Clinical evaluation of universal influenza vaccines and pipelines for new influenza vaccines

Robert C. Huebner, Ph.D.
Acting Director – Influenza Division
ASPR/BARDA
January 24, 2013
US Influenza Vaccines
January 2004

• All licensed seasonal vaccines are egg based
 — Most vaccine is split or subunit inactivated vaccine
 — Live attenuated is the other option
 — Virus replication is required for production
• Vaccine is produced in a six month production window (January-June each year)
 — Based on VRBPAC strain recommendations
 — Trivalent vaccine H1, H3, one B
• Annual immunization is required
 — Vaccine effectiveness estimated at 50-70%
• One licensed egg-based H5 pandemic vaccine
 — 2 x 90µg dose
• Is there room for improvement? YES!
Pandemic Influenza Vaccine Implementation Goals

- Fortify existing influenza vaccine capabilities
- Support development of better influenza vaccines that afford greater surge manufacturing capacity
 - Cell-based Vaccines
 - Recombinant and Molecular Vaccines
 - Adjuvants for Dose- and Antigen-sparing
 - Universal Influenza Vaccines
- Establish pre-pandemic influenza vaccine stockpile
- Expand domestic manufacturing capacity
 - Retrofit existing facilities
 - Establish new facilities
National Pandemic Influenza Vaccine Development Strategy Is Multi-Step & Integrated Approach

“More and better vaccines sooner”
Progress so far
• Provide more robust, flexible, and scalable process for manufacturing influenza vaccines

• Awarded 6 contracts in 2005-06 for advanced development of US licensed cell-based seasonal & pandemic influenza vaccines ($1.2B) with commitment for domestic surge capacity of 150M doses within 6 mos. of pandemic onset

• Novartis, Baxter, sanofi pasteur, GSK, Solvay, MedImmune
 — Novartis vaccine was licensed for 18+ in November 2012
 — One completed pivotal Phase 3 clinical studies & expected to submit a BLA in 2013
 — One manufacturer in early stage development
 — Three programs are no longer active
Antigen Sparing Technology

• Adjuvants, immunostimulating molecules, provide dose-sparing effects, cross-strain protection (in animal models) and reactivity in serological assays, and enhanced immune responses to vaccines

• ASPR/BARDA awarded 3 contracts in 2007 ($133 M) for advanced development of US-licensed pandemic influenza vaccines with adjuvants
 – Novartis, GSK, Intercell (formerly IOMAI)
 – One manufacturer (GSK) has completed Phase 3 clinical studies & submitted a BLA in February 2012 with action on submission soon
 – One manufacturer has completed Phase 2 clinical studies
 – One contract is no longer active

< filled vaccine & adjuvant – Production skid >
Recombinant & Molecular Vaccine Technologies

• Recombinant & molecular technologies may provide vaccine sooner with less dependence on influenza virus strain properties

• BARDA awarded contracts in 2009 & 2011 for advanced development of US-licensed recombinant-based seasonal & pandemic influenza vaccines with commitment for domestic manufacturing surge capacity of 50 M doses in 6 months of pandemic onset & initial lot release in 12 weeks

• Protein Sciences, Novavax, & VaxInnate
 – One manufacturer (Protein Sciences) received their license approval in January 2013
 – Two manufacturers in Phase 2 clinical studies
US Influenza Vaccines
January 2013

• Licensed seasonal vaccines are egg based (6), cell-based (1) and recombinant (1)
 — Vaccine is split, subunit, purified recombinant protein or live attenuated
 — Virus replication is required for most vaccines (7)
• Vaccine is produced in a six month production window (January-June each year)
 — Based on VRBPAC strain recommendations
 — Trivalent or quadrivalent vaccine H1, H3, one B or two B
• Annual immunization is required
 — Vaccine effectiveness estimated at 50-70%
• One licensed egg-based H5 pandemic vaccine
 — 2 x 90µg dose
• Is there room for further improvement? YES!
Influenza Vaccine Landscape

