RESEARCH ON NEW VACCINE DELIVERY METHODS: FOCUS ON INFLUENZA

Bruce G. Weniger, MD, MPH (Associate Editor, Vaccine)

Second WHO Consultation on Global Action Plan for Influenza Vaccines (GAP-II), 12-14 July 2011, Geneva, Switzerland

NEW DELIVERY METHODS: INFLUENZA

- Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux’s ID Method
 - Mechanical Disruption of Stratum Corneum
 - Coated Microtines
 - Hollow Microneedles
 - Dissolving Microneedles
 - Other (Kinetic, Electromagnetic, Chemical, Sonic)
- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

Cutaneous Vaccination

Putting Antigen Into or Onto the Skin

- Prepositional prefix
 - Epidermal...
 - Intradermal...
- Adjectival root
 - Cutaneous...
 - Dermal...
 - Epithelial...
- Noun
 - Antigen...
 - Delivery...

Latin origin (cutis = skin)
Greek origin (derma = skin)
Cutaneous Vaccination

Suggested Nomenclature

- **Adjectives**
 - "Cutaneous" – All processes that target any part of the skin for delivery of antigen
 - Includes needle or jet passing through fat (SC) or muscle (IM)
 - "Intradermal" (a.k.a. "Classical Intradermal") – A type of cutaneous vaccination in which a bolus of liquid is deposited into the dermis to raise a visible bleb
 - Includes Mantoux needle method and new techniques of similar result

- **Nouns**
 - "Vaccination" (per Dr. Pasteur to honor Dr. Jenner) – The mechanical, physical process of introducing foreign substances into the body to stimulate an immune response
 - "Immunization" – The broad field of manipulating the immune system to confer disease protection, including related programs, policies, financing, etc.

Classical Intradermal Vaccination

The “Mantoux” Method

- Simultaneous invention in 1908
 - Felix Mendel (Germany), Charles Mantoux (France)
- Originally for TB skin testing and vaccination
- Fluid bolus below basement membrane
- Advantages
 - Uses existing, off-the-shelf vaccines
 - Enhanced immune response often permits dose-sparing
- Disadvantages
 - Requires training, skill, time, needle dangers
 - Local reactions from irritating ingredients
 - Painful

Classical Intradermal Vaccination

Overview of Literature

- Excellent results
 - Rabies (already widely used ID in developing world)
- Good results worth pursuing
 - Polio (IPV) (~18)
- Little but promising data
 - Polysaccharide vaccines (MEN, PNU, HIB)
 - Gotschlich 1972 – MENps-A good results
 - Sanofi Pasteur 2002 (unpublished) – MENps-ACYW135 (Menomune®) good results
- Mixed to poor results
 - Hepatitis B (~90)
 - Measles (~15)

Classical Intradermal Vaccination

Long-established Literature

- Smallpox
 - Many, primary route
- Tuberculosis (BCG)
 - Many, primary route W. Africa 1940s/50s
- Yellow Fever
 - Primary route. ~15 cases
- Rabies
 - ~117
- Hepatitis B
 - ~90
- Influenza
 - ~28
- Polio (IPV)
 - ~16
- Cholera
 - ~15
- Measles
 - ~15
- Typhoid
 - ~11
- Tetanus
 - ~6
- Hepatitis A
 - ~5
- Diphtheria-Tetanus-Pertussis
 - ~2 (Rossier 1966, Stanfield 1972)
- Tick-borne encephalitis
 - ~1 (Gottschlich 1972)
- Meningococeal A-C-Y-W135
 - ~1 (Sanofi Pasteur, 2006, unpublished)
- Typhoid
 - ~1 (Wegmann 1976)
- Tetanus-Diphtheria
 - ~1 (Karl, 1985)
- Smallpox
 - ~1 (van Gaimersbergen 1973)
- Meningococcal
 - ~1 (Budd 1967)
- Measles
 - ~1 (Meyer 1964)

