DNA-Based Malaria Vaccines: USMMVP Experience

WHO/NIH Workshop: Heterologous Prime-Boost Vaccine Strategies for HIV, Malaria and TB
Rockville, MD, 17 Apr 2012

- Le T, Vaccine, 2000
- Epstein JE, Hum Gene Ther, 2002
- Epstein JE, Vaccine 2004
- Wang R, J Immunol, 2004
- Dunachie SJ, Infect Immun, 2006
- Sedegah M, Vaccine, 2010
- Bruder JT, Vaccine, 2010
- Sedegah M, Malar J, 2010
DNA Prime / Vector Boost Needed for Protection in *P. knowlesi* rhesus challenge model

Multistage Vaccine: *PkCSP + PkSSP2/TRAP + PkAMA1 + PkMSP1*$_{19}$

Regimen: 3 DNA wks 0, 4, 16 + 1 copak wk 60

Dose: DNA: 1 mg/construct; Pox: 2x108 pu/construct

Parasitemia (%) vs. Days after Challenge

- Copak only
- DNA prime Copak boost

Clinical Development HuAd5 Vaccine
CSP + AMA1

Four Trials Conducted:

1. Low dose* (n=6)
 - AdCA – 2x10^{10} pu
 - AdCA – 1x10^{11} pu
 - Dose escalation: vaccine is safe
 - Low dose better tolerated
 - Low dose > high dose for ELISpot
 - High dose > low dose for ELISA

2. CSP x 2 (n=15)
 - AdC – 1x10^{10} pu
 - Challenge
 - CSP alone: 0/12 protected
 - second dose did not improve immunogenicity

3. DNA/Ad (n=20)
 - AdCA – 2x10^{10} pu
 - Challenge
 - DNA/Ad: 4/15 protected
 - only seronegatives protected

4. Ad alone* (n=18)
 - AdCA – 2x10^{10} pu
 - Challenge
 - Ad alone: 0/18 protected
 - Strong IFN-γ responses

* all volunteers Ad5 seronegative

Summary – Lessons Learned

- Gene-based vaccines are safe
- Dose trade-off between Ab, CMI (Ad)
- Constructs can be mixed on injection
- Prime/boost required for protection
- Protection associated with IFN-γ secreting CD8+ T cells
 » More precise definition of protective phenotype needed
- Pre-existing immunity to Ad5 may interfere
- Future
 » Collect more data on the effects of pre-existing immunity
 » Add antigens to improve protection
 » Compare platforms (DNA/Ad, Ad/MVA)
 » Test electroporation, adjuvants
 » Identify mechanisms of protection
Product Concept

• After establishing high grade protection in humans, multivalent constructs will be manufactured as the final product
• Clinical grade vectors showing good expression of up to three transgenes have been made (HuAd5)
• Pentavalent vaccine example:
 ➢ Construct 1: CSP, CelTOS/Ag2, LSA1
 ➢ Construct 2: MSP1, AMA1
Conference Points

- Do we know the optimum route/schedule for each platform? - No

- Is there agreement of optimal heterologous prime-boost regimens to induce specified immune responses? – Ad induces CD8+ T cells

- How to determine if optimal immune responses are due to the technology platform, or attributed to the construct? – Both platform and antigen are critical

- Can a particular heterologous prime-boost regimen success observed for one disease suggest promising strategies for the other 2 diseases? – Yes

- Do optimum heterologous prime-boost schedules fit with logistical deployment for where they will be needed most? - Yes

- Are there concerns about anticipated regulatory hurdles? - No

- Other long-term views on commercialization and deployment? - $ from outside pharmaceutical industry will be required (RTS,S paradigm)
DNA-Ad is Congruent with EPI Schedule

