What evidence is available on:
the number of doses,
age at administration,
interval between doses,
duration of protection &
combination vaccines?

Rana Hajjeh, MD
National Center for Immunization and Respiratory Diseases
US Centers for Disease Control and Prevention
Today's Questions

• What are the optimal schedules for Hib vaccines for children living in different epidemiological settings?

1. How many primary doses, and is there a need for a booster dose?
 − Interval between doses?
 − Duration of protection?

2. Does the type of vaccine influence the choice of schedule?
 − Effect of type of Hib vaccine on effectiveness
 − Effect of wP and aP on Hib vaccine effectiveness
Current WHO recommendation for Hib vaccines

<table>
<thead>
<tr>
<th>Age at 1st dose</th>
<th>Doses in primary series</th>
<th>Interval between doses</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st to 2nd</td>
<td>2nd to 3rd</td>
</tr>
<tr>
<td>6 weeks</td>
<td>3</td>
<td>4 weeks (min)</td>
<td>4 weeks (min)</td>
</tr>
<tr>
<td>(min) with DTP1</td>
<td></td>
<td>(min) with DTP2</td>
<td>(min) with DTP3</td>
</tr>
<tr>
<td>24 mos (max)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No recommendation for booster, but acknowledgement that some countries are using a booster dose.
Status of Hib vaccine introduction and schedules currently in use worldwide

By percentage of countries:
- 3p+0: 56%
- 2p+1: 6%
- 3p+1: 28%
- No Hib in routine schedule: 9%

Source: as reported in the JRF, data as at 31st December 2011

By number of infants:
- 3p+0: 77,103,805
- 3p+1: 20,008,149
- 2p+0: 1,689,399
- 2p+1: 1,410,202
- No Hib in routine schedule: 34,785,830

N= 194 countries
N= 134,997,385 newborns
Onset age at Hib meningitis/invasive disease

Burkina Faso

Source: Gessner

Togo

Source: Gessner

Chile

Source: Lagos

Israel

Source: Dagan

Thailand

Source: Chotpitayasunondh

Philippines

Source: Limcangco
Main sources of evidence

- 3 systematic reviews on Hib schedules
- 1 systematic review on combination Hib vaccines
- 35 countries data on long-term impact: using Hib vaccine in routine for ≥ 6 years & data on Hib disease pre & post introduction
- 1 descriptive review of Hib disease & vaccination in the UK
- 1 global review of age distribution of Hib disease cases
How many primary doses?

3p or 2p
Where did we gather the evidence to answer this question?

<table>
<thead>
<tr>
<th>WHAT WE LOOKED FOR</th>
<th>WHAT WE FOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease outcomes</td>
<td></td>
</tr>
<tr>
<td>Studies directly comparing 3p schedule vs 2p schedule</td>
<td>RCTs - none</td>
</tr>
<tr>
<td></td>
<td>Observational - none</td>
</tr>
<tr>
<td>Studies comparing 2p or 3p vs no Hib vaccination</td>
<td>RCTs - 6</td>
</tr>
<tr>
<td></td>
<td>Observational - 15</td>
</tr>
<tr>
<td>Data on duration of protection</td>
<td>RCTs - none</td>
</tr>
<tr>
<td></td>
<td>Observational - 5</td>
</tr>
<tr>
<td>Data from long term impact in countries</td>
<td>Industrialized countries - 14</td>
</tr>
<tr>
<td></td>
<td>Non-industrialized countries - 21 countries</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunological outcomes</td>
<td></td>
</tr>
<tr>
<td>Studies directly comparing 3p schedule vs 2p schedule</td>
<td>RCTs - 6</td>
</tr>
<tr>
<td></td>
<td>Observational - none</td>
</tr>
<tr>
<td>Studies comparing 2p or 3p vs no Hib vaccination</td>
<td>RCTs - none</td>
</tr>
<tr>
<td></td>
<td>Observational - 3</td>
</tr>
<tr>
<td>Data on duration of protection</td>
<td>RCTs - 13</td>
</tr>
<tr>
<td></td>
<td>Observational - none</td>
</tr>
<tr>
<td></td>
<td>plus studies from UK & unpublished data from Kenya</td>
</tr>
</tbody>
</table>
Hib vaccine efficacy/effectiveness against invasive Hib disease
Studies comparing various schedules versus no vaccination

Triangle = RCT, Square = Observational study
Blue = wP; Red = aP; Grey = not stated
All studies used PRP-T conjugate combined with wP except the USA-Santosham 1991, that used monovalent Hib with PRP-OMP.

