SAGE Working Group on Pertussis Vaccines

Summary of Evidence:
Strategies to Prevent Early Mortality

E. Miller, SAGE Pertussis Working Group Member
and Chair until February 2014

WHO SAGE Meeting

April 1-3, 2014
Strategies to Prevent Infant Mortality

- 1 or 2 doses of pertussis vaccine
- Maternal immunization
- Newborn immunization
- Cocooning
- Health care worker immunization
Infant Hospitalizations – Recent Data

[Bar chart showing incidence per 100,000 population for various countries and years.

Infant Mortality – Recent Data

- Brazil is included 13 years data from 2000 to 2012
- Denmark, Israel are included 8 years data from 2005 to 2012
- Germany, France is included 10 years data from 2002 to 2011
EFFECTIVENESS OF 1 OR 2 DOSES OF PERTUSSIS VACCINE
1 or 2 Dose Effectiveness

• Background
 • In 2009, insufficient data to determine effect of 1 or 2 doses on mortality
 • Country questionnaire included data request
 • Mortality data remain limited
 • Effect on severe infant morbidity and/or hospitalization also assessed
 • Assessment of effectiveness preliminary
 • May change with systematic review of vaccination schedules
 • However, data consistent and convergent across multiple studies
1 or 2 Dose Effectiveness

<table>
<thead>
<tr>
<th>Country/ Vaccine</th>
<th>Single dose</th>
<th>Two doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (aP)</td>
<td>VE hospitalization: 55% (95%CI: 43-65%)</td>
<td>VE hospitalization: 83% (95%CI: 70-90%)</td>
</tr>
<tr>
<td>Quinn et al (2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (aP or wP)</td>
<td>VE against infant pertussis disease: 62% (95%CI: 53-69%)</td>
<td>VE against infant pertussis disease: 85% (95%CI: 77-91%)</td>
</tr>
<tr>
<td>Campbell et al (2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France (wP)</td>
<td>VE against infant pertussis disease: 58%</td>
<td>VE against infant pertussis disease: 87%</td>
</tr>
<tr>
<td>Germany (aP)</td>
<td>VE hospitalization: 68.0% (95%CI: 45.6-81.1)</td>
<td>VE hospitalization: 91.8% (95%CI: 84.7-95.7)</td>
</tr>
<tr>
<td>USA (wP or aP)</td>
<td>VE against pertussis disease in ages 6-23mo: 50.5% (95% CI: -71.1-86.3)</td>
<td>VE against pertussis disease in ages 6-23mo: 80.1% (95% CI: 41.3-93.2)</td>
</tr>
<tr>
<td>Unpublished data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 or 2 Dose Effectiveness

Conclusions
- Overall vaccine effectiveness
 - 1 dose of aP or wP >50% effective
 - 2 doses of aP or wP >80% effective
- No evidence of superiority for any aP vaccines
- Early first dose critical
 - As soon as possible ≥ 6 weeks
 - Pertussis incidence peaks in 2nd month prior to routine vaccination
 - Timing based on local epidemiology and vaccine delivery system
 - Must complete entire series to prevent morbidity in older age groups and prevent transmission to unvaccinated infants
MATERNAL IMMUNIZATION
RECENT UK EXPERIENCE
Reconciled deaths from pertussis in infants, England only

Sources: lab confirmed cases, certified deaths, Hospital episode statistics, GP registration details
* Both with unvaccinated mothers
% of mothers vaccinated by week of birth of infant (to 3/9/2013) and timing prior to delivery:

Data from the Clinical Practice Research Datalink which covers 12.5 million UK patients.
<table>
<thead>
<tr>
<th>Age group</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>% change 2013 vs 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 month</td>
<td>24</td>
<td>16</td>
<td>6</td>
<td>16</td>
<td>43</td>
<td>10</td>
<td>-38</td>
</tr>
<tr>
<td>1 month</td>
<td>67</td>
<td>43</td>
<td>22</td>
<td>57</td>
<td>161</td>
<td>37</td>
<td>-35</td>
</tr>
<tr>
<td>2 months</td>
<td>58</td>
<td>29</td>
<td>15</td>
<td>45</td>
<td>124</td>
<td>25</td>
<td>-44</td>
</tr>
<tr>
<td>3-5 months</td>
<td>33</td>
<td>20</td>
<td>6</td>
<td>21</td>
<td>62</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>6-11 months</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>22</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1-4 years</td>
<td>21</td>
<td>19</td>
<td>7</td>
<td>10</td>
<td>58</td>
<td>41</td>
<td>320</td>
</tr>
<tr>
<td>5-19 years</td>
<td>184</td>
<td>121</td>
<td>59</td>
<td>124</td>
<td>1128</td>
<td>669</td>
<td>440</td>
</tr>
<tr>
<td>20+ years</td>
<td>307</td>
<td>304</td>
<td>186</td>
<td>349</td>
<td>4311</td>
<td>2984</td>
<td>755</td>
</tr>
<tr>
<td>Total</td>
<td>702</td>
<td>555</td>
<td>304</td>
<td>629</td>
<td>5909</td>
<td>3795</td>
<td>503</td>
</tr>
</tbody>
</table>
Maternal pertussis vaccine effectiveness by timing of vaccination in relation to delivery using the **screening method**: data to September 2013