Classical Intradermal Vaccination

Influenza ID by Needle, 1930s-1970s

- Majority of reports ID immune response >= SC/IM

- Francis T, et al
- Van Gelder D, et al
 - Naval Med Bull 1947;47:197-206
- Weiler TH, et al
- Bruyn H, et al
 - J Immunol 1949;62:11
- Bruyn H, et al
 - Am J Dis Child 1949;77:149-163
- Bruyn H, et al
 - JAMA 1956;166:1134-40
- Hilleman M, et al
 - J Immunol 1958;79:393-8
- Sanger M, et al
 - Ann Allergy 1959;17:213-8
- Sanger M, et al
 - J Lab Clin Med 1964;43:273-284
- Sanger M, et al
 - J Lab Clin Med 1965:66:34-41
- Sanger M, et al
 - Can J Public Health 1968;59:401-408
- Sanger M, et al
- Sanger M, et al
 - J Infect Dis 1977;136(suppl2):s466-s471
Classical Intradermal Vaccination

Influenza ID by Needle, ‘30s-‘70s (cont.)

Minority of Reports: ID Less than SC, or Uncertain
- Boger W, et al., JAMA 1957;165:1687-1689
 - Elderly: SC 500 CCA 79% seroconv > ID 0.1 mL 39-56% (ID lower)
 - Non-naive elderly 4-fold: SC 1.0 mL 60-78% > ID 0.1 mL 77% > ID 45%, 74%, 62% (ID lower)
- Sigel M, et al., JAMA 1975;165:1860-1861
 - Mixed ages, various doses, 4-fold increase: SC 78%, 88%, 77% > ID 45%, SC > ID
 - ID 0.1 mL seroconversion: A/New Jersey/8/76 11/17, A/Victoria/3/75 22/26 (uncontrolled)

Question:
 - Adult GMTs: ID 0.1 mL > SC 1.0 mL
 - Child GMTs: ID 0.2 mL > SC 0.2 mL
 - Adults: “small doses” ID equivalent to “small doses” SC
 - Dose ranging, equal ID vs. SC: small antigen mass - ID > SC, large antigen mass - SC > ID
 - No difference in seroconversion or GMTs

Recent Reports: ID equivalent to IM
 - ID: investigational GSK, 6 μg/strain (60% sparing)
 - Using 1.5mm, 30-gauge, BD ID microneedle syringe
 - IM control: Fluzone® (Aventis), 15 μg/strain, 2001-2002
 - Adults 18-81 years, 1 dose
 - Exception: Elderly, H2N2 GMT and SC: ID < IM
 - ID: investigational GSK, 6 μg/strain (60% sparing)
 - Using 1.5mm, 30-gauge, BD ID microneedle syringe
 - IM control: Fluzone® (Aventis), 15 μg/strain, 2001-2002
 - Adults 18-81 years, 1 dose

Adults 18-49 years of age, 3-year-retrospective naïves
 - Equal doses of Fluzone® INF by both routes
 - ID: 3 μg, 6 μg (0.1 mL x 2), 9 μg (0.1 mL x 3)
 - IM: 3 μg, 6 μg, 9 μg
 - Immune response: ID > IM at all equivalent doses
 - Local reactions: ID > IM

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Classically ID doses were much lower, roughly 1/10-1/100 SC doses
- For convenience, assuming 5 μg/strain injected
- For 0.1 mL 3 vaccines, each 5 μg/strain
- For 0.5 mL 1 vaccine
- For 1.0 mL 3 vaccines

Classical Intradermal Vaccination

Influenza ID by Needle, 1930s-1970s

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Avian H5N1 - ID (3 or 9 μg) vs. IM (15 or 45 μg)
- ID and IM doses < 45 μg not immunogenic, even after 3rd dose at 8 months

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Seasonal 2006 ID vs. IM, one dose assessed at day 28
 - ID < IM in both naive and non-naive subjects
 - Satisfies EMEA/CHMP registration requirements

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Comparative data provided in Patel, et al. Vaccine, 2010;28:25-3029

Comparing Equal Doses by ID and IM Routes

 - Adult 18-49 years of age, 3-year-retrospective naïves
 - Equal doses of Fluzone® INF by both routes
 - ID: 3 μg, 6 μg (0.1 mL x 2), 9 μg (0.1 mL x 3)
 - IM: 3 μg, 6 μg, 9 μg
 - Immune response: ID > IM at all equivalent doses
 - Local reactions: ID > IM

