Sabin-IPV Development

9th WHO-UNICEF Informal Consultation with OPV & IPV Manufacturers & NRAs

02 December 2010, Geneva

Wilfried Bakker

02 December 2010
Contents Presentation

- History & Rationale for Sabin-IPV development
- Sabin-IPV : Vaccine Development Project
- Seedlots and Clinical Lot production
- Technology Transfer to DCVM
- R&D-program: Process optimization & Antigen sparing
Rationale for Sabin-IPV development

- Current tool for the WHO Polio Eradication program is: OPV
- Emergence and outbreaks of cVDPVs since 2000
- Therefore use of all OPV should be stopped after PE

- Risk: after PE developing countries will stop polio vaccination
- IPV production (using wild-type polio) is not feasible in developing countries because of containment risks

- Sabin-IPV appears feasible:
 - OPV is currently produced in developing countries
 - Lower risk of production facilities related polio outbreaks
Lab-Scale Sabin-IPV Purification Scheme

Monovalent bulk (by BioFarma)

Concentration

Purification

Inactivation

Monovalent pool

Proof-of-principle project (2007):
Preparation of purified trivalent inactivated Sabin-IPV

based on:
The current NVI Salk-IPV production process
Sabin-IPV project at NVI

Planned activities (2008 – 2011):

I. Clinical lot preparation &
 Prepare for Clinical studies and Licensing

II. Process optimization and dose reduction studies

III. Training and Tech Transfer :
 – Generic workshop / training courses
 – Strive for bilateral Tech Transfer agreements with DCVM

Kreeftenberg et al. (2006) Biologicals; Kersten et al. (1999) Vaccine
Planning: Anticipated Milestones Summary

- **Seedlots**: Q1 2009
- **Monovalent pools**: Q2 2010
- **Trivalent product**: Q3 2010
- **Released product**: Q4 2010
- **Start clinical study**: 2011
- **Finish clinical study**: 2011

- **Start stability testing**: Q1 2009
- **Sabin-IPV Workshop**: Q2 2010
- **Finish stability testing**: Q3 2010
- **Start pre-clinical testing**: Q4 2010
- **Start hands-on training of TT partners**: Q1 2011
Current Salk-IPV production scheme

Upstream processing

Vero cell
Media
Virus

Downstream processing

Monovalent pool
Trivalent bulk

Inactivation

IPV DT&IPV
Before CTM production:
Lab-scale Process Development

- Multivariate Data Analysis (Salk-IPV production)
 For better process understanding
 and future improvements

- Scale-down model (USP & DSP)
 Using DOE methods for future process improvements
 ACF media; increased yields

- Set initial process specifications (Sabin-IPV production)
 MOI; virus culture temperature; SEC and IEX conditions

Thomassen et al. (2010) Biotechnol Bioeng; Bakker et al. (2010) ESACT-proceedings
Seedlot Generation

Source material:
- Type 1: WHO / Behringwerke 1976 SO+1
- Type 2: WHO / Behringwerke 1976 SO+1
- Type 3: Institut Mérieux 1963 (457-Pfizer) RSO1

Master Seed Lots (3 types): 10-L scale

Working Seed Lots (3 types): 350-L scale

Culture conditions:
MOI = 0.01 and T = 32.5°C for all types
Milestone 1:
Master (3x) & Working (3x) Seedlots made
Milestone 2: Monovalent Pools (6 lots) produced

Upstream processing:
- Vero cell
- Media
- Virus

Downstream processing:
- Monovalent pool

Inactivation:
- Process updated where appropriate: Clarification modernized

02 December 2010 WAM Bakker - Sabin-IPV Development
Quality Control (QC)

- Selection of international release tests for production lots (product should meet current IPV release criteria)
- Based on EP and WHO guidelines

- General assays (e.g. Protein, TOC, Sterility, etc.)
- Polio specific assays (e.g. D-ag, Virus titer, Rat Potency, etc.)
- Sabin specific assays (Neurovirulence)
6 Monovalent Pools prepared: 2 lots per virus type (2 x 3 types = 6 lots) at 700-L bioreactor production scale

Monovalent Pool QC-testing according to Bill-of-Testing in progress:

- Current status: conform requirements (e.g. Identity Vero cells & Sabin Polio virus, Mycoplasma, Extreneous agents, Sterility, Virus titer, D-antigen content, Inactivation, Endotoxins, Formalin, Bovine serum, Protein nitrogen, Residual DNA)
- Neurovirulence testing is being outsourced
Immunogenicity: Virus neutralization titer

