Influenza Vaccine Performance:

Summary of the Influenza Vaccines and Immunization SAGE Working Group

Janet A. Englund, M.D. April 11, 2012
Professor, Dept. of Pediatrics
Seattle Children’s Hospital/ University of Washington
Clinical Associate, Fred Hutchinson Cancer Research Center
Seattle, WA USA
Risk Groups Assessed for Vaccine Effectiveness/Efficacy

1) Pregnant Women
2) Health Care Workers
3) Children
4) Elderly
5) Underlying medical conditions
1. Influenza Vaccine and Pregnant Women

- Used since ~ 1960 in pregnant women
- Excellent safety profile
- Equally immunogenic as in non-pregnant women in small clinical studies
- No clinical effectiveness studies in women using laboratory-confirmed influenza outcomes
- 2009 pandemic A/H1N1 impacted recommendations and uptake of influenza vaccine during pregnancy
Immunogenicity: Maternal Influenza Vaccine Increases Antibody Concentrations in Mothers and their Infants *

Antibody to influenza A and B in mothers and their infants following maternal immunization with influenza vaccine or tetanus vx.

EFFICACY: Maternal Immunization with Influenza in Low Resource Countries*

Effectiveness of Maternal Influenza Immunization in Mothers and Infants

Copyright © 2008 Massachusetts Medical Society.

Study design:
• Randomized controlled trial carried out in Bangladesh, 2004-5.
• 340 pregnant women received either inactivated influenza vaccine or pneumococcal polysaccharide vaccine (control) during 3rd trimester.
• Followed through pregnancy and first 6 months after birth.

Results:
• Maternal TIV decreased respiratory illness with fever:
 • 29% among infants;
 • 36% among their mothers.
• Vaccine efficacy against laboratory-confirmed influenza among newborns was 63%

Caveats:
• Small sample size
• Laboratory testing not optimal
Maternal Immunization with Influenza Vaccine Protects Infants Against Influenza*

Figure 2. Cumulative Cases of Laboratory-Proven Influenza in Infants Whose Mothers Received Influenza Vaccine, as Compared with Control Subjects. Testing for influenza antigen was performed from December 2004 to November 2005.

*Zaman et al, NEJM 2008;359 (Sept. 2008)
SUMMARY: Other studies of antenatal influenza immunization and infant outcomes

<table>
<thead>
<tr>
<th>Author</th>
<th>Site/ Dates</th>
<th>Design</th>
<th># VX</th>
<th># Control</th>
<th>Infant Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaman 2008</td>
<td>Bangladesh 2004-5</td>
<td>RC Vx Trial</td>
<td>172</td>
<td>168</td>
<td>↓ 36% ILI, ↓ 69% lab + flu</td>
</tr>
<tr>
<td>Poehling 2011</td>
<td>TN, OH, NY USA 2002-9</td>
<td>Case Control</td>
<td>151</td>
<td>1359</td>
<td>↓ 45-48% hospitalization</td>
</tr>
<tr>
<td>Eick 2011</td>
<td>Apache/Najavo USA 2002-5</td>
<td>Prospective observational cohort</td>
<td>573</td>
<td>587</td>
<td>↓ 41% lab + flu</td>
</tr>
<tr>
<td>Benowitz 2010</td>
<td>CN/ USA 2000-9</td>
<td>Case-control</td>
<td>91</td>
<td>156</td>
<td>↓ 91.5% hospitalized flu+</td>
</tr>
</tbody>
</table>
Influenza immunization of pregnant women in Bangladesh was associated with a lower risk of SGA infants (↓34%) and an increase in mean birth weights (↑200g) in a tropical country, where influenza circulates nearly year round.

These data from a RCT data provide initial evidence that influenza infections during pregnancy are a preventable cause of decreased intrauterine growth.

Additional randomized prospective studies are needed to expand these novel observations, and are underway.
Increased birth weight in babies born to TIV-immunized mothers support results of Bangladesh study.