Comparing Equal Doses by ID and IM Routes

 - Adult 18-49 years of age, 3-year-retrospective naïves
 - Equal doses of Fluzone® INF by both routes
 - ID: 3 μg, 6 μg (0.1 mL x 2), 9 μg (0.1 mL x 3)
 - IM: 3 μg, 6 μg, 9 μg
 - Immune response: ID > IM at all equivalent doses
 - Local reactions: ID > IM

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Seasonal 2006 ID vs. IM, one dose assessed at day 28
 - ID < IM in both naive and non-naive subjects
 - Satisfies EMEA/CHMP registration requirements

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Classically ID doses were much lower, roughly 1/10-1/100 SC doses
- For convenience, assuming 5 μg/strain injected
- For 0.1 mL 3 vaccines, each 5 μg/strain
- For 0.5 mL 1 vaccine
- For 1.0 mL 3 vaccines

Classical Intradermal Vaccination

Influenza ID by Needle, 1930s-1970s

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Avian H5N1 - ID (3 or 9 μg) vs. IM (15 or 45 μg)
- ID and IM doses < 45 μg not immunogenic, even after 3rd dose at 8 months

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Seasonal 2006 ID vs. IM, one dose assessed at day 28
 - ID < IM in both naive and non-naive subjects
 - Satisfies EMEA/CHMP registration requirements

Classical Intradermal Vaccination

Influenza ID by Needle, 2004-Present

- Comparative data provided in Patel, et al. Vaccine, 2010;28:25-3029

Comparing Equal Doses by ID and IM Routes

 - Adult 18-49 years of age, 3-year-retrospective naïves
 - Equal doses of Fluzone® INF by both routes
 - ID: 3 μg, 6 μg (0.1 mL x 2), 9 μg (0.1 mL x 3)
 - IM: 3 μg, 6 μg, 9 μg
 - Immune response: ID > IM at all equivalent doses
 - Local reactions: ID > IM

Comparing Equal Doses by ID and IM Routes

 - Adult 18-49 years of age, 3-year-retrospective naïves
 - Equal doses of Fluzone® INF by both routes
 - ID: 3 μg, 6 μg (0.1 mL x 2), 9 μg (0.1 mL x 3)
 - IM: 3 μg, 6 μg, 9 μg
 - Immune response: ID > IM at all equivalent doses
 - Local reactions: ID > IM
NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ▪ Improving on Dr. Mantoux’s ID Method
 ▪ Mechanical Disruption of Stratum Corneum
 ▪ Coated Microneedles
 ▪ Hollow Microneedles
 ▪ Dissolving Microneedles
 ▪ Other (Kinetic, Electromagnetic, Chemical, Sonic)
 ▪ Jet Injection
 ▪ Intranasal Spray
 ▪ Pulmonary Inhalation of Wet/Dry Aerosols
 ▪ Oral Ingestion
 ▪ Issues; Relative Pros and Cons

Improving on Dr. Mantoux’s Method
Reinventing the Wheal

Soluvia™ Microinjection System (BD)

- 30 gauge needle
- OD = 0.305 mm, projects 1.5 mm
- Exclusive worldwide license to sanofi pasteur for commercial use
- 2009: EU approved Intanza® and IDflu® influenza vaccines
- 2011: U.S. FDA approved Fluzone Intradermal®

Sanofi Pasteur intradermal influenza vaccines
- Modest or no dose-sparing from conventional IM
 - 15 μg HA / strain / 0.5 mL volume
- EU market - Intanza® and IDflu®
 - 9 μg / strain / 0.1 mL (18-59 years) (40% sparing)
 - 15 μg / strain / 0.1 mL (>=60 years) (0% sparing)
- US market - Fluzone Intradermal®
 - 9 μg / strain / 0.1 mL (18-66 years age) (40% sparing)

Cutaneous Vaccination
Mechanical Disruption of Stratum Corneum

- Remove or reduce top layer of dead skin (stratum corneum)
 - Principal barrier to antigen entry
- Methods to abrade and strip
 - Peeling cellophane tape
 - Friction by rubbing
 - Emery, pumice
 - Uncoated microabrasives
 - Cyanoacrylate “super glue”
RESEARCH ON NEW VACCINE DELIVERY METHODS: FOCUS ON INFLUENZA

Bruce G. Weniger, MD, MPH (Associate Editor, Vaccine)

