Indoor Air Pollution measurement options

Presented by: Kyra Naumoff
Center for Entrepreneurship in International Health & Development
UC Berkeley
May 3. 2005
exposure assessment pyramid
overview of options

1. Biomarkers
2. Direct EA of HH members with personal monitoring
3. Indirect EA of HH members using time activity & microenvironment measurements
4. HH IAP in one or more microenvironments without time activity
5. HH Fuel use, housing & stove characteristics in purposeful surveys
6. HH fuel use from large-scale general surveys, such as the census
7. Regional/National Fuel Use

Accuracy Cost
what characteristics can be measured?

- Ventilation (Air Exchange Rate)
- Indoor Concentrations
- Breath levels
- Personal Exposures
- Outdoor or Total emissions
- Indoor emissions
- Fuel & stove use patterns; Time-activity patterns
what pollutants can be measured?

- Particulate matter
- Carbon monoxide
- Nitrogen oxides
- Sulfur oxides
- Aldehydes
- More, but analysis & interpretation difficult

Outdoor or Total emissions
- CO₂
- Methane

Ventilation
CO is best

Breath levels
CO is easiest

Indoor Concentrations

Personal Exposures

Indoor emissions
when to measure?

- **Duration**
 - Cooking time
 - Morning to evening
 - ~24 h
 - ~48 h
 - ~7 day

- **Different Seasons**

- Generally much variation in a single household during short-term measurements = longer monitoring is better
sampling intervals

- Grab sample
- Integrated sample (average)
- Continuous (idea of peaks)
why measure indoor air pollution?

• Determine:
 – Distribution of exposures
 – Demographic characteristics affecting exposures

• Evaluate if interventions worked:
 – Fuel, stove, ventilation, education, etc.
 – Immediate
 – Over time

• Relate indoor air quality to health outcomes
“technical” solutions

- Better Ventilation
 - Windows: ~10-30% reduction in IAP
 - Hoods: ~25-70%

- Better Stoves
 - Chimneys: ~30-90%
 - Fuel efficiency: - 30% to 30%
 - Combustion efficiency (varies)

- Better Fuels
 - Gases & liquids:~80-99%
common IAP
measurement methods
the dynamic duo

Carbon Monoxide
• Bag collection, lab analysis
• Color-change diffusion tubes
• Electro-chemical monitors

Particulate Matter (PM)
• Gravimetric (pump & filter)
• Light-scattering monitors
indoor & personal carbon monoxide measurement methods

- **Diffusion tubes**
 - Small (can be worn by participant)
 - Indicated by stain length in tube
 - Measures total exposure, not continuous

- **Electrochemical sensors**
 - Small, lightweight, can be worn easily by most participants
 - CO concentration determined by measuring current of a small fuel cell
 - Precision of 0.2-2 ppm

biological carbon monoxide measurement methods

• Exhaled breath (measured in ppm or COHb)

• Blood carboxyhemoglobin
 - Optical Methods (CO-oximetry)
 - Gas chromatography (gold standard)

ambient, indoor & personal particulate matter measurement methods

- pump & filter
- light-scattering devices
- many others
Self-governing programmable pump
Chargeable battery (battery charger not shown)
Airflow calibrator
Cyclone for size selection
Filter cassette
Petri dishes for transporting filters

heavy & bulky
limited data (one average number)
slow (weeks to obtain results)
expensive (~$40 per datum, >$10k capital cost)

real-time data-logging devices,
but can be fragile & expensive
PM measurement options:
light scattering instruments