Data from 3 studies of pregnant women who were either immunized or experienced influenza supports birthweight observations from Bangladesh:

<table>
<thead>
<tr>
<th>Author</th>
<th>Site</th>
<th>Design</th>
<th>Intervention</th>
<th>Control</th>
<th>Newborn</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinhoff</td>
<td>Bangladesh 2004-05</td>
<td>RC Trial</td>
<td>Flu vaccine</td>
<td>Spn vaccine</td>
<td>↑200g</td>
<td>↓34%</td>
</tr>
<tr>
<td>McNeill</td>
<td>NS, Canada 1990-2002</td>
<td>Retrospective</td>
<td>“flu” adm</td>
<td>No adm</td>
<td>↑90gm</td>
<td>↓40%</td>
</tr>
<tr>
<td>S. Omer</td>
<td>GA, USA 2004-06</td>
<td>Cohort analysis</td>
<td>Flu vaccine</td>
<td>No vaccine</td>
<td>___</td>
<td>↓70%</td>
</tr>
<tr>
<td>Anderson</td>
<td>RI, USA 2009-10</td>
<td>Prospective cohort (pH1N1)</td>
<td>Lab flu</td>
<td>ILI, lab negative</td>
<td>↑285g</td>
<td>___</td>
</tr>
</tbody>
</table>
1. Influenza Vaccine and Pregnant Women: Conclusions

- Pregnant women are at highest risk for severe sequelae of influenza
- Influenza vaccines are safe and immunogenic in this population
- Vaccination during pregnancy is likely to be effective against severe disease in this population
- Protection against influenza in infants following maternal immunization during the first 6 months of life has been demonstrated
2. Influenza Vaccine and Health Care Workers (HCW)

- HCW have additional exposure risk for influenza
- HCW are able to respond to influenza vaccine better than patients, who may be ill, immunocompromised, young, or elderly.
- Vaccination of HCW could prevent transmission of virus from HCW to patients, or patients to HCW and their families.
- Vaccination of HCW should prevent morbidity in the workers themselves and morbidity and mortality in patients.
Influenza vaccine effectiveness in healthy working adults

- Meta-analysis of 38 studies including consideration of vaccine match to circulating strains estimated point estimate of 80% efficacy during well-matched years and 50% efficacy during poor match years.*
- Meta-analysis of TIV efficacy showed efficacy in 8/12 seasons in 10 randomized controlled trials in adults 18-65, with a pooled efficacy of 59% **
- Serological study in Baltimore of HCW showed effectiveness against influenza A/B of 88-89%***
- Absenteeism of healthy workers could potentially be prevented by influenza vaccine, but few trials available to document this and existing trials have variable results.

2. HCW: Conclusions

- HCW have additional risks for influenza exposure
- HCW are likely to respond to influenza vaccine
- HCW are an important priority group for influenza vaccine because vaccination has the potential to protect the HCW and vulnerable patients.
- HCWs are also an important target for pandemic preparedness: ensuring countries have existing robust programs to vaccinate HCWs during pandemics is a key global strategy to ensuring resilience of health care systems
3. Influenza Vaccine and Children: Children 6 Months - 2 Years

- Highest risk group for severe disease or hospitalization is in youngest children
- Older children respond better to inactivated flu vaccines than children ages 6 M – 2 Y
- Vaccine choices are limited in this age group:
 - Only inactivated vaccine without adjuvants currently licensed for this age group.
 - Two doses a minimum of 3-4 weeks apart required to provide protection.
- Effectiveness of influenza vaccines among children varies due to changes in circulating viruses
 - Vaccine effectiveness among children <2 particularly affected by vaccine match to circulating strains.
Observational Studies: Trivalent inactivated influenza vaccine effectiveness in children < 2 years

