October 30, 2008

Supply Strategies for Inactivated Polio Vaccine in the Post-Eradication Era

Presentation to OPV / IPV Manufacturers Group
Project Objective: Develop IPV supply strategies for developing world populations

<table>
<thead>
<tr>
<th>Sponsors</th>
<th>Key Questions to be Answered</th>
<th>Audience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioned by The Bill & Melinda Gates foundation (BMGF)</td>
<td>What range of demand could exist for IPV post-eradication?</td>
<td>Intent was to help inform policy and aid country decision making</td>
</tr>
<tr>
<td>WHO/GPEI was a close collaborator</td>
<td>What are the current and potential sources of supply, including new technologies?</td>
<td>Insights and conclusions to be shared with:</td>
</tr>
<tr>
<td></td>
<td>What are key tradeoffs across these supply sources?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are the supply strategy implications?</td>
<td></td>
</tr>
</tbody>
</table>

Audience:
- SAGE [Working Group]
- ACPE
- WHO regions (e.g., AFRO)
- GPEI/WHO
- UNICEF
- Manufacturers
- Gates foundation
Approach: Project conducted over the last year, following a 5-step approach

Diagnostic

1. Assess current IPV supply situation
2. Evaluate tradeoffs / economics of IPV
3. Develop alternative demand scenarios

Strategy formulation

4. Identify alternative supply strategies
5. Evaluate and solicit input

Over one hundred individuals and organizations contributed to this effort, including:

- Current and potential IPV manufacturers
- Global-level supply and demand experts
- Select country government officials
Objectives of this presentation

- Summarize major project findings that are being shared with broad set of constituents
 - Potential post-eradication demand for IPV
 - Sources of supply and tradeoffs across IPV technologies
 - Implications for standalone versus combination vaccines

- Solicit manufacturer feedback and address any questions

- Following this meeting, we will be releasing a public paper summarizing the findings
Demand Findings: Demand is still uncertain with a range of scenarios potentially unfolding beyond the current “as is”

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Which countries adopt?</th>
<th>Adopt when?</th>
</tr>
</thead>
<tbody>
<tr>
<td>“As is” / Current</td>
<td>Upper income countries only</td>
<td>Now until cessation</td>
</tr>
<tr>
<td>“Sovereign” Capacity With Finite Use</td>
<td>“As is” + India, China, & Indonesia</td>
<td>When local production is ready</td>
</tr>
<tr>
<td>“Finite use” (for 5-10 years)</td>
<td>All Countries</td>
<td>Cessation</td>
</tr>
<tr>
<td>“Universal long-term adoption”</td>
<td>All Countries</td>
<td>Cessation</td>
</tr>
</tbody>
</table>

Source: Global-level demand expert interviews
Demand Findings: Demand could rise from the “as is” of 80 million to as high as 425 million annual doses

Source: Oliver Wyman Analysis
Classification data collected from WHO, UNDP, GAVI, and World Bank; birth cohort collected from UNDP, assuming medium fertility, and includes over 99.5% population
1. Coverage rate based on 2008 WHO ICE-T country-by-country projections
2. Wastage rates assumed to be 5% for pre-filled syringe in HICs / UMICs and 25% for multi-dose vial in LMICs / LICs (WHO report: Monitoring vaccine wastage at country level)
Demand Findings: A strong policy recommendation will be a key input to resolving the demand uncertainty and solidifying supply

- SAGE and WHO policy recommendations
 - What situations/conditions warrant the use of IPV?
 - If it should be used: When? For how long? How many doses? What presentation?

- Priority relative to other public health objectives or needs

- Programmatic and other factors (e.g., political considerations)

- Affordability (including donor funding)

Potential IPV Demand

Potential IPV Supply

- “[We] will follow the WHO policy…in the absence of a WHO policy, [we] will not do anything”

- “[Our country] will follow whatever IPV policy WHO recommends; [we have] a long history of doing so with other vaccines”

- “An understanding of demand is a critical input in our IPV investment decisions…stronger policy guidance would help countries make decisions and help us better understand potential demand.”

- “We have had a lot of discussions with countries that want to adopt IPV, but first want WHO’s guidance.”
Supply Findings: Current wild-type IPV (wtIPV) capacity is ~110 million doses annually with the potential to expand to ~400 million if demand materializes.