<table>
<thead>
<tr>
<th>Pre Clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Market Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg-based inactivated</td>
<td>Egg inactivated</td>
<td>Vivalis H5N1 post DNA vac</td>
<td>sanofi pasteur H5N1 Split w/ AF03</td>
<td>CSL Biotherapies Split H5N1 AS03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSK H5N1 WIV</td>
<td>Corynebacterium H5N1, Thailand</td>
<td>Novartis H5N1, WIV w/ Adjacent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Birmex H5N1</td>
<td>Adimmune H5N1</td>
<td>Vaxfectin H5N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& Chinese Mfrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell-culture inactivated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recombinant (VLPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectors/Adjuvant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updated: 16JAN 2013
“Universal” influenza vaccines
Universal influenza vaccine

• Many definitions for a universal influenza vaccine
 — A single influenza vaccine that would provide “protection” against any given subtype of influenza A
 — Could be used for several influenza seasons before reformulation
 • Reduce annual “guesswork” for strain selection
 • Reduce production costs (thus vaccine costs/year round production)
 • Reduce vaccine “mismatches”
 • Reduce the potential for vaccine shortages
 • Increase the global supply of vaccine

• Could be stockpiled for epidemics/pandemics

• Surge capacity
 — Rapid scale-up, reduce production bottlenecks
Universal influenza vaccine

- Target conserved proteins or cross-reactive epitopes
 - Less sensitive to antigenic drift
- Identify less immunodominant, but more cross-reactive B and T cell epitopes on HA, NA and conserved proteins to “engineer” sequences that would direct the immune response to:
 - Induce humoral and/or cellular immunity
- Utilize recombinant technologies to optimize expression and delivery/uptake of the antigen
- Live virus vectors may offer advantage of inducing broader immunity
The Candidates
Is it possible to:
• Identify less dominant, yet more broadly reactive epitopes
• Engineer HA and/or NA genes to direct immune response
• Incorporate into vectored vaccine along with conserved Ags

Adapted from: Paul Lewis, MD
Oregon State Public Health
HA: surface, immunogenic
Highly variable. Drift. Shift.

NA: surface, immunogenic
Variable. Drift. Shift.

M2e: surface, immunogenic??
Fairly conserved. Ab-mediated.
Protective? Reduce severity.

NP (nucleoprotein): internal
Highly conserved.
Induces CMI. Reduce severity?

Matrix: internal
Highly conserved.
Induces CMI.

Adapted from: Paul Lewis, MD
Oregon State Public Health
HA Stalk or Fusion Peptide
Highly conserved.
Transiently accessible on infected cell surface.
Need to engineer a vaccine to target

Adapted from: Paul Lewis, MD
Oregon State Public Health
Universal influenza vaccine technology challenges

- “Universal” vaccines have “Universal” challenges
 - Often require alternate development/release assays
 - Most regulators are accustomed to SRID or SRH
 - Often induce an immune response to something other than the HA protein
 - Most regulators are accustomed to HAI antibodies for licensure
 - Are not always as “Universal” as they claim
 - A single amino acid change can render ineffective
 - Early candidates have not proven successful
 - May require large scale efficacy trials or other “creative” clinical development plans
 - Challenge studies
 - Measuring responses – antibody or T cell
Future?

• Licensed universal influenza vaccines
 — Made in recombinant, cell- and egg-based systems?
• Vaccine is produced year round
 — No annual strain change
 — Bivalent to quadrivalent?
• Annual/every ten year/ once in a lifetime immunization is required
 — Vaccine effectiveness estimated at >80%
• Pandemic may be covered by current universal or could be a separate vaccination
• Is this where we want to be in the future? YES!
Thank You for Your Attention

Robert Huebner, Ph.D.
Acting Director of Influenza Division
Biomedical Advanced Research and Development Authority (BARDA)
US Department of Health and Human Services

330 Independence Avenue, SW
Room G644
Washington, DC
20201

Robert.Huebner@hhs.gov