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Year</th>
<th>No. subjects</th>
<th>Age range</th>
<th>Outcome</th>
<th>VE (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuler (2007)</td>
<td>2003-04</td>
<td>290</td>
<td>6-23 m</td>
<td>OP</td>
<td>52</td>
<td>20,97</td>
</tr>
<tr>
<td>Szilagyi (2008)</td>
<td>2003-04</td>
<td>165</td>
<td>6-23 m</td>
<td>OP</td>
<td>68</td>
<td>-42 NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004-05</td>
<td>74</td>
<td>6-23 m</td>
<td>OP</td>
<td>-40</td>
<td>53 NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td>IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eisenberg (2008)</td>
<td>2003-4</td>
<td>228</td>
<td>6-23 m</td>
<td>OP, ED, IP</td>
<td>28</td>
<td>55 NS</td>
</tr>
<tr>
<td></td>
<td>2004-5</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochran (2010)</td>
<td>2003-04</td>
<td>1,164</td>
<td>6-23 m</td>
<td>OP?</td>
<td>8</td>
<td>-197 76 NS</td>
</tr>
<tr>
<td></td>
<td>2004-05</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005-06</td>
<td>331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heinonen (2011)</td>
<td>2007-08</td>
<td>631</td>
<td>9m – 3y</td>
<td>OP</td>
<td>66</td>
<td>29,84 9,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 m – 2y</td>
<td></td>
<td>66</td>
<td>-5,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 – 3y</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Kelly (2011)</td>
<td>2008</td>
<td>289</td>
<td>6m- 5y</td>
<td>OP, ED</td>
<td>58</td>
<td>9, 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 – 23m</td>
<td></td>
<td>63</td>
<td>NS</td>
</tr>
<tr>
<td>Kantayose (2011)</td>
<td>2002-08</td>
<td>14,788</td>
<td>6m – 6y</td>
<td>OP</td>
<td>52</td>
<td>47,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 – 11m</td>
<td></td>
<td>80</td>
<td>P<0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 – 12m</td>
<td></td>
<td>63</td>
<td>P<0.01</td>
</tr>
</tbody>
</table>
3. Influenza Vaccine and Young Children
Less than 2 years: Summary

- No vaccines currently available for children < 6 months
- Inactivated vaccines are only current option for children ages 6 months - 2 years
- Two intramuscular doses of TIV are required to provide adequate protection for children, based on Ab levels and observational studies
- Timing of 2nd dose does not matter as much as the antigen content of the vaccine
- Lower VE observed in some studies compared with older children, but no decline in VE by age in others
- Vaccine effectiveness varies by season and good match of circulating virus to vaccine strain needed for good effectiveness in young children
Either trivalent inactivated influenza vaccine (TIV) or live-attenuated influenza vaccine (LAIV) is an appropriate choice for vaccination programs.

LAIV may be more effective than TIV in healthy preschool and school-aged children, but limited availability of LAIV currently

Children < 9 years of age previously unimmunized against influenza require two doses of vaccine to generate a protective immune response.

Antibody responses among children with chronic medical conditions may be decreased compared with children without chronic medical conditions.
Meta-analysis of TIV and LAIV efficacy in children (Negri et al. Vaccine 2005; 23)

Inclusion: RCTs with placebo or non-flu vaccine as control; ages 6m – 18 yrs; healthy children; >=30 subjects per arm; published 1990-2003; both lab-confirmed and non-lab confirmed endpoints