Source: Oliver Wyman Analysis; Expert Interviews
1. Assumes 10% overfill
Supply Findings: Given its potential capacity and successful history, existing wtlIPV capacity will have a significant role in any post-eradication supply strategy

- wtlIPV is an established, proven source of supply
 - Long clinical and commercial history
 - Able to supply a great deal, if not all, of the additional demand if manufacturers expand

- Manufacturer expansion would result in lower manufacturing cost due to scale economics
 - Vaccine price would be expected to decline although not necessarily proportionately

- However, even if demand increases and manufacturers scale-up, IPV will never be as cheap as OPV
 - IPV manufacturing cost can be in the €0.50 - €1.50 range, which is 5x - 15x OPV price
 - Manufacturing scale will be a key driver of the position within this range
 - Note: This considers vaccine cost only, not broader programmatic & health impact
Supply Findings: Sabin IPV may still have a role to play in the future, but has risks

<table>
<thead>
<tr>
<th>Potential Role</th>
<th>Key Risks</th>
</tr>
</thead>
</table>
| ▪ Several countries likely to require/prefer local production – China; Indonesia; India; Brazil
 – Unclear whether they will require local bulk or be open to importing bulk and finishing locally
| ▪ If these countries require local bulk production, only sIPV production is feasible under GAP-III
 – sIPV may enable IPV adoption (and OPV cessation) by this large demand segment
| ▪ Also, sIPV may increase robustness of supply base | ▪ R&D Risks:
 – Still in early stage development
 – Type 1 higher immunogenicity than wtIPV, type 3 moderately lower, type 2 considerably lower
 – Alternative methods (e.g., adjuvants) offer promise, but are still unproven
| ▪ Timing Risks:
 – Uncertainty around R&D timing, tech transfers, and facility construction
 – May impact cessation timeframe | ▪ Economic Risks:
 – Potential for similar economics as wtIPV (with alternative approaches)
 – However, need to carefully manage scale / # of suppliers or may cost considerably more |
Standalone vs. Combo Findings: To frame the decision around stand-alone versus combination vaccines, we can analyze the break-even combo price

<table>
<thead>
<tr>
<th>Breakeven framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakeven combo pricing (DTP + Hep B + Hib + IPV) = Pricing that would be economically neutral to Penta + IPV standalone</td>
</tr>
<tr>
<td>Breakeven has to consider:</td>
</tr>
<tr>
<td>– Penta and IPV standalone price</td>
</tr>
<tr>
<td>– Administration benefits of combo (~€0.60 savings for combo)</td>
</tr>
<tr>
<td>– Shipping and wastage costs</td>
</tr>
<tr>
<td>Analyzed 2 scenarios of Penta and IPV standalone pricing</td>
</tr>
<tr>
<td>– Current¹: Penta at €2.69; IPV stand-alone at €2.30</td>
</tr>
<tr>
<td>– Low Scenario: Penta pricing at long-term target² of €1.20; IPV pricing at €1.00 (as an assumption?)</td>
</tr>
</tbody>
</table>

Source: Oliver Wyman Analysis

1. UNICEF tenders (2-dose penta: $3.50 converted at 1.30 USD/EUR [avg. 2006], 1-dose IPV: $3.00 converted at 1.30 USD/EUR [avg. 2006])
2. GAVI long-term target of $1.85, using projected exchange rate of 1.54 USD/EUR [1 year currency forward as of July 2007]
Standalone vs. Combo Findings: The current breakeven price for combination vaccines is €5.19, but will decline considerably as Penta and IPV pricing declines.

Breakeven declines further if stand-alone IPV is used in a 2-dose course

Sources: Oliver Wyman analysis, WHO GIVS cost model, WHO expert interviews
1. Calculations based on 2-dose presentation; 15% wastage; exchange rate 1.30 USD/EUR; analysis accounts for price, shipping, wastage, and administration/programmatic costs
Note: Administration cost savings amount to ~€0.60
Standalone vs. Combo Findings: The standalone vs. combo decision will be impacted by considerations around the pertussis antigen

- Current wtIPV suppliers likely not to offer wP combos with IPV (only aP)
 - Existing wP processes not compatible with IPV
 - Changing would require considerable development and regulatory investments

- Therefore, the combo vs. standalone decision from existing wtIPV suppliers would be:
 - aP-based combo vs. standalone IPV + Penta

- Decision would need to be informed by several key inputs:
 - Policy recommendation around pertussis antigen?
 - Whether aP-based combo pricing can be achieved within the breakeven range?
 - Whether additional non-economic value may be placed on aP, raising the breakeven?
Next steps

- We are in the process of finalizing a public paper for broad release that will summarize the findings presented to you today

- We welcome any questions and feedback going forward
 – Adam Sabow (adam.sabow@oliverwyman.com)
 – Graegar Smith (graegar.smith@oliverwyman.com)