Triangle = RCT, Square = Observational study, solid= community control, hatches= hospital control.
Hib vaccine efficacy/effectiveness against radiologically confirmed pneumonia

Studies comparing various schedules versus no vaccination

All studies used PRP-T conjugate combined with wP except the Colombia-De la Hoz 2004 that used monovalent PRP-T and Brazil-de Andrade 2004 which used monovalent PRP-HbOC vaccine

Triangle = RCT, Square = Observational study,
Blue = wP; Red = aP; Grey = not stated,
solid= community control, hatches= hospital control
Duration of serological response following Hib PRP-T conjugate vaccine (anti PRP antibodies ≥ 1.0µg/ml)
Effectiveness of Hib vaccine introduction into routine immunization in Kenya (Kilifi) (3p+0)

Source: A Scott personal communication
Effectiveness of Hib vaccine introduction into routine immunization in Kenya (3p+0)

Source: Figure courtesy of L Hammit, Goldblatt, and A Scott
Does using a 3p schedule result in greater immunogenicity or effect on disease than using a 2p schedule?

CONCLUSION

Data available do not favour a 3p+0 or 2p+0 schedule in terms of disease outcomes or immunogenicity for various Hib vaccine types.
Does using a 3p schedule results in greater immunogenicity or effect on disease than using a 2p schedule?

CAUTION

Vaccine efficacy from different trials cannot be compared directly as evidence of equivalence or superiority of one particular schedule.

Most of the evidence is from observational studies.

The observational studies took place when the vaccine was in routine use and other children in the community may have received 3 or more doses.
Is there a need for a booster dose?
Where did we gather the evidence to answer this question?

<table>
<thead>
<tr>
<th>WHAT WE LOOKED FOR</th>
<th>WHAT WE FOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease outcomes</td>
<td>Immunological outcomes</td>
</tr>
<tr>
<td>Studies directly comparing 3p+0 vs 3p+1 or 2p+1 schedules</td>
<td>RCTs- none</td>
</tr>
<tr>
<td></td>
<td>observational - none</td>
</tr>
<tr>
<td>Studies comparing 3p+0 or 3p+1 or 2p+1 vs no vaccination</td>
<td>RCTs- 3</td>
</tr>
<tr>
<td></td>
<td>observational- 2</td>
</tr>
<tr>
<td>Data on duration of protection</td>
<td>RCTs- none</td>
</tr>
<tr>
<td></td>
<td>observational - 3</td>
</tr>
<tr>
<td></td>
<td>plus studies from the UK</td>
</tr>
<tr>
<td>Data from long term impact in countries</td>
<td>Industrialized countries - 14</td>
</tr>
<tr>
<td></td>
<td>Non-industrialized countries - 21 countries</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trends in Hib meningitis incidence in 4 South American countries after Hib vaccine introduction

Less than 1 year of age

1–4 years of age

3p+0 (@ 2, 4, 6 mos) = Chile & Colombia
3p+1 (@ 2, 4, 6 & >b11 mo) = Uruguay & Argentina

Source: Garcia S et al/Vaccine 30 (2012) 486-492
Incidence rates of laboratory-confirmed, Hib disease, in children <5 years old, South Africa, 2000-2010

Source: Figure courtesy of A von Gottberg
Number of children with confirmed invasive Hib disease, reported by age and known vaccination status (n=263), South Africa, 2003-2009

Number of Hib vaccine failures (n=138) by age and HIV infection, South Africa, 2003-2009

Source: Figure courtesy of A von Gottberg
Incidence of Hib meningitis in children < 5 years of age (cases per 100,000 per year) in The Gambia*

3p+0 @ 6,10, 14 weeks, PRP-T conjugate, Hib introduction 1997, penta since 2009

Prevalence of Hib carriage decreased from 12% to 0.25%

* using surveillance data from the Western Region

Source: Adegbola R et al 2005, updated courtesy of S Howie et al., MRC Gambia
Experience in The Gambia (3p+0)

Summary courtesy of the MRC The Gambia

<table>
<thead>
<tr>
<th>Vaccine Coverage</th>
<th>Pre-1997</th>
<th>2002</th>
<th>2006</th>
<th>2007-10</th>
<th>2011-12*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveillance</td>
<td>Vaccine intro</td>
<td>3 doses=68%</td>
<td>-</td>
<td>3 doses=92%</td>
<td>-</td>
</tr>
<tr>
<td>Western Region formal surveill.</td>
<td>Western Region formal surv.</td>
<td>Western Region no formal surv. incidental case reports.</td>
<td>Western Region formal surv.</td>
<td>Western Region no formal surv. Eastern Region formal surv</td>
<td></td>
</tr>
<tr>
<td>Hib meningitis rate (100,000 < 5 yr)</td>
<td>70</td>
<td>0</td>
<td>5 cases</td>
<td>0.8 - 2.3</td>
<td>WR: few cases ER: > 20 cases</td>
</tr>
<tr>
<td>Age cases</td>
<td>80% < 12 mo</td>
<td>-</td>
<td>median age 15 months</td>
<td>-</td>
<td>50% < 12 mo 50% >2 doses</td>
</tr>
<tr>
<td>Carriage rate (1-2 yo)</td>
<td>12%</td>
<td>0.25%</td>
<td>-</td>
<td>0.9%</td>
<td>-</td>
</tr>
</tbody>
</table>
Hib vaccination schedule in the 5 countries of Scandinavia.