• Continuous
 – TSI Dusttrak ($6500/unit)
 – TSI SidePak ($5400/unit)
 – Thermo Electron/MIE Personal DataRam ($4250/unit)
 – UCB Particulate Monitor (~$350/unit, to be determined)
<table>
<thead>
<tr>
<th></th>
<th>Air Pump</th>
<th>Keeps Time</th>
<th>Size Selection</th>
<th>Minimum Detection Limit</th>
<th>Detection Method</th>
<th>Cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump & filter</td>
<td>yes</td>
<td>no</td>
<td>specify with cyclone</td>
<td>depends on balance & volume sampled</td>
<td>gravimetric</td>
<td>~$1000/pump & cyclone plus $40/sample</td>
</tr>
<tr>
<td>TSI Dusttrak</td>
<td>no</td>
<td>yes</td>
<td>PM2.5 PM10</td>
<td>~1 µg/m³</td>
<td>light scattering</td>
<td>$6500/unit</td>
</tr>
<tr>
<td>UCB Particle Monitor</td>
<td>no</td>
<td>yes</td>
<td>~0.5µm-5µm</td>
<td>~50 µg/m³</td>
<td>light scattering</td>
<td>~$350/unit (to be determined)</td>
</tr>
<tr>
<td>Grimm Aerosol Monitor</td>
<td>no</td>
<td>yes</td>
<td>0.3 - >10µm</td>
<td>1 µg/m³</td>
<td>laser light scattering</td>
<td>$17,000</td>
</tr>
</tbody>
</table>
Both devices require use of personal computers & software to launch & download data.

Gastec CO diffusion tubes
- integrated
- simple
- relatively cheap

HOBO CO monitor
- continuous
- datalogging
- no direct readout
- many weeks/battery

UCB Particle Monitor
- continuous
- datalogging
- no direct readout
- temperature
- humidity
- 1 week+/battery
- small particle sensitivity
- no sensitivity to larger PM

Personal or area monitors
How does the HOBO CO data logger work?

- Electrochemical sensor
 - Converts CO gas to an electric signal
how does the electrochemical sensor work?

• 2 electrodes immersed in a highly conductive electrolyte solution (sulfuric acid)

• CO, in the present of O₂, is converted to CO₂

• voltage drop across resistor is measured using Ohm’s law (V=IR)

• voltage related to CO concentration

http://www.monox.com/
HOBO CO logger specifications

<table>
<thead>
<tr>
<th>nominal range (ppm)</th>
<th>resolution (ppm)</th>
<th>maximum error (0°-40°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 125</td>
<td>0.5</td>
<td>±10.5 ppm ± 12% of reading</td>
</tr>
<tr>
<td>0 to 500</td>
<td>2.0</td>
<td>±12 ppm ± 12% of reading</td>
</tr>
<tr>
<td>0 to 2000</td>
<td>8.0</td>
<td>±18 ppm ± 12% of reading</td>
</tr>
</tbody>
</table>

Source: http://www.onsetcomp.com/
48 Hours of Continuous Carbon Monoxide Monitoring in a Guatemalan Home Using an Open Fire for Cooking, (HOBO monitor, ppm)
comparison of open fire & improved stove: carbon monoxide levels (HOBO monitor)

Open Fire

Plancha
how does the UCB light scattering chamber work?
Temperature & Humidity Sensor

Data Logger
Dust Track and UCB Measurement in Guatemala
(minute by minute comparison in an Open Fire House)

- Dust Track
- Mean of 15 UCBs with 1 Std Dev

Avg mass DT = 2.6+/-.53 mg/m³
Avg mass 15 UCBs = 1.9+/-.42 mg/m³

R² ~ 0.9
what do the smoke levels during 24 hours in an open fire home look like?

Although the HOBO-CO and UCB-PM monitors measure different pollutants - CO and small particles - both show the patterns of stove usage in the home.
CO & particle measurements agree well with each other in preliminary data from ten Mexican households (Gira)

$y = 5.8206x + 0.4654$

$R^2 = 0.9881$

48-h mean concentrations
limitations to CEIHD kit

- HOBO CO logger
 - requires recalibration
 - eventually replace sensor ($25)
 - lots of data

- CO dosimeter tube ($5/tube)
 - imprecise
 - one-time use
 - expensive for large studies

- UCB particle monitor
 - requires zeroing at every use
 - needs careful cleaning
 - new technology (not traceable to national standards)
 - lots of data

- None produce a physical sample
4 points to remember

• IAP measurements necessary for validating effectiveness of improved stoves

• many IAP measurement options that vary in cost and accuracy (tradeoffs)

• choice of method depends on context (purpose, capacity, finances)

• all methods require data management & quality assurance/quality control plans

thanks…
What new information did you learn about available indoor air pollution monitoring instruments?
extras
outdoor

carbon monoxide measurement methods

- **NDIR method: Nondispersive infrared technique**
 - EPA reference method
 - Automated and continuous
 - Based on specific absorption of infrared radiation by the CO molecule (4.6 \(\mu \text{m} \))
 - Stationary