Second WHO Consultation on Global Action Plan for Influenza Vaccines (GAP-II), 12-14 July 2011, Geneva, Switzerland

Cutaneous Vaccination
Mechanical Disruption of Stratum Corneum

- Intercell AG acquired "Transcutaneous Immunization" platform from Iomai (US Army/WRAIR spinoff)
- Uses heat-labile LT toxin as adjuvant (or antigen)
- Preparation device pulls sandpaper across skin prior to applying vaccine-impregnated patch
- Travelers diarrhea vaccine
 - Randomized, placebo-controlled trials
 - Phase II (723 travelers from Europe to India)
 - Phase III (n=2036 European travelers to Mexico and Guatemala)
 - Efficacy endpoints not met
 - No reduced incidence of ETEC and/or all-cause diarrhea
 - November 2010: Suspended TD patch, but will pursue other patch-based vaccines

Cutaneous Vaccination
Mechanical Disruption of Stratum Corneum

- Iomai, US Army/WRAIR spinoff (now owned by Intercell AG)
- Patch platform using heat-labile LT toxin as adjuvant (or antigen)
 - Patch applied over injection site of conventional INF vaccination by needle

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux's ID Method
 - Mechanical Disruption of Stratum Corneum
 - Coated Microtines
 - Hollow Microneedles
 - Dissolving Microneedles
 - Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux's ID Method
 - Mechanical Disruption of Stratum Corneum
 - Coated Microtines
 - Hollow Microneedles
 - Dissolving Microneedles
 - Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux's ID Method
 - Mechanical Disruption of Stratum Corneum
 - Coated Microtines
 - Hollow Microneedles
 - Dissolving Microneedles
 - Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux's ID Method
 - Mechanical Disruption of Stratum Corneum
 - Coated Microtines
 - Hollow Microneedles
 - Dissolving Microneedles
 - Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

Cutaneous Vaccination
Coated Microtines

- Vaccine or drug coated on microtine arrays elutes and diffuses upon insertion
 - Georgia Tech/Emory
 - Mice protected from influenza challenge
 - Zosano Pharma Macroflux™ patch, others
 - No human vaccine trials reported

Cutaneous Vaccination
Hollow Microneedles

- Nanopass MicronJet™
 - ~250 μm-tall array of four microneedles
 - Luer-slip interface attaches to conventional syringe
 - Van Damme et al found 3 μg or 6 μg influenza HA into skin yielded similar HAI titers as 15 μg IM
 - Vaccine 2009;27:454-459
 - Several clinical trials for influenza
 - NCT00558494, NCT01049490, NCT0104561
NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microtines
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

Cutaneous Vaccination

Dissolving Microneedles

- Vaccine antigen or drug formulated within solid, dissolvable matrix
 - Commonly carboxymethylcellulose
- Several groups pursuing
 - Georgia Tech
 - Tines 750 μm tall before insertion; dissolve within minutes
 - Mice: good antibody and cellular responses and challenge protection

Jet Injection

What is It?

- Squirts pressurized liquid
 - Through orifice (~0.15 mm)
 - Like child’s water pistol
- 1860s: Invented in France
- 1940s: Single-user device
 - Insulin and other drugs
- 1950s: Adapted by U.S. Army for high-speed vaccination sessions
 - Multi-use-nozzle jet injectors (“MUNJIs”)

Other Mechanisms

- Kinetic deposition of propelled microparticles
 - Pfizer’s PowderMed
 - “Particle-mediated Epidermal Delivery” (PMED™) (DNA on beads)
 - “Epidermal Powder Immunization” (EPI) (protein antigens)
 - 15 μg HA via EPI induced similar seroconversion and GMT as 15 μg IM
 - Three 2006 human influenza studies at Clinical Trials.gov
 - Unpublished as of mid-2011

- Electromagnetic energy
 - Laser light ablation
 - Norwood Abbey’s LAD
 - Thermoporation to burn pores
 - Altea Therapeutics PassPort™
 - TransPharma Medical ViaDerm™
 - Iontophoresis
 - J&J Alza’s E-trans®

- Chemical enhancers
- Sound energy

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microtines
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microtines
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microtines
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microtines
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)

- Jet Injection
- Intranasal Spray
- Pulmonary Inhalation of Wet/Dry Aerosols
- Oral Ingestion
- Issues; Relative Pros and Cons
Jet Injection