Type 1

Virus Neutralisation Titer (2log)

DU/shd

Salk IPV
Sabin IPV
Sabin IPV + Al(OH)₃

Type 2

Virus Neutralisation Titer (2log)

DU/shd

Type 3

Virus Neutralisation Titer (2log)

DU/shd
Sabin-IPV vaccine formulation considerations:

1. Neutralizing antibody titre should be equal or higher than that induced by the international (Salk-IPV) reference

2. At higher D-antigen doses a plateau in neutralizing antibody level is reached

<table>
<thead>
<tr>
<th>Type</th>
<th>Plain formulation (DU / single human dose)</th>
<th>Al(OH)₃ formulation (DU / single human dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Target</td>
</tr>
<tr>
<td>Type 1</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Type 2</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Type 3</td>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

For reference: plain Salk-IPV formulation is (type 1 – 2 – 3): 40 – 8 – 32 DU/shd
Formulation Development

Conclusions

• On average 1 DU Sabin-IPV:
 – Type 1 is 1.5 times more potent than 1 DU type 1 Salk-IPV
 – Type 2 is 3 to 4 times less potent than 1 DU type 2 Salk-IPV
 – Type 3 is comparable potent with 1 DU type 3 Salk-IPV

• Al(OH)₃ adjuvation increases the Sabin-IPV potency 2 times

• Based on the relative potency Sabin-IPV could be formulated (expected needed dose) in:
 ➢ Plain (type 1 – 2 – 3): 10 – 16 – 32 DU/shd
 ➢ + Al(OH)₃ (type 1 – 2 – 3): 5 – 8 – 16 DU/shd

For reference: Salk-IPV formulation is (type 1 – 2 – 3): 40 – 8 – 32 DU/shd
CTM Production planning

Planned final product filling operations:

- **Milestone 3**: Pre-clinical lots (safety):
 Filled, April 2010

- **Milestone 4**: Pre-clinical lots (safety):
 Conform requirements, October 2010

- Phase I clinical lots: Q4 2010
 - One lot for European study (NVI/WHO);
 - Two lots for local study by TT partner & NVI

- Phase I clinical trial planned: Q1 2011
Regulatory Pathway / Clinical Strategy

- Dutch and/or European phase I study is preferred; local study & registration is required

- Scientific Advise by the Dutch MEB obtained in JULY 2008:
 - Sabin-IPV immunogenicity & safety should be equivalent or better than that for Salk-IPV

- Clinical Trial plan (immunogenicity & safety) and Regulatory Pathway are under development
Clinical Trial – Phase I age de-escalation approach

<table>
<thead>
<tr>
<th>Age group</th>
<th>Arm</th>
<th>Administration</th>
<th>Follow-up</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult (19-49 yrs)</td>
<td>Normal (High dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjuvant (High dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toddler (4-10 yrs)</td>
<td>Normal (High dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjuvant (High dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infants (2 mos)</td>
<td>Normal sIPV</td>
<td>Administration</td>
<td>Follow-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sIPV Adjuvant sIPV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Low)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sIPV Adjuvant sIPV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Middle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sIPV Adjuvant sIPV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(High)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WPcV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

★ IPV
★ Blood collection
Technology transfer of Sabin-IPV to new developing country markets

Hans Kreeftenberg, Tiny van der Velden, Gideon Kersten, Nico van der Heuvel, Marloes de Bruijn

Netherlands Vaccine Institute (NVI), Antonie van Leeuwenhoeklaan 11, 3720 AL Buitenveld, The Netherlands

Starting from 2010:

• Sabin-IPV workshop on large-scale manufacturing done in June 2010

• Setup Sabin-IPV production & QC-testing course for TT partners

• Transfer lab/pilot-scale technology to selected DCVM partners for implementation at their own facilities in 2011

Website launched: www.sabin-ipv.nl
China Vaccine Project
1990-1998

GMP Facility Kunming

GMP Facility Lanzhou

GMP Facility Shanghai; now in use for H1N1 pandemic flu production and other vaccines
Tech Transfer projects since 1990

