Review of Proposed Recommendations of Pertussis Working Group

C. A. Siegrist, SAGE Pertussis Working Group Chair

WHO SAGE Meeting

April 1-3, 2014
Evidence Reviewed

- Country-specific data
- Baboon experimental model
- Historical randomized trials
- Mathematical modelling
Summary

• Pertussis epidemiology
 • *B. pertussis* strains have evolved over time
 • Inconsistent correlation with vaccine programs and epidemiology
 • No evidence to date for diminished effectiveness of vaccines against different allelic variants
 • No evidence of emergence of *B. parapertussis* in aP or wP using countries

• Pertussis vaccination
 • Main objective of pertussis vaccination is to reduce risk of severe pertussis in infants
 • wP and aP very effective in reducing disease with high coverage
 • Drastic decline in global incidence *and* mortality in post-vaccine era
Acellular (aP) vs Whole cell (wP) Vaccines

- Acellular vaccines
 - Lower initial efficacy
 - Faster waning of immunity
 - Possible reduced impact on transmission
 - Likely to result in resurgence
 - Magnitude and timing of resurgence difficult to predict
 - Potential increased risk of death in those too young to be vaccinated

Not Vaccinated? No Kisses!

Get the adult whooping cough vaccine.

www.VaccinateYourFamily.org
Acellular (aP) vs Whole cell (wP) Vaccines

- Acellular vaccines
 - Lower initial efficacy
 - Faster waning of immunity
 - Possible reduced impact on transmission
 - Likely to result in resurgence
 - Magnitude and timing of resurgence difficult to predict
 - Potential increased risk of death in those too young to be vaccinated

- Proposed mechanism
 - aP vaccines induce different type of immune response
 - Higher Th2-promoting antibody responses
 - Lower Th1 and Th17 responses
 - Less effective at limiting and clearing mucosal infections
Acellular (aP) vs Whole cell (wP) Vaccines

Transition from wP to aP vaccines?

- Must consider overall goal of national immunization program

 1. Protection of infants? No benefit of aP over wP vaccines
 - disease-related mortality significantly reduced with either wP or aP vaccination

 2. Protection of older children or adults? Multiple doses of aP required
 - Only possible with aP vaccines (less reactogenic)
 - Requires repeat boosting (limited duration of efficacy) to limit/prevent resurgence and increased risks to infants
 - Increased program cost
Supplemental Strategies may be considered to Prevent Infant Mortality

• **Maternal immunization**
 • aP vaccines safe & effective (via transfer of maternal antibodies)

• **Immunization of newborns**
 • Limited safety and effectiveness data; no standalone aP vaccine

• **Cocooning**
 • Potential reduction in severe morbidity; timing crucial; requires high coverage

• **Adolescent/adult booster**
 • Health care workers should be priority group
Supplemental Strategies: Maternal Immunization

• Likely most cost-effective supplemental strategy
 • Consideration when residual pertussis infant mortality is high
 <-> Priority should remain on early infant vaccination
 <-> Requires surveillance of infant disease burden
 • TdaP recommended (not DTwP)
 • 1 dose in 2nd or 3rd trimester; >1 week prior to delivery
 • More cost-effective than cocooning or neonatal immunization

• Further evaluation required to determine utility in women primed with aP vaccines
 • Potential reduced immune response in aP primed adolescents
Supplemental Strategies: Neonatal Immunization

- Neonatal immunization not recommended at this time
 - Limited data on impact and safety
 - Lack of availability of an aP alone vaccine
 - Window period of susceptibility

- Continued evaluation recommended
 - Data from human and baboon infants receiving a single vaccine dose demonstrate protection against severe pertussis disease
 - If data supporting immunogenicity, presumptive protection, and safety become available, it may have supplementary role along with maternal vaccination
Supplemental Strategies: Cocooning Immunization

• May reduce severe infant morbidity
 • Timing is crucial – as well as coverage
 • Cost-effectiveness varies (lower due to required multiple vaccine doses)

• Advantages
 • Better acceptability of vaccination post-partum than during pregnancy
 • Accessibility to whole family and opportunity to educate

• Disadvantages
 • Delay in protection, parental refusal, logistic, political, & economic issues
Supplemental Strategies: Adult Booster

- Adolescence or adult boosters
 - Not generally recommended to control infant disease
 - No evidence of impact on infant disease
 - Does reduce disease in adolescents

- Requirements prior to country introduction
 - Careful assessment of local epidemiology
 - Estimate adolescent contribution to infant disease
 - Selection of adolescent and/or adult target groups
Supplemental Strategies: Adult Booster

• Health Care Workers (HCW)
 • Should be a prioritized adult group
 • Focus on those with direct contact with pregnant mothers and infants
 • Prevention of nosocomial transmission to infants in health care settings
 • Requires high coverage rates
 • No evidence that strategy prevents acquisition and transmission
 • Some evidence of transmission after Tdap in hospital settings
 • Strategy to be revisited to assess impact in those primed with aP only
Surveillance

• Careful epidemiological surveillance is key
 • Monitoring of disease burden and immunization impact
 • Influence of differing vaccine booster doses on disease incidence
 • Focus on infants <1 year of age (investigation of infant fatalities)
 • Hospital surveillance should be a priority
 • Outbreak epidemiology has important role

• Laboratory data
 • Focus on enhancing specificity
 • Retention of cultures for assessment of molecular characteristics
 • Samples may be frozen and sent for assessment reference laboratories
Modelling: Research Questions

• Methodology
 • Application of country-specific data to models to:
 • Validate models
 • Evaluate strategies
 • Understand program impacts

• Priority research questions
 1. What are the circumstances under which a resurgence should be expected?
 2. What is the impact of different boosting strategies on disease incidence and resurgence?
General Recommendations (1)

• All children should be immunized against pertussis
 • Maintain high levels of coverage (≥90%)
 • Minor reductions can lead to an increase in incidence

• Goal is early and timely vaccination in all countries
 • As soon as possible ≥ 6 weeks of age
 • ≥ 3 doses of assured quality vaccine
 • 1 dose (~50%+) 2 doses (~ 80%+) effective against severe disease
• **wP vaccines preferred when:**
 - Program target is prevention of infant disease
 - Limited number of pertussis doses delivered / affordable

• **aP vaccines should only be considered when:**
 - Program objectives include older children and adults
 - Large numbers of doses may be included in a national immunization schedule
 - Cost implications (higher unit cost & number of required doses)
Supplemental Strategies may be considered to Prevent Infant Mortality

- **Maternal immunization**
 - aP vaccines safe & effective (via transfer of maternal antibodies)

- **Cocooning**
 - Potential reduction in severe morbidity; timing crucial; requires high coverage

- **Adolescent/adult boosters**
 - Health care workers should be priority group