<table>
<thead>
<tr>
<th>Timing of maternal immunisation</th>
<th>VE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 7 days before birth</td>
<td>91% (84% to 95%)</td>
</tr>
<tr>
<td>At least 28 days before birth</td>
<td>91% (83% to 95%)</td>
</tr>
<tr>
<td>7 to 27 days before birth</td>
<td>91% (70% to 96%)</td>
</tr>
<tr>
<td>0-6 days before or 1-13 days after birth</td>
<td>38% (-95% to 80%)</td>
</tr>
</tbody>
</table>
Some reduction in infants’ post primary responses to pertussis antigens, diphtheria, meningococcal C conjugate and some pneumococcal serotypes

The clinical significance of these reductions is uncertain

(PT antibody response is shown here, similar results for FHA and fimbrial antibodies)
Pregnant women with a record for a pertussis-containing vaccination from 01/10/2012 to 31/03/2013 were identified in the Clinical Practice Research Datalink. Stillbirth rates following vaccination were compared to published national background data. A matched cohort study, using historical unvaccinated controls, examining a range of pre-defined pregnancy-related adverse events was also conducted.

Follow up information on 17,560 vaccinated women. No adverse affects on fetal or obstetric outcomes identified
Baboon Trans-placental transfer of Maternal IgG

Attribution: Tod J. Merkel et al
Laboratory of Respiratory and Special Pathogens CBER/FDA
Baboon Maternal Vaccination Confers Protection

Infants born to vaccinated mothers exhibit no signs of infection
- No leukocytosis
- No coughing
- No reduction in activity

Attribution: Tod J. Merkel et al
Laboratory of Respiratory and Special Pathogens CBER/FDA
Maternal Immunization

• Conclusions
 • aP vaccine safe and effective for pregnant women.
 • High impact on infant pertussis incidence and mortality
 • Direct: protection via transfer of maternal antibodies
 • Indirect: Lower risk of transmission through protection of the mother
 • Some reduced post-primary antibody levels in infants of vaccinated mothers (USA, Canadian and E&W infant immunogenicity studies)
 • Clinical significance uncertain
 • No evidence so far of increased risk of pertussis in UK infants after primary immunisation
 • aP findings cannot be extrapolated to wP vaccines without additional immunogenicity and safety data
NEWBORN IMMUNIZATION
Newborn Immunization: Conclusions

• Neonatal immunization not recommended at this time
 • Evidence of immunogenicity in infants but limited data on impact and safety
 • Data from baboon infants receiving a single vaccine dose demonstrate protection against severe pertussis disease
 • Lack of availability of an aP alone vaccine
 • Window period of susceptibility

• Continued evaluation recommended
 • If data supporting immunogenicity, protection, and safety become available, it may have supplementary role along with maternal vaccination
Cocooning

Rationale

• Aims to protect young infants by reducing their risk of exposure to pertussis

• Requires vaccination of the most likely sources of infection for the infant
 • Parents, siblings, grandparents…
Cocooning: Conclusions

Based on unpublished data from Australia and Chile:

Quinn et al. Effectiveness of preventing infant pertussis by the ‘cocooning’ strategy: NSW case-control study

- May reduce severe infant morbidity
 - Timing is crucial
 - Cost-effectiveness lower than maternal or neonatal vaccination due need to vaccinate larger number of individuals

- Advantages
 - Possible better acceptability of vaccination post-partum than during pregnancy in some settings

- Disadvantages
 - Delay in protection, logistic difficulties, effectiveness of aP against transmission?
HEALTH CARE WORKER IMMUNIZATION
Health Care Worker Immunization

• Results
 • Approaches include vaccination of all HCWs or those with increased pregnancy, newborn, or infant contact
 • No evidence for prevention of transmission to infants
 • But case/outbreak reports HCW role in nosocomial pertussis transmission
 • Only partially effective - documented transmission from dTap vaccinated HCWs

• Conclusions
 • HCW are highest priority group in adult vaccination programs
 • Implementation logistically difficult in absence of adult program
 • Needs revisiting - degree of aP protection from infection unclear
Summary

• 1 or 2 doses of pertussis vaccine
 • Effective in preventing mortality/severe disease
 • Timely vaccination with start of series at 6 weeks is important

• Maternal immunization
 • Overall reduction in infant mortality
 • Direct: protection via transfer of maternal antibodies
 • Indirect: lower risk of transmission through protection of the mother
 • Issue of cost-effectiveness
 • May be cost effective in some high income settings
Summary

• Cocooning
 • When applied with high coverage, cocooning strategies may have an impact on infant disease
 • Degree of effect varies with setting and coverage rate

• Newborn immunization
 • Not currently recommended due to limited data on impact and safety, gap in protection, and lack of aP alone vaccine

• Health care worker immunization
 • Existing adult programs should prioritize health care workers to reduce risk of transmission to infants