<table>
<thead>
<tr>
<th>Study</th>
<th>Vaccine</th>
<th>Placebo</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruber 1990; I</td>
<td>10/54</td>
<td>37/77</td>
<td>0.25</td>
<td>0.11-0.56</td>
</tr>
<tr>
<td>Clover 1991; II</td>
<td>9/54</td>
<td>56/82</td>
<td>0.26</td>
<td>0.11-0.59</td>
</tr>
<tr>
<td>Neuzil 2001; II</td>
<td>2/27</td>
<td>21/294</td>
<td>0.08</td>
<td>0.02-0.34</td>
</tr>
<tr>
<td>Neuzil 2001; IV</td>
<td>3/308</td>
<td>12/280</td>
<td>0.22</td>
<td>0.06-0.79</td>
</tr>
<tr>
<td>Hoberman 2003; I</td>
<td>15/273</td>
<td>22/138</td>
<td>0.31</td>
<td>0.15-0.61</td>
</tr>
<tr>
<td>Hoberman 2003; II</td>
<td>9/252</td>
<td>4/123</td>
<td>1.10</td>
<td>0.33-3.65</td>
</tr>
<tr>
<td>All Inactivated</td>
<td>48/1268</td>
<td>132/694</td>
<td>0.28</td>
<td>0.17-0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Vaccine</th>
<th>Placebo</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live-attenuated vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruber 1990; II</td>
<td>15/58</td>
<td>37/77</td>
<td>0.38</td>
<td>0.18-0.79</td>
</tr>
<tr>
<td>Clover 1991; I</td>
<td>12/56</td>
<td>36/82</td>
<td>0.35</td>
<td>0.16-0.75</td>
</tr>
<tr>
<td>Belshé 2009; I</td>
<td>14/1070</td>
<td>94/531</td>
<td>0.06</td>
<td>0.03-0.11</td>
</tr>
<tr>
<td>Belshé 2009; II</td>
<td>15/917</td>
<td>56/441</td>
<td>0.11</td>
<td>0.06-0.20</td>
</tr>
<tr>
<td>Neuzil 2001; I</td>
<td>1/31</td>
<td>21/294</td>
<td>0.04</td>
<td>0.01-0.31</td>
</tr>
<tr>
<td>Neuzil 2001; II</td>
<td>4/289</td>
<td>12/280</td>
<td>0.31</td>
<td>0.10-0.98</td>
</tr>
<tr>
<td>All Live-attenuated</td>
<td>61/2701</td>
<td>256/1705</td>
<td>0.16</td>
<td>0.08-0.34</td>
</tr>
<tr>
<td>All</td>
<td>109/3569</td>
<td>388/2699</td>
<td>0.21</td>
<td>0.13-0.34</td>
</tr>
</tbody>
</table>

Summary VE estimates:

Culture-confirmed
TIV - 65% (45 -77)
LAIV – 80% (53 -91)

Serologically confirmed
TIV - 63% (43 - 76)
LAIV – 54% (20 – 74)

Conclusions -
Influenza vaccines are effective
No significant difference between LAIV and TIV
Did not provide results by age group
Summary of evidence for Vaccine Effectiveness (VE) among children 2-5 yrs old

- Influenza vaccines are effective, but
 - VE of TIV depends on vaccine match to circulating viruses
 - VE of LAIV less affected by strain mismatch
- Children 2-5 years may respond better to TIV than younger children
- Superior VE of LAIV has been demonstrated in children < 9 years with diverse T cell responses demonstrated and broader cross protection than TIV
- Superior VE of adjuvanted TIV in children < 6 years compared with standard TIV has been demonstrated (Vesikari 2011)
 - Effect of adjuvant perhaps greater in the youngest children
3. Conclusion: Influenza vaccine for children

- Priority group for vaccination based on high disease burden
- Vaccine effectiveness is more dependent on vaccine strain match to circulating strain
- Preventing influenza disease in influenza-naïve population is challenging
- Need for 2 doses of inactivated vaccine prior to influenza season to provide protection is also challenging
 - LAIV in children > 2 years or adjuvanted vaccine could potentially reduce need for 2 doses
 - No current vaccine for highest risk infants < 6 M of age, indicating need for maternal immunization at highest priority
4. Influenza Vaccine and the Elderly

- Influenza contributes to **substantial** morbidity and mortality in the elderly
- Increasing population of living persons > 65 yrs
- Currently available inactivated influenza vaccine reduce the risk of morbidity and mortality in the elderly. However:
 - Decreasing effectiveness with increasing age and multiple medical conditions
 - Institutionalized elderly may be at greatest risk from influenza, yet benefit less from vaccine.
Influenza vaccine studies in the elderly vary greatly depending on the population, vaccine to circulating strain match, and outcome measured.

VE estimates range widely- from 20 to 80%
 - Efficacy varies based on endpoint: ILI vs lab-confirmed flu
 - Varies between community dwelling and nursing home elderly
 - Is all cause mortality an expected endpoint?