MUNJI Use in Mass Campaigns

- **1950s**
 - Salk inactivated polio vaccine (IM)
- **1960s – 1970s**
 - “Swine flu” (1976)
- Many other vaccines: MPA, MEN, POL, SMA, YEL, inter alia
- Intradermal nozzle for smallpox (SMA) eradication

Jet Injection

Trial of Influenza Vaccination ID vs. SC

<table>
<thead>
<tr>
<th>Method</th>
<th>Route and dose (n=)</th>
<th>HAI titer (Fold rise)</th>
<th>Post HAI GMT (post/pre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Injection</td>
<td>ID 0.3 ml, 60 CCA (40)</td>
<td>37 (58%)</td>
<td>77.6 (2.3x)</td>
</tr>
<tr>
<td></td>
<td>SC 0.1 ml, 60 CCA (91)</td>
<td>29 (32%)</td>
<td>77.6 (2.3x)</td>
</tr>
<tr>
<td></td>
<td>SC 0.5 ml, 100 CCA (85)</td>
<td>50 (59%) †</td>
<td>140.4 (4.0x)</td>
</tr>
<tr>
<td>Needle-syringe</td>
<td>SC 0.3 ml, 100 CCA (77)</td>
<td>31 (40%) †</td>
<td>75.8 (2.5x)</td>
</tr>
</tbody>
</table>

† p<0.05 for jet injection vs. needle-syringe

Jet Injection

Safety Concerns for MUNJIs

- Since 1970s – Growing body of evidence for cross-contamination between vaccinees
 - Bench laboratory assays
 - Animal transmission models
 - Outbreak investigation
 - Epidemiologic studies
 - Human trials assaying “next ejectates”

- 1997 – Withdrawn from use by U.S. military
- 2000s – WHO and CDC recommend against use
- No high-speed devices remain available for mass campaigns

Jet Injection

New Generation of Disposable-syringe Jet Injectors (DSJIs) Comes to Market

- **Bioject’s ZetaJet™**
 - Pioneering DSJI manufacturer
 - 1990s: Biojector®, Vitajet™
 - www.bioject.com
 - Mid-2000s: ZetaJet™
 - CDC SBIR R&D contracts, other funding, PATH assistance
 - Low-cost for developing-country markets
 - Spring powered
 - Built-in hand crank
 - No separate cocking/reset station
 - Break-off vial adapter
 - Auto-disabling by plunger lock
 - Clinical trial HIV/DNA vaccine, Sweden
RESEARCH ON NEW VACCINE DELIVERY METHODS: FOCUS ON INFLUENZA
Bruce G. Weniger, MD, MPH (Associate Editor, Vaccine)
Second WHO Consultation on Global Action Plan for Influenza Vaccines (GAP-II), 12-14 July 2011, Geneva, Switzerland

Jet Injection
Bioject’s ID Pen Injector
- Metal-spring powered
- Manual compression
- Single-use autodisable syringes
- 0.05 or 0.1 mL intradermal volumes
- PATH-WHO agreement for R&D studies (Feb 2011)

Jet Injection
DCI’s LectraJet® M3
- Developing DSJI technology since 1990s
 - Marketed veterinary LectraVet®
 - www.dantonioconsultants.com
- CDC SBIR R&D contracts
- 510(k) clearance 0.5 mL SC/IM
 - 24 December 2009 (K090959)
- Metal-spring powered
 - Separate cocking device/storage box
- Clinical trial seasonal influenza
 - DSJI (n=30) vs. needle-syringe (n=30)
 - J. Simon, et al, Univ. Maryland, 2010
 - Seroconversion, seroprotection similar
 - HAI titer fold increases trended higher

Jet Injection
DCI’s LectraJet® HS
- High-Speed device for mass campaigns
 - Same 600-1000/hour as Ped-O-Jet
 - Novel fingers-free, rapid loading and unloading
 - Same cartridges as for manual M3 model
- Metal spring compressed by internal motor
- Rechargeable, replaceable battery pack
 - >3,000 injections per charge
- Battery-charging – AC mains, vehicle, solar
- Backup manual spring compression possible
- Electronic injection counters
- Investigational
 - U.S. military expressing interest

