Pandemic Influenza Vaccines: Lessons Learned from the H1N1 Influenza Pandemic

Nancy J. Cox, Ph.D.
Director, Influenza Division
Director WHO Collaborating Center for Influenza
NCIRD, Centers for Disease Control and Prevention

Second WHO Consultation on the GAP for Influenza Vaccines
12-14 July 2011
www.cdc.gov/H1N1flu
Global Influenza Vaccine Strategy

REDUCED DISEASE

VACCINATION POLICY DEVELOPMENT

DATA COMMUNICATED

DATA GENERATED

Population-based Surveillance

Enhanced Sentinel Surveillance

Basic Epidemiologic Surveillance

Laboratory Capacity

Capacity Surveillance Research

Special studies in selected countries, i.e., BoD & VE,
Presentation Themes: Pulling Detection Closer to Emergence & Vaccine Closer to Disease

- Challenges for early detection of novel viruses with pandemic potential
 - Validated diagnostic platforms for detection of novel influenza viruses and other emerging respiratory pathogens
 - Build partnerships to identify newly emerging influenza viruses in animals
 - Goal: earlier detection of emergence of pandemic influenza viruses suitable as vaccine candidates (H2, H4, H5, H6, H7, H9, H10, etc.)

- Challenges for vaccines - faster development & availability
 - Better growing vaccine viruses (focused R&D)
 - Library of pre-prepared HG vaccine candidates (clinical trials)
 - Stockpile potency testing reagents for library above
 - New platforms for streamlining the measurement of vaccine potency and sterility
 - Goal: earlier delivery of safe and effective pandemic vaccines

www.cdc.gov/H1N1flu
Preventing for the Pandemic

- Developed New Diagnostic Tests
 - Part of national strategy for diagnostic preparedness
 - Two FDA approved devices

- Enhanced surveillance for human and animal-origin influenza
 - Increasing testing over last five years led to more swine flu detected (NEJM Shinde 2009)

www.cdc.gov/H1N1flu
The Greatest Influenza Vaccine Challenge: Gearing up Production for a Pandemic

www.cdc.gov/H1N1flu
Unique Features of Influenza Vaccines

- Current influenza vaccines target a rapidly changing seasonal viruses & unpredictable pandemic viruses
- Immunity acquired from vaccination is “strain-specific” (e.g., targeted to one antigenic variant per vaccine component)
- Broadening cross-protection has remained a challenge; oil in water adjuvants: our “best bet” for now
- The “holy grail” of a universal vaccine remains elusive; new targets identified, but unproven
- It remains a race against time to detect the emergence and spread of new influenza variants and to provide vaccine prior to disease
- Production of influenza vaccines is a high-risk, high-stress endeavor for manufacturers

www.cdc.gov/H1N1flu
Estimated Timeline of H1N1pdm Vaccine Development and Delivery in the U.S.

- **April 15**: CDC isolates H1N1
- **April 27**: WHO H1N1 vaccine virus recommendation
- **April 25 and 28**: Vaccine virus reassortment started at CDC and NYMC
- **May 26 and 27**: CDC ships high growth reassortant viruses to mfrs (X-179A and RG-15)
- **June 20-30**: Working seed developed by vaccine manufacturers
- **August**: Monovalent concentrate
- **September 15 & 18 (N/sp)**: Pool monovalent concentrate
- **September 30**: FBER release Sept 15 & 18 (N/sp) filing September (at risk)
- **October 5**: Start Vaccination

(*) Manufacturers were transiently limited in their ability to develop seed viruses due to lack of facilities to grow virus in large volume at the required BSL3 biocontainment

($) Production of monovalent inactivated vaccine is a continuous process

www.cdc.gov/H1N1flu
BRAND CAMP

THINK OUTSIDE THE BIN

GREAT BLUE SKY THINKING!
NOW, SORT YOUR IDEAS
AND GET BACK TO YOUR DESKS.