“Healthy vaccinee” effect: healthier individuals may seek out vaccine more readily (Jackson, 2006)

Limited data on LAIV in elderly but this data suggests comparability with TIV in this population
Vaccine Effectiveness in the Elderly: Studies and Reviews

- Cochrane review, 2010: vaccine effectiveness (VE):
 - 41% against ILI of 41%
 - 58% against lab-confirmed flu of 58%

- 2002 meta-analysis by Vu et al (2002) in community-dwelling adults > 65 years found VE of:
 - 35% against ILI
 - 33% against pneumonia/influenza hospitalizations
 - 47% against pneumonia and influenza mortality
 - 50% against all-cause mortality

- 2007 report of annual mass vaccination campaigns for adults > 65 years in Sao Paulo, Brazil detected 26% reduction in age-specific influenza-attributable mortality
4. Influenza vaccine and the elderly: Conclusions

- High risk population group with highest risk of mortality due to influenza
- Traditional focus of vaccination effort and potential benefit in terms of mortality
- However, influenza vaccines are less effective in this population than most other groups, particularly healthy young adults
- Vaccination is the best tool to reduce influenza-associated morbidity and mortality in this group
5. Influenza Vaccine and Persons with Underlying Health Conditions

- Individuals of any age with underlying health conditions are more likely to develop severe disease following influenza infection.
- Effectiveness of influenza vaccine has been demonstrated in subsets of individuals with underlying health conditions in a variety of settings.
High Risk Conditions Considered for Influenza Vaccine

- Respiratory disease
- Cardiac disease
- Neurodevelopmental disorders
- Metabolic disorders
- Immunocompetency disorders
- Chronic liver diseases
- Chronic renal insufficiency
- Hematological diseases
- Chronic aspirin therapy in children
- Others: socially disadvantaged minority groups, members of long term care facilities, morbid obesity
Vaccine performance in persons with high-risk conditions

- Inactivated influenza vaccine effectiveness has been demonstrated in persons with:
 - Asthma
 - COPD
 - Chronic lung disease
 - Cardiac disease

- Compared to healthy populations, VE may be decreased and meta-analyses indicate insufficient evidence to conclude vaccines are fully effective in these populations:
 - Limited evidence in elderly with comorbid conditions, COPD
 - Immunogenicity of flu vaccines are decreased in immunocompromised individuals, but also seroconversion rates may underestimate efficacy of the vaccine (Madhi 2011)

- Evidence of improved effectiveness with higher dose ag vaccines is pending.
South Africa TIV Randomized Controlled Trial: HIV+

- 506 HIV infected adults with CD4+ cell counts >100 cells per microliter (349 on ART) randomized to TIV or placebo
- 13 pregnant HIV-infected women (4 in immunogenicity cohort)
- Seroconversion ~50% for each vaccine strain tested
- Seroconversion rate for H1N1 underestimated observed strain-specific efficacy (73%)

- This study provides rationale for clinical effectiveness studies despite moderate immunologic response to TIV

Madhi CID 2011
5. Influenza vaccine in persons with high risk conditions

- Increasing population of older persons, immunocompromised persons, and those with single or multiple high risk conditions
- Heterogenous population presents difficulties with targeted vaccination campaigns
- Safety and effectiveness of LAIV in these populations not well studied
- Use of influenza vaccine in these populations may be hampered because of programmatic challenges
Thank you
Followup: Influenza Ab in Immunized Mothers and Babies over Time*

*Steinhoff M et al. NEJM 2010; 362:17
Antigen Composition of Vaccine But Not Timing Important in Antibody Response in Toddlers*

Note: Vaccines in blue group differed by drifted A/H3N2 and major lineage switch in B Ag

*Englund et al, Pediatrics 2006
Influenza vaccine efficacy or effectiveness in children < 2 years: TIV