Jet Injection
PharmaJet®
- www.pharmajet.com
- Rapid R&D-to-market pace
 - 510(k) clearance 0.5 mL SC/IM
 - 26 Feb. 2009 (K081532)
 - Brazil ANVISA clearance
 - Nov. 2009 (80102519021)
 - EU (CE mark) January 2010
- Modest but growing US sales 2009; overseas sales 2010
- Coincided with pandemic influenza campaign of 2009

IPV Polio Vaccination by DSJI
- Polio eradication switch from cheap OPV to expensive IPV (10x cost)
 - Pre-eradication: overcome decreased immune responses to OPV in remaining hot zones
 - Post-eradication: avoid reversion to virulence from live sites in OPV
- Deliver ID by licensed, needle-free jet injectors
 - Avoid difficult Mantoux method for ID route
 - Avoid dangers and drawbacks of needle-syringes
- WHO trials of IPV by dose-sparing ID route
 - 80% dose reduction: 0.5 mL to 0.1 mL
 - Roland Sutter, WHO point person

PharmaJet® 2000 with
Investigational ID spacer
Bijector® 2000 with
Investigational ID spacer
RESEARCH ON NEW VACCINE DELIVERY METHODS: FOCUS ON INFLUENZA
Bruce G. Weniger, MD, MPH (Associate Editor, Vaccine)
Second WHO Consultation on Global Action Plan for Influenza Vaccines (GAP-II), 12-14 July 2011, Geneva, Switzerland

Jet Injection
PharmaJet Intradermal Program
- CDC SBIR R&D contracts since 2009
- FDA “510(k)” clearance in 2011
- Dengue vaccine (DEN)
 - Primate study completed
 - Human trial begun 2010
- Other clinical trials
 - Rabies (RAB) ID (India)
 - Polio (IPV) ID (Oman, India, Netherlands)
 - Eradication requires switch from OPV
 - HPV vaccine (Hong Kong)

Intranasal Spray
BD’s Accuspray™ Nasal Spray System
- Becton Dickinson’s syringe for prefilled packaging
- Produces large droplets for nasal deposition
 - MedImmune’s FluMist® live attenuated influenza vaccine (LAIV)
 - Successful and widespread market use since 2003

Intranasal Spray
OptiNose™ Nasal Delivery Device
- Bi-directional deposition to nose only
- Dry powder or liquid aerosol delivery

NEW DELIVERY METHODS: INFLUENZA
- Cutaneous, including Classic Intradermal (ID)
- Improving on Dr. Mantoux’s ID Method
- Mechanical Disruption of Stratum Corneum
- Coated Microtines
- Hollow Microtines
- Dissolving Microtines
- Other (Kinetic, Electromagnetic, Chemical, Sonic)

OptiNose™ Nasal Delivery Device
- After 2 doses OptiNose™...
 - ...titers equivalent with nasal drops
 - ...better than simple nasal or nasal sprays
 - All methods similar on HA1 seroprotection
 - a.k.a. OptiMist™

<table>
<thead>
<tr>
<th>Vaccine delivery</th>
<th>n</th>
<th>Postimmunization</th>
<th>Predose</th>
<th>After</th>
<th>After</th>
<th>After</th>
<th>Predose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal nav (OptiNose™)</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Predose</td>
<td>19</td>
<td>22</td>
<td>Not significant</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>After</td>
<td>19</td>
<td>22</td>
<td>Not significant</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>After</td>
<td>19</td>
<td>22</td>
<td>Not significant</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Predose</td>
<td>19</td>
<td>22</td>
<td>0.01</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>After</td>
<td>19</td>
<td>22</td>
<td>0.01</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 1: Percentage of subjects with HAI titers ≥ 40 (seroprotection)

Video demonstration (http://www.optinose.no)
Intranasal Drops
Simple Instillation

- TIV (7.5 μg HA/strain) + 3/10/30 μg LTK63 adjuvant + "Biovector" lip nanoparticle carrier
- Controlled 12 μg volumes + 240 μl adhesive pad
- 2 doses, 1-week apart
- Delivery: simple instillation from dropper
- Moderate antibody responses; partial CHMP criteria
- Peak seroconversion rate at 6 weeks
 - H3N2: 27% (IM=67%)
 - B: 67% (IM=80%)
- Peak seroprotection rates at 6 weeks
 - H3N2: 27% (IM=73%)
 - B: 73% (IM=87%)
- Peak fold-rise at 6 weeks
 - H3N2: 2.2 (IM=6.4)
 - B: 5.8 (IM=20)