© 2009

www.cdc.gov/H1N1flu
Post Pandemic Blues

- After-action Reviews of the 2009 Pandemic Response
- President’s Council of Advisors on Science and Technology met resulting in “Report to the President on Reengineering the Influenza Vaccine Production Enterprise to Meet the Challenges of Pandemic Influenza” – August 2010
- Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) Review
- Influenza Manufacturing Improvement – Coordinated by BARDA/HHS (NIH, FDA, CDC and many Academic and Industry Partners)
 - Optimization of Influenza Vaccine Donor and Candidate Viruses
 - Potency Assay Improvement
 - Rapid Sterility Testing - FDA

www.cdc.gov/H1N1flu
Optimization of Influenza Vaccine Donor and Candidate Viruses

- Aim 1: Analyze Genetics of High Yield A/PR/8/34 Donor Viruses from Different Labs
- Aim 2: Produce and Evaluate High-yield Reassortant Viruses
- Aim 3: Combinatorial Optimization of Vaccine Candidates
- Aim 4: Establish Library of Validated High Growing Vaccine Candidates

www.cdc.gov/H1N1flu
Developing a Risk Assessment Algorithm

- Identify the elements to consider in pandemic risk assessment
- Define each independent element
- Assign weight to each element and use variables for multi-factorial analysis
- Come up with a composite score
- For high scoring viruses develop “preparedness packages” (diagnostics and candidate vaccine libraries of high growth reassortants, clinical trial lots and vaccine trials, if high risk)
- For very high scoring viruses develop pre-pandemic vaccines
 - Candidate vaccine library useful for human and animal health
 - Vaccine stockpiles
Some Elements of a Risk Assessment Algorithm

- Secondary hosts infected by the novel virus (including poultry, swine and other mammals, especially humans)
- Transmissibility (using ferret models)
- Susceptibility of the population- seroprevalence
- Geographic spread of the virus in secondary hosts
- Severity of infection in humans and other mammals
- Virus characterization
 - Genetic features such as virulence markers
 - Genetic and antigenic variation
 - Receptor binding properties
 - Pathogenesis

www.cdc.gov/H1N1flu
Improving Vaccine Antigen Standardization: Potency Testing

- Current methods for measuring the quantity of antigen in the vaccines are decades old and often cause significant delays in the availability of influenza vaccines.

- We need faster, more accurate methods for quantitating antigens contained in inactivated influenza vaccines.

- Need approaches that could be applied to all protein based influenza vaccines, including new vaccines:
 - HPLC
 - ELISA
 - Mass Spectroscopy-Isotope Dilution with
 - Antibody mediated pull down of intact HA

www.cdc.gov/H1N1flu
Vaccine Lessons Learned from the H1N1 Pandemic

- In spite of many successes, once again too little vaccine, too late
- Uneven distribution of influenza vaccines globally
- Having influenza vaccines even 4-6 weeks earlier likely to make big difference in disease reduction and vaccine acceptance
 ✓ THE FUTURE
- Set goals: Move detection of novel influenza viruses closer to emergence & the availability of vaccines prior to disease occurrence:
 What do we need?
 ✓ Sustainable multi-use respiratory disease surveillance platforms for identification of novel virus emergence globally
 ✓ Library of truly HG reassortants tested and production-ready
 ✓ Streamline methods for measuring vax Ag content, suitable for all HA protein (HPLC, ELISA and MSID methods)
 ✓ Use of adjuvants to for Ag sparing & more robust immune response
 ✓ Improve vaccine capacity globally for vaccine equity (LAIV)
 ✓ Enhance partnerships domestically and globally

www.cdc.gov/H1N1flu
Acknowlegdements

- WHO’s Global Influenza Surveillance Network +
 - National Influenza Centers (esp. Mexico and Canada’s NICs)
 - WHO CCs
 - WHO RO and HQ
- Colleagues in Veterinary Health including OIE/FAO and USDA and other MoAg
- State and Local Health Departments and DoD Laboratories in the US
- Other PH Colleagues Around the World
- Influenza Division Staff, CDC

www.cdc.gov/H1N1flu
Thanks for your attention.

Questions?

www.cdc.gov/H1N1flu