<table>
<thead>
<tr>
<th>Author/Year/Journal</th>
<th>Study Design</th>
<th>Study Year</th>
<th>Lab-confirmed outcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoberman (2003)</td>
<td>RCT</td>
<td>1999-01</td>
<td>Cx</td>
</tr>
<tr>
<td>Vesikari (2011)</td>
<td>RCT</td>
<td>2007-09</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Heinonen (2011)</td>
<td>Cohort</td>
<td>2007-08</td>
<td>IFA, Cx, PCR</td>
</tr>
<tr>
<td>Szilagyi (2008)</td>
<td>Case-Control</td>
<td>2003-05</td>
<td>PCR, Cx</td>
</tr>
<tr>
<td>Ritzwoller (2005)</td>
<td>Cohort</td>
<td>2003-04</td>
<td>No</td>
</tr>
<tr>
<td>Eisenberg (2008)</td>
<td>Case cohort</td>
<td>2003-05</td>
<td>PCR, Cx</td>
</tr>
<tr>
<td>Cochran (2010)</td>
<td>Case-Control</td>
<td>2003-05</td>
<td>DFA, Cx</td>
</tr>
<tr>
<td>Kelly (2011)</td>
<td>Case-Control</td>
<td>2008</td>
<td>PCR, Cx</td>
</tr>
<tr>
<td>Kantayose (2011)</td>
<td>Cohort</td>
<td>2002-8</td>
<td>RIDT</td>
</tr>
</tbody>
</table>

Refs:
Hoberman et al. JAMA 2003; 290:1608; Vesikari et al. NEJM 2011; 365:1406;
The effectiveness of TIV in children over six consecutive influenza seasons (Katayose, et al. Vaccine 2011; 29: 1844-49)

Study Design:
Prospective observational study of commercial TIV given as 2 doses to all ages 6 mos-6 years in Japan, with ~2300 children/year over 6 years.

Outcomes
Rapid influenza detection tests based on ARI and fever

Results:
H3N2 predominant 4 years; B and H1 predominant one year each
Vaccine match (good match <= 4-fold HI titer):
 • H1: good match 5/6 years
 • H3: good match 3/6 yrs
 • B: good match 3/6 yrs

Overall VE: 71% (59-80%) over entire study period for all ages
Influenza vaccine efficacy in children: Randomized Control Trials of TIV

<table>
<thead>
<tr>
<th>Author/Year/Journal</th>
<th>Study Year</th>
<th>Location</th>
<th>Age range</th>
<th>Vaccine Type</th>
<th>Lab Confirmation</th>
<th>VE (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuzil (2001)</td>
<td>1988-89</td>
<td>USA</td>
<td><16 y</td>
<td>TIV</td>
<td>Cx, HI</td>
<td>91</td>
<td>64,98</td>
</tr>
<tr>
<td></td>
<td>1989-90</td>
<td>USA</td>
<td><16 y</td>
<td>TIV</td>
<td>Cx, HI</td>
<td>77</td>
<td>20,94</td>
</tr>
<tr>
<td>Clover (1991)</td>
<td>1986-87</td>
<td>USA</td>
<td>3-18 y</td>
<td>TIV</td>
<td>Cx, HI</td>
<td>62</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Hoberman (2003)</td>
<td>1999-00</td>
<td>USA</td>
<td>6-24 m</td>
<td>TIV</td>
<td>Cx</td>
<td>66</td>
<td>34, 82</td>
</tr>
<tr>
<td></td>
<td>2000-01</td>
<td>USA</td>
<td>6-24 m</td>
<td>TIV</td>
<td>CX</td>
<td>-7</td>
<td>-247, 67</td>
</tr>
<tr>
<td>Loeb (2010)</td>
<td>2008-09</td>
<td>Canada</td>
<td>36 m-15 y</td>
<td>TIV</td>
<td>RT-PCR</td>
<td>61%</td>
<td>8,83</td>
</tr>
<tr>
<td>Vesikari (2011)</td>
<td>2007-09</td>
<td>Germany, Finland</td>
<td>6-71 m</td>
<td>TIV-Adj</td>
<td>RT-PCR</td>
<td>86</td>
<td>74, 93</td>
</tr>
<tr>
<td></td>
<td>2007-09</td>
<td>Germany, Finland</td>
<td>6-71 m</td>
<td>TIV</td>
<td>RT-PCR</td>
<td>43</td>
<td>15, 61</td>
</tr>
</tbody>
</table>

- Range of VE point estimates: 0% - 91%
- 6/8 study-years with significant protection [VE of 43-91%]
- 2 study years with no measurable effect (low AR in control group)