Intranasal Sprays
Dry Powder Measles Vaccine Inhalers

- Grand Challenge in Global Health #3
 - "Needle-free Delivery"
 - Needle-free Delivery of Stable Respirable Powder Vaccine
 - Objective 2: Design and fabricate one or two inexpensive, single-dose devices to deliver microparticles to the respiratory tract
- Antigen: freeze/spray-dried with sugar stabilizers
 - E.g., measles antigen by Aktiv-Dry LLC
- Two Inhalation delivery devices
 - Aktiv-Dry’s PuffHaler™
 - BD’s Solovent™
- Both devices protected rhesus macaques with Aktiv-Dry’s spray-dried live measles virus vaccine

Pulmonary Inhalation
Aktiv-Dry PuffHaler™

- Only internal dose capsule need require cold-chain storage
- Detachable reservoir avoids cross-contamination from aerosolizer system

NEW DELIVERY METHODS: INFLUENZA

- Cutaneous, including Classic Intradermal (ID)
 - Improving on Dr. Mantoux’s ID Method
- Mechanical Disruption of Stratum Corneum
- Coated Microtines
- Hollow Microneedles
- Dissolving Microneedles
- Other (Kinetic, Electromagnetic, Chemical, Sonic)
- Jet Injection
- Intranasal Spray
 - Pulmonary Inhalation of Wet/Dry Aerosols
 - Oral Ingestion
 - Issues; Relative Pros and Cons

Pulmonary Inhalation
BD Solovent™ Dry Powder Delivery

- Powder capsule only component needing cold-chain storage
- Luer-lock fits onto regular syringe
- Good IgG, IgA, influenza HAI responses in rats compared to IM delivery
- Particle sizings can be increased (>50 μm) to target nose, not lung

Video demonstration
http://www.aktiv-dry.com/puffhaler.html
Pulmonary Inhalation

Influenza Study Mice - Univ. Gröningen

- Whole inactivated influenza A/HIR virus in wet and dry aerosols
 - Freeze- and spray-dried with inulin cryoprotectant
 - IM controls: A/PR/8 split virus
- Delivery by model DP-4 Dry Powder Insufflator™ to intubated BALB/c mice
 - Two doses of 5 μg HA to lungs at 2-week intervals
 - Controls: 5 μg IM once
- Similar to IM controls:
 - Antibody (IgA higher with powder – not shown)
 - Virus grams per lung tissue upon A/PR/8 challenge

DP-4 Dry Powder Insufflator™ for murine studies

Pulmonary Inhalation

Inhaler for Human Use - Univ. Gröningen

- Twincer® powder inhaler for human applications
 - 23%-37% particle sizes <5 μm
 - No human trials yet reported

Pulmonary Inhalation

Wet Aerosol Measles Vaccine Inhaler

- Method Pioneered by Sabin
 - Requires electrical nebulizer
- Measles Aerosol Project
 - Since 2002: WHO, CDC, American Red Cross
 - Gates Foundation funding
 - Goal: Develop and license at least one device for a currently-licensed measles vaccine for the developing world
 - Caveat: Cross-contamination with respiratory pathogens?

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microneedles
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)
 ✔ Jet Injection
 ✔ Intranasal Spray
 ✔ Pulmonary Inhalation of Wet/Dry Aerosols
 ✔ Oral Ingestion

Relative Pros and Cons; Issues to Consider

Oral Ingestion

Few Human Studies for Influenza

- Generally poor results
- 2 – 10 doses, split or whole vaccines, 24, 140, 150 μg HA/strain
 - No detectable IgG
 - Secretory IgA up, then down after further doses (F tolerance)
- Spray of conventional A/H1N1/New Caledonia/20/99 (Chiron Behring)
- As control arm for Optinose™/OptiMist™ intranasal spray device
- Sprayed into mouth with conventional device
- Good proportions with HAI seroprotection (≥40) in serum
- Diminished virus-specific IgA antibodies detected in nasal secretions and saliva compared to nasal routes (OptiMist™, spray, drops)