Sequence of starting vaccination and decline of classical Hib diseases in Finland, Iceland, and Norway.

Age specific incidence rates (per 100,000 pop) for invasive disease caused by Hib in Italy, 1997-2009

Hib vaccine introduced in 1999
(2p+1)

Source: Giufre M et al 2011
Number of cases of invasive Hib disease in different age-groups diagnosed in England and Wales (1990-2010).

Vaccine intro
3p+0 @ 2, 3, 4 mo

Catch-up toddlers

Vaccine shortage then vaccine with aP used

Combination with wP

Catch-up 6m-4yrs

Booster Intro 3p+1

Source: Health Protection Agency Centre for Infection
• **Duration of protection**

• Although there is some evidence for decrease over time in the proportion above a set threshold there is limited evidence for this decline being associated with an increase in disease

• **Example: two countries with good data**

• Industrialised country (UK)
• Non-industrialized country (Kenya)
Duration of seropositivity/protection after 3p+0: % direct protection vs clinical disease in UK, % above 1ug/ml in the UK and Kenya

- **UK, 3p+0, clinical**
 - Ramsay 2004 (UK) - % direct clinical effectiveness after 3+0 with Hib [PRP-T] given with wP

- **UK, 3p+0, %>1ug/ml**
 - Hammitt, Goldblatt & Scott (unpublished, Kenya) - % above 1ug/ml after 3 doses of Hib [PRP-T] given with wP (vaccinated children aged <10yrs in year 2009)

- **Kenya, 3p+0, %>1ug/ml**
 - Southern 2007 (UK) - % above 1ug/ml after 3+0 with Hib [PRP-T]
Does using a schedule with a booster results in greater immunogenicity or effect on disease?

CONCLUSION

In some countries, administering a booster dose during the child’s second year of life has been deemed necessary to sustain overall disease control in population and direct protection of toddlers.

The need for booster doses in non-industrialized countries requires further evaluation.
Does using 3 primary doses of Hib conjugate vaccine in infancy have a greater effect on disease or immunological outcomes than using two or three primary doses with a booster?

CAUTION

The situations in which a booster dose should be used remain unclear.

It would depend on various factors including local epidemiology, co-administered vaccines, and the potential for natural boosting as well as other factors.
Does using a Hib vaccine schedule with a longer interval between primary doses (e.g. \(\geq 8 \) weeks) results in greater effect on Hib disease or immunogenicity than a schedule with a shorter interval (e.g. 4 weeks)?

The data we found showed no consistent or clinically relevant differences between shorter and longer intervals.

- There were no RCTS or observational studies that compared various intervals and, types of vaccine conjugate and that reported effect on various disease outcomes.

- We did not find enough evidence on 2p+1 schedule at short intervals (i.e. 4 weeks).

- We did not find strong evidence from observational studies for a difference in VE according to dosing interval.

- From long term impact studies, both 4 week and 8 week intervals have been used in a number of countries with good sustained impact.
Effect of combination vaccines

- Data do not suggest clinically relevant decreases in Hib efficacy or interference with other antigens with the use of combination vaccines compared with monovalent vaccines.

- There is some evidence of lower immunogenicity against Hib with the use of aP vaccines compared to wP vaccines, though little evidence of interference with other antigens in either combination.

- The clinical relevance of lower immunogenicity is unclear outside the UK, as is the necessity of a booster dose with the use of aP containing vaccines.
Herd immunity

Systematic review of Hib vaccine herd effect <5yrs: total impact vs expected direct impact

• Observed total impact
 – % reduction in Hib meningitis/invasive disease <5yrs

• Expected direct impact
 – Hib dose 3 coverage x 93% efficacy (Griffiths et al, meta-analysis)

• Restricted to studies with weighted average of dose 3 coverage in under five population
 – 24 studies from 8 countries
Estimated herd effect <5yrs by comparing observed total impact with expected direct impact

24 data points

Australia = 2
Brazil = 12
Cuba = 1
France = 1
Kenya = 2
Senegal = 1
Spain = 3
Tonga = 2

% total effect

% direct effect (coverage x efficacy)

Walker N et al, unpublished
Evidence gaps

- Long term impact of Hib vaccine in developing countries
- Effect of various Hib schedules, especially in developing countries
- Effect of Hib vaccines administered in combinations containing aP
Research priorities

- Ongoing surveillance to monitor long term impact and possible disease resurgence in selected high quality surveillance sites.

- Evaluation of need for booster in HIV-infected children.

- Assessment of impact on Hib disease of switching to aP containing combinations
Summary of Findings

- **Number of doses** - at least 3 doses
 - Either 3 or 2 primary doses (if part of a 2p+1 schedule)

- **Need for booster** - unclear
 - Industrialized countries, most use boosters
 - Developing countries, good impact demonstrated with 3p+0, need to further evaluate long term impact & need for booster

- **Interval between doses** - at least 4 weeks
END