<table>
<thead>
<tr>
<th>Project</th>
<th>Vaccine(s)</th>
<th>Recipient</th>
<th>Country</th>
<th>Approach</th>
<th>IP-issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Bank Vaccine Project</td>
<td>DTP, MV, OPV</td>
<td>SIBP, LIBP, KIMB, (NCL)</td>
<td>China</td>
<td>turn-key</td>
<td>none</td>
</tr>
<tr>
<td>(1990 – 1998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hib – Project</td>
<td>Hib conjugate</td>
<td>Bio Farma SII, BE Ltd Glovax/SIBP</td>
<td>Indonesia, India, Korea/China</td>
<td>development and transfer of pilot process</td>
<td>non-exclusive license; fees and/or royalties</td>
</tr>
<tr>
<td>(1999 – now)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO ITPIV</td>
<td>egg-based inactivated influenza</td>
<td>VACSERA IVAC Others?</td>
<td>Egypt, Vietnam</td>
<td>1-generic, hub based 2- bilateral TT agreements</td>
<td>non-exclusive license; modest fees; no royalties</td>
</tr>
<tr>
<td>(2007 – now)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO Sabin-IPV</td>
<td>new safer polio</td>
<td>t.b.d.; potentially several</td>
<td>Shortlist of potential companies</td>
<td>1-generic, hub based 2- bilateral TT agreements</td>
<td>non-exclusive license; modest fees; royalties</td>
</tr>
<tr>
<td>(2008 – now)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Previous polio Technology Transfer experience
Continuing a tradition Technology Transfer

NVI pilot-plant facilities

150-L Bioreactor for Training (TT) purposes
Sabin-IPV : Vaccine Development Project

Modernization (R&D) program (preliminary results):

• Process Optimization (animal-component free)
• Characterization, Formulation & Immune response Optimization (dose reduction e.g. by using adjuvants; intradermal administration)
• Alternatives for inactivation: BPL vs. Formalin
Modernization & optimization using Animal-Component-Free media

- 750-L Production-scale
- 2.2-L Lab-scale
- Lab-scale (N = 5) using ACF-media
Batch vs recirculation cultivation

<table>
<thead>
<tr>
<th>Culture no.</th>
<th>Inoc. Cell density (x10^6 c/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 (●)</td>
<td>1.00</td>
</tr>
<tr>
<td>B2 (○)</td>
<td>1.22</td>
</tr>
<tr>
<td>B3 (▲)</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Inoculation cell density: 4 – 8 x 10^6 c/mL
Antigenic fingerprinting of Sabin and Salk

Diagram:
- **ELISA**
 - anti-Ig-HRPO
 - polio
 - MAb
 - PAb
- **Biacore**
 - RaMFc
 - polio
 - MAb

Graph:
- QC-ELISA
- 3-4E4
- 17C5M1
- 3-4E4
- 17C5M1
- 234
- 237
- 423 (result x2.5)
- 17C5M1
- 237
- 423 (result x2.5)

Legend:
- Sabin IPV 1A
- Salk IPV 1
• Salk and Sabin have different antigenic and immunogenic profiles
• D-antigen unit is less suitable from a standardisation point of view
• Antigen quantity expressed as ‘active concentration’ (amount of virus with D-antigenicity) appears to be an attractive alternative
Antigenicity of inactivated Sabin poliovirus type 1

• Alternative inactivation method using β-propiolactone (BPL)
• Antigenicity tested using 6 different monoclonal antibodies
De antigeniciteit is nauwelijks afgenomen door de inactivering met BOL of formaldehyde. Voor de meeste monoclonalen lijkt het dat BPL de epitopen iets minder aantast.
Conclusions

<table>
<thead>
<tr>
<th>Salk-IPV</th>
<th>Sabin-IPV</th>
<th>Salk-IPV & Sabin-IPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine GMP Production
MVDA for Process understanding
Lab-scale equivalent USP & DSP</td>
<td>Phase I Clinical lot Production (GMP)
Lab-scale equivalent used to set new specs.</td>
<td>Technology Transfer for GMP Production
Scale-up to pilot-scale
Study improvements At lab-scale & optimize</td>
</tr>
</tbody>
</table>

02 December 2010 WAM Bakker - Sabin-IPV Development 32
Acknowledgements / Questions

Website:
www.Sabin-IPV.nl

E-mail:
Sabin-IPV@nvi-vaccin.nl

Sabin-IPV project team

Eric van Gerven – Facilities / Validation
Nico van den Heuvel – Production
Fred van Nimwegen – QC
Yvonne Thomassen – Process Dev.
Janny Westdijk – Assay Development
Bernard Metz – Inactivation Studies
Ahd Hamidi – Technology Transfer
Peter van ‘t Veld – QA
Lars Sundermann – QP
Monique van Oijen – Registration
Nynke Rots – Clinical Strategy
Wilfried Bakker – Project management
Peter Belt – Programme Management
And many other NVI colleagues