<table>
<thead>
<tr>
<th>EPI Schedule</th>
<th>+ Malaria</th>
<th>% with Neutralizing Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Vaccine</td>
<td>< 16</td>
</tr>
<tr>
<td>Birth</td>
<td>BCG OPV</td>
<td>7.14</td>
</tr>
<tr>
<td>6 weeks</td>
<td>DPT OPV</td>
<td>DNA</td>
</tr>
<tr>
<td>10 weeks</td>
<td>DPT OPV</td>
<td>DNA</td>
</tr>
<tr>
<td>14 weeks</td>
<td>DPT OPV</td>
<td>DNA</td>
</tr>
<tr>
<td>9 months</td>
<td>Measles</td>
<td>Adeno</td>
</tr>
<tr>
<td>15 months</td>
<td>MMR</td>
<td></td>
</tr>
<tr>
<td>1st booster (18 months)</td>
<td>DPT OPV</td>
<td>Adeno</td>
</tr>
<tr>
<td>2nd booster (5 years)</td>
<td>DPT OPV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>% with Neutralizing Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 – 1 year</td>
<td>86.64 13.36</td>
</tr>
<tr>
<td>1 – 2 years</td>
<td>71.79 28.21</td>
</tr>
<tr>
<td>2 – 7 years</td>
<td>46.15 53.85</td>
</tr>
<tr>
<td>7 – 12 years</td>
<td>26.81 73.19</td>
</tr>
<tr>
<td>12 – 18 years</td>
<td>20.69 79.31</td>
</tr>
</tbody>
</table>

Thorner et al, J Clin Microbiol 2006 44:3781
Development Partners

● Recombinant virus
 » GenVec, Inc (Gaithersburg)
 – Joe Bruder, Jason Gall, Doug Brough
 » Vaccine Research Center, NIH (Bethesda)
 – Barney Graham, Bob Seder, Richard Koup, Robert Bailer
 » Aaron Diamond AIDS Research Center / Rockefeller University
 – Moriya Tsuji, Sandya Vasan, Neil Padte
 » Oxford University
 – Adrian Hill

● DNA
 » Vical Inc. (San Diego)
 – David Kaslow
 » Bioject Inc. (Tualatin, OR)
 – Richard Stoute

● PCR
 » Radbound U Nijmegen Medical Center
 – Robert Sauerwein
 – Rob Hermsen
Funding Partners

- **Military Infectious Diseases Research Program (Frederick)**
 - Michael Kozar, Frank Klotz

- **USAID (Washington, DC)**
 - Carter Diggs, Lorraine Soisson

- **Malaria Vaccine Initiative (BMGF) (Washington, DC)**
 - Christian Loucq, David Kaslow, Ashley Birkett, Ulrike Wille-Reece

- **Navy Bureau of Medicine and Surgery (Washington, DC)**
 - Keith Prusaczyk, Elizabeth Montcalm-Smith

- **Congressionally Directed Medical Research Program**
Acknowledgements – USMMVP (NMRC & WRAIR)

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>ELISpot / IFA</th>
<th>PCR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Carucci</td>
<td>M Sedegah</td>
<td>A McCoy</td>
</tr>
<tr>
<td>D Doolan</td>
<td>H Ganeshan</td>
<td>E Kamau</td>
</tr>
<tr>
<td>K Limbach</td>
<td>S Abot</td>
<td></td>
</tr>
<tr>
<td>N Patterson</td>
<td>M Belmonte</td>
<td></td>
</tr>
<tr>
<td>G Levine</td>
<td>R Sayo</td>
<td>G Banania</td>
</tr>
<tr>
<td>S Maiolatesi</td>
<td>C Park</td>
<td>J Huang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow cytometry</th>
<th>ELISA</th>
<th>GIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S McGrath</td>
<td>J Bennett</td>
<td>E. Angov</td>
</tr>
<tr>
<td>F Farooq</td>
<td>N Richie</td>
<td>E. Bergmann-Leitner</td>
</tr>
<tr>
<td>L Egner</td>
<td>S Dutta</td>
<td>C. Long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I Chuang</td>
<td>C Ockenhouse</td>
<td>A Sutamihardja</td>
</tr>
<tr>
<td>C Tamminga</td>
<td>T Richie</td>
<td>L Ware</td>
</tr>
<tr>
<td>J Epstein</td>
<td>M Polhemus</td>
<td>R Nielsen</td>
</tr>
<tr>
<td>M Spring</td>
<td>S Cicatelli</td>
<td>J Murphy</td>
</tr>
<tr>
<td>J Cummings</td>
<td>J Komisar</td>
<td>E. Villasante</td>
</tr>
<tr>
<td>M Guerrero</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disclaimer

- The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of the Army, Department of Defense, nor the U.S. Government.

- The study protocols were approved by the National Naval Medical Center, Naval Medical Research Center and/or the Walter Reed Army Institute of Research Institutional Review Boards in compliance with all applicable Federal regulations governing the protection of human subjects.

- This work was supported by funded by work unit number 62787A 870 F 1432.