- **Gas Chromatography**
 - Flame Ionization: CO converted to CH4, passed through flame ionization detector (FID), resulting signal proportional to amount of CO in air
 - Mercury Liberation

- **Tunable Diode Laser Spectroscopy**
- **Resonance Fluorescence**

Partial Contents of Shell Foundation HEH IAP Monitoring Kit

Particles: ~$1800
---6 UCB P-3 particle monitors with pre-installed firmware and long-term batteries
---Software for desktop or laptop PC to launch, download, and manipulate data from monitors (CD-ROM)
---Ziploc bags for zeroing monitors before and after each use
---12 9V batteries for initial operation (additional alkaline batteries to be supplied locally)

Carbon monoxide: ~$2000
---6 Onset-HOBO datalogging CO monitors for routine monitoring
---1 “Gold-standard” Onset-HOBO CO monitor for calibration only
---Software for desktop or laptop PC to launch and download HOBOs (CD-ROM)
---7 extra batteries (additional 3V calculator-type batteries to be supplied locally)
---100 CO diffusion tubes for integrated sampling
---10 double labels and caps for diffusion tubes (plus six holders)
---Static free bags to protect HOBOs
Pre- and Post- Fieldwork Calibration Tests, Berkeley, 2003

$y = 0.97x + 0.23$
$R^2 = 0.998$

$y = 0.75x - 0.73$
$R^2 = 0.995$

$y = 0.99x + 0.44$
$R^2 = 0.995$

$y = 0.69x - 0.69$
$R^2 = 0.994$

True concentration (standards: 0.5, 10.3, 24.9, 60ppm)

Measured concentration (2 m in average)

Linear (hco_675_post-fieldwork)
Linear (hco_675_pre-fieldwork)
Linear (hco_678_post-fieldwork)
Linear (hco_678_pre-fieldwork)
HOBO CO Logger Specifications

<table>
<thead>
<tr>
<th>Measurement Range:</th>
<th>Nominal Range (ppm)</th>
<th>Actual Range (ppm)</th>
<th>Resolution (ppm)</th>
<th>Typical Accuracy*** (over 0° to 40°C)</th>
<th>Maximum Error (over 0° to 40°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 125</td>
<td>0.2 to 124.3</td>
<td>0.5</td>
<td>±4.5 ppm ±7% of reading</td>
<td>±10.5 ppm ±12% of reading</td>
<td></td>
</tr>
<tr>
<td>0 to 500</td>
<td>1 to 497.1</td>
<td>2.0</td>
<td>±6 ppm ±7% of reading</td>
<td>±12 ppm ±12% of reading</td>
<td></td>
</tr>
<tr>
<td>0 to 2000</td>
<td>4 to 1988</td>
<td>8.0</td>
<td>±12 ppm ±7% of reading</td>
<td>±18 ppm ±12% of reading</td>
<td></td>
</tr>
</tbody>
</table>

Physical shocks or rapid changes in ambient pressure may show up as spikes in the data.

Battery life is shorter when CO levels average 10 ppm or more. For example, battery life is 6 months at average concentrations of 100 ppm.

***The CO sensor is temperature compensated over the entire operation range. In addition to specifications above, for temperatures 0° to 20°C readings may be lower by as much as 5% or 5 ppm, whichever is greater. For temperatures 20° to 40°C, the readings may be higher by as much as 5% or 5 ppm, whichever is greater.
Figure 3.3. Air exchange rates in two Indian village houses as determined by decay of CO concentrations. Closing the window in the kitchen of house B resulted in a lowering of air exchange rate.
Ventilation experiment (Data From HH07, Kaldari, India, July, 2003)

\[y(P_1) = -19.56x + 1.22 \quad R^2 = 0.88 \]

\[y(P_2) = -13.06x + 2.50 \quad R^2 = 0.99 \]

\[y(P_3) = -9.58x + 1.25 \quad R^2 = 0.96 \]

\[y(P_4) = -11.06x + 2.08 \quad R^2 = 0.99 \]

Source: Seema Bhangar