImmune |
| Biopolymer protein vaccines | RSV peptides | RSV G protein | RSV protein | RSV protein |
| MedImmune | Anti-RSV | Anti-RSV | Anti-RSV | Anti-RSV |
| **UPATED: MARCH 10, 2015** | | | | |