Improving influenza vaccine virus selection and development process

Wenqing Zhang

1st WHO Integrated Meeting on Development and Clinical Trials of Influenza Vaccines
Inducing Broadly Protective and Long-lasting Immune Responses
24 – 26 Jan 2013 • Hong Kong
Context

- Influenza vaccination – the cornerstone
- Vaccine virus selection and development – the heart
- WHO recommendations since 1971
 - 1978, trivalent, a total of 45 changes since then
 - 1998, biannual
 - 2004, H5/H9/zoonotic influenza review incorporated
 - 2009, pandemic H1N1 out-of-season
 - 2012, quadrivalent in addition to trivalent
- Retrospective studies shown WHO recommendations closely matched the viruses circulating during the targeted season
 - Very few exceptions e.g. A/Sydney/5/1997-like virus in 1997 and "Fujian"-like virus in 2003
Context

- **GISRS – Global Influenza Surveillance and Response System**
 - Functioning since 1952
 - 149 labs
 - Vaccine composition recommendation – one of the key products of GISRS

- **WHO coordination**
 - Strengthening GISRS capacity
 - Continuous review of the process
 - Challenges
 - Surveillance gaps
 - Emerging technical difficulties in assays
 - Limited understanding of correlation of antigenic change and immune response
 - Partnerships
 - Global consultations
Review areas

- Global surveillance
- Characterization of antigenicity and antibody response
- Vaccine viruses
- Exploration and new methods
Global surveillance

- GISRS surveillance – the basis of vaccine virus selection and development process

![Graph showing global surveillance data](image-url)
Global surveillance

- Surveillance strengthening
 - ILI and SARI surveillance in countries
 - Collaboration with vet sector e.g. “One health”, GISRS-OFFLU collaboration

- Challenges
 - Sustainability
 - National activities
 - SFP, EQAP, IRR
 - Coverage (geographical, age distribution) and representativeness
 - Impact of using molecular methods – reduced virus isolates
 - Incentives of continuous surveillance
Review areas

- Global surveillance
- Characterization of antigenicity and antibody response
- Vaccine viruses
- Exploration and new methods
Antigenicity and antibody response

HA-focused

- HAI, surrogate for virus neutralization - widely used
 - Currently vaccine virus selection process largely based on HAI

- Challenges and refinements
 - RBCs
 - Receptor-binding evolution → RBCs
 - RBCs surrogates
 - Silica beads coated with natural or synthetic glycon
 - Selection in MDCK passage in 151 NA
 - Contributing to binding to RBCs
 - Adding oseltamivir
Antigenicity and antibody response

HA-focused

- **Challenges**: vagaries of virus evolution
 - Inadequacies of virus isolation and assays

- **Difficulties generally surmounted**
 - Adaptation of existing procedures
 - Implementation of alternative assays
 - Increasing use of extensive sequence data

- **HAI**: standardization difficult, automation unsuitable

- Need for new assays and approaches
Antigenicity and antibody response

NA-focused

- NA and NA antibodies contributing to immunity
 - NA content of vaccines required, but not standardized

- Studies of NA antigenic evolution limited
 - Sequencing
 - Contemporary NA co-selected with HA in vaccine virus
 - Recent developed NAI
 - Antigenic drift discontinuous and discordant of N1 and N2 with HA

- NAI assays
 - Moderate-scale throughput assays
 - TBA
 - ELLA
 - Limits
 - Viruses with heterologous HAs or purified NA reagents
Antigenicity and antibody response

MN assays

- More sensitive and measure a broader repertoire of functional antibodies
 - Consistent degree of correlation with HAI
 - More commonly used now

- Under Development
 - Being Simplified → routine use
 - Automation
 - Use MN for H1 and B viruses
 - Use pseudotype viruses: offering advantages for highly pathogenic viruses
Antigenicity and antibody response

Serological studies

- Serological studies by CCs and ERLs, part of the process, valuable
 - Limitations:
 - Limited amount of sera
 - Short timeframe
 - Variation in data
 - Criteria: 50%

- Recent developments
 - Antigenic cartography and antibody landscape - assess impact of pre-vaccination titres
 - GFPDLs - analyse repertoires of epitopes
 - SPR - assess affinity maturation
 - Applications
 - Cross-clade reactivity of H5N1 vaccines; adjuvants
 - Antibody response in different age/risk groups
 - Antibody response by novel vaccine types e.g. recombinant proteins or virus-like particles
Review areas

- Global surveillance
- Characterization of antigenicity and antibody response
- Vaccine viruses
- Exploration and new methods
Vaccine viruses
Reassortant development

- Continuous development of high-growth reassortants
 - Close collaboration among GISRS CCs/ERLs/NICs and reassorting labs
 - Manufactures timely informed

- Lack of H3N2 egg isolates
 - CRADAs
 - “Flu-cell-culture” project

- Use of reverse genetics
 - LAIV and H5N1 vaccine viruses
 - Less successful for H1N1pdm09 vaccine viruses
 - Potential
 - Development of high-growth reassortants
 - More reassortants for evaluation
Vaccine viruses

Vaccine yield

- **Status**
 - Well establishment – “classical” reassortants
 - Little known – molecular determinants of virus growth and stability of antigen
 - Empirical

- **Recent development**
 - US HHS initiative
 - Alternative donor virus genes other than PR8
 - Molecular determinants – working seeds of serial passages
 - Synthetic production of candidate vaccine viruses
Review areas

- Global surveillance
- Characterization of antigenicity and antibody response
- Vaccine viruses
- Exploration and new methods
Exploration and new methods

Prediction of antigenic drift

- **In experimental settings**
 - Antibody escape mutants of H1N1pdm09 HA – AA substitutions identified
 - Such variants tending to cluster into a single antigenic group

- **In real world**
 - Such mutants occurring sporadically since 2009
 - Not associated with divergent genetic groups
 - Unknown if harbingers of future antigenic drifts
Exploration and new methods

Computational tools

- **Systems-biological approaches**
 - Analyze virus-host relationships, dynamics of virus infection and replication
 - Recent experimental generation of cell-lines
 - Potential for improved virus isolation and vaccine yield

- **Deep-sequencing platforms**
 - Evaluate virus dynamics not captured by consensus sequencing
 - Interspecies transmission
 - Development of antiviral resistance during therapy
 - Emergence and transmission of antigenic variants

- **Mathematic modeling**
 - Correlate antigenicity and AA sequence changes in HA
 - Correlate AA sequence data and HA structural and physicochemical features
 - Exploratory modeling
Exploration and new methods

Synthetic genomics

- A program co-funded by US NIAID, BADAR and HHS
 - Generate libraries of HA and NA genes
 - Rapid generation of high-yield vaccine viruses
 - 5 days – production of synthetic genes and rescue into backbones
 - IP issues
 - Regulatory considerations
Summary

- Fight against influenza will continue
 - Influenza vaccines – cornerstone
 - Influenza vaccine viruses – heart
 - Global coordinated approaches – key

- The process of vaccine virus selection and development
 - Highly technical, complex and collaborative
 - Successful for decades, responsive and adaptive – facing constant challenges
 - Model of public-private collaboration

- Research, exploration and development
 - A great opportunity to improve the vaccine virus process
 - Need global platform to review, direct and facilitate
Summary

- GISRS - delivering the products since first recommendation 1971
 - Resilient and robust; recognized more than ever
 - Continuous capacity building - new technologies
 - WHO Collaborating Centres: technical leadership
 - WHO Global Influenza Programme (GIP): coordinating body

- WHO
 - Work with GISRS
 - With partners
 - Commitment

- Partnership