Pertussis Epidemiology and Vaccination in the United States and the Latin American Pertussis Project

Thomas Clark, MD, MPH
Epidemiology Team Lead
Meningitis and Vaccine Preventable Diseases Branch
Reported NNDSS pertussis cases: 1922-2012*

*2011 data are provisional; 2012 data are provisional through week 37.

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service
Reported pertussis incidence by age group: 1990-2011

Incidence rate (per 100,000)

Year

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System
Pertussis Incidence among Infants 2001-2009

Hospitalizations and Deaths
% Total Cases, 2001-2009

Hospitalization % of cases

Death % of cases

Pertussis Immunization in the US

• Whole-cell vaccines/DTwP (1940s)
• DTaP (1990s)
 – Infants at 2, 4, 6 months (1997)
 – Toddlers at 15-18 months (1992)
 – Pre-school at 4-6 years (1992)
• Tdap
 – Adolescents at 11-12 years (2005)
 – Adults who have not received (2005)
High DTaP coverage among children aged 19 through 35 months — 2004–2011

CDC National Immunization Survey
Increasing Tdap coverage among adolescents aged 13–17 years — 2006–2011

- 2006: 10.8%
- 2007: 30.4%
- 2008: 40.8%
- 2009: 55.6%
- 2010: 68.7%
- 2011: 78.2%

CDC. National, State, and Local Area Vaccination Coverage among Adolescents Aged 13-17 Years - United States, 2009 MMWR 2010 ;59(32);1018-1023.
Pertussis cases by age — United States, 2004
n=25,827

Cases

Age (years)

Acellular Only

Whole Cell and Acellular

Transition Period

Vaccine Type Received*

0 200 400 600 800 1000 1200 1400 1600 1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Pertussis cases by age — United States, 2010
n=27,550
Incidence rate ratios of pertussis among children 7-10 years and adolescents 11-18 years — 1990–2010

[Graph showing rate ratios over years for 7-10 years vs others (not 11-18) and 11-18 years vs others (not 7-10).]
DTaP VE and Duration of Protection Estimates—California, 2010

<table>
<thead>
<tr>
<th>Model *</th>
<th>Case (n)</th>
<th>Control (n)</th>
<th>VE, %</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall VE, All Ages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dose</td>
<td>53</td>
<td>19</td>
<td>Ref</td>
<td>--</td>
</tr>
<tr>
<td>5 doses</td>
<td>629</td>
<td>1,997</td>
<td>88.7</td>
<td>79.4 – 93.8</td>
</tr>
<tr>
<td>Time since 5th dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 doses</td>
<td>53</td>
<td>19</td>
<td>Ref</td>
<td>--</td>
</tr>
<tr>
<td>< 12 months</td>
<td>19</td>
<td>354</td>
<td>98.1</td>
<td>96.1 – 99.1</td>
</tr>
<tr>
<td>12 – 23 months</td>
<td>51</td>
<td>391</td>
<td>95.3</td>
<td>91.2 – 97.5</td>
</tr>
<tr>
<td>24 – 35 months</td>
<td>79</td>
<td>366</td>
<td>92.3</td>
<td>86.6 – 95.5</td>
</tr>
<tr>
<td>36 – 47 months</td>
<td>108</td>
<td>304</td>
<td>87.3</td>
<td>76.2 – 93.2</td>
</tr>
<tr>
<td>48 – 59 months</td>
<td>141</td>
<td>294</td>
<td>82.8</td>
<td>68.7 – 90.6</td>
</tr>
<tr>
<td>60+ months</td>
<td>231</td>
<td>288</td>
<td>71.2</td>
<td>45.8 – 84.8</td>
</tr>
</tbody>
</table>

* Accounting for clustering by county and provider
Annual Incidence by State, 2012*

2012 incidence 10.0
(n=30,908)

*2012 data are preliminary and subject to change. Data represent cases received at CDC through Week 39.

Source: CDC National Notifiable Disease Surveillance System, 2012

2011 Census data used for population estimates; Incidence is per 100,000 population
Pertussis cases by age — United States, 2012

<table>
<thead>
<tr>
<th>Vaccine Type Received*</th>
<th>Acellular Only</th>
<th>Transition Period</th>
<th>Whole Cell and Acellular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDC. MMWR 2012;61(28);517-522.

*2012 data are provisional and reflect cases reported to NNDSS through September 4.
SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service
Summary and Working Hypothesis

- Pertussis incidence has increased since 1980s
- Resurgence of childhood disease despite high DTaP coverage
 - Excellent initial vaccine effectiveness
 - Moderate and immediate waning of immunity
- Re-emergence of adolescent disease
 - Tdap effectiveness about 70%\(^1\), duration of protection unknown
 - Tdap boost in DTaP recipients may wane more quickly\(^3\)
- Switch to aP vaccines is changing pertussis epidemiology
 - i.e. a problem of susceptibility *despite* vaccination
 - Waning immunity driving disease incidence

\(^3\)CDC. MMWR 2012;61(28):517-522.
Alternate Hypotheses for Disease Emergence

- **Surveillance bias**
 - Contributing to increasing incidence
 - *However*, cohort effect evident

- **Vaccine antigen content**
 - Minor variability among multi-component vaccine efficacy
 - *However*, much mix-and-match in US children

- **Selective pressure of vaccination on circulating strains**
 - Vaccine–antigen mismatch occurs
 - Mixed evidence for contribution of pertussis toxin promoter 3 (ptxP3)\(^1-4\)
 - *However*, short-term vaccine effectiveness excellent

\(^1\)Mooi et al. EID 2009;15:1206-1213.
Changes in frequency of dominant vaccine-antigen alleles among *Bordetella pertussis* isolates—US, 1935-2009

Maximizing the Vaccination Program

Expanding the Evidence for New Vaccines
Improving regional capacity for surveillance

LATIN AMERICAN PERTUSSIS PROJECT
LAPP Strategy

- Evaluate surveillance and lab systems
- Transfer knowledge and technology (rPCR, culture, serology)
- Contract and supervise national coordinator
- Implement lab QC/QA program

Mentorship, guidance, technical assistance
How far we’ve come, and where we’re going...

- **Tremendous effort**
 - 12 visits to 3 countries
 - >35,000 persons-hours contributed by all partners

- **Improving surveillance capacity in unique settings**
 - rPCR has reduced inconclusive laboratory results in Argentina
 - Increased proportion of cases confirmed in Mexico
 - 100% reporting, decreased time to report in Panama
 - Improved physician knowledge in Panama

- **Improved understanding of pertussis**

- **Sustaining, expanding the network**
THANK YOU