NEW DELIVERY METHODS: INFLUENZA

✔ Cutaneous, including Classic Intradermal (ID)
 ✔ Improving on Dr. Mantoux’s ID Method
 ✔ Mechanical Disruption of Stratum Corneum
 ✔ Coated Microneedles
 ✔ Hollow Microneedles
 ✔ Dissolving Microneedles
 ✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)
 ✔ Jet Injection
 ✔ Intranasal Spray
 ✔ Pulmonary Inhalation of Wet/Dry Aerosols
 ✔ Oral Ingestion

Issues; Relative Pros and Cons
Needle-free delivery methods more desirable for developing countries

- Avoid dangers / drawbacks of conventional needle-syringe:
 - Inadvertent or intentional reuse of unsterile equipment
 - Unsafe disposal of medical sharps posing threat to community
- Some end-user-fillable methods that can use existing, off-the-shelf vaccines advantageous for lower cost, sooner availability
 - E.g., jet injection, some hollow microneedles
 - BD invented end-user-fillable Soluvia™ – useful for economical ID rabies filled from multi-dose vials

EMEA/FDA criteria may not be relevant for novel non-parenteral routes/antigens

- Hemagglutination inhibition (HAI) assay primarily validated on basis of inactivated antigen delivered by needle into fat or muscle
- Newer antigens delivered to other tissues may induce cellular or other mechanisms for protection not predicted by HAI titer
- Potentially effective vaccines may be falsely rejected (type II β error ?) using HAI performance alone
- Phase III field efficacy trials may be required to tease out and validate new immunologic correlates of protection for new routes

Cutaneous Advantages

- Minimal invasiveness
 - Easier to monitor and treat local adverse reactions ?
 - Visualizable
 - Amenable to local, topical treatments
 - Fewer unanticipated serious adverse events than other routes ?
 - Oral - e.g., intussusception (Rotashield®, Wyeth)
 - Intranasal - e.g., Bell's palsy (Nasalflu®, Berna)
 - Pulmonary – allergic reaction ?
 - IM/SC injection - e.g., abscess, nerve injury, hematoma

- Dose-sparing ability (in many, but not all cases)
 - Enhanced or equivalent immune response for many antigens compared to IM and SC
 - Protect larger populations with scarce or expensive vaccines
 - Large surface area for simultaneous but separate vaccination of competing antigens
 - In contrast to oral & intranasal & respiratory routes
 - Separate vaccines may compete at same delivery site or draining lymph node

Cutaneous Advantages - 2

- Less dependent on patient cooperation
 - Think: squirming, uncooperative children, unable to swallow capsules or actuate inhalers
- Relatively sure and certain delivery
 - Next to gold standard: needle IM or SC
- The ideal delivery method a “patch”
 - (“Band-Aid®”, “plaster”)
 - Painless upon delivery to epidermis
 - Containing dissolving micro needles or coated microtines
 - Extremely space-efficient for cold chain volume demand
 - Inexpensive disposal as non-hazardous waste
 - No complex delivery device to buy, transport, maintain, break, lose

Cutaneous Advantages - 3

- Conventional Mantoux ID injection tedious and difficult to perform consistently
- Some adjuvants may be too irritating to tolerate in the skin
- Live antigens requiring growth may not do so well in skin
- Technologies (patches, kinetic devices) not using existing off-the-shelf vaccines will require extensive and expensive formulation efforts
Issues; Relative Pros and Cons
Intranasal Spray Advantages
- Needle-free
- Relatively quick delivery
- Proven method for administering LAIV
- Wide patient acceptance

Issues; Relative Pros and Cons
Intranasal Spray Disadvantages
- Less certainty of delivery/antigenicity in some situations
 - Sneezing after administration
 - Mucoid or purulent rhinitis ("11 sign")
 - Pivotal FluMist LAIV trials limited to “healthy children”
 - Was chronic/acute rhinitis excluded?
 - Is LAIV effective in such conditions common in developing world?

Issues; Relative Pros and Cons
Pulmonary Inhalation Advantages
- Needle-free
- May takes advantage of immune system cells ideally located for antigen sampling
- May induces both systemic and mucosal immune responses

Issues; Relative Pros and Cons
Pulmonary Inhalation Disadvantages
- Highly invasive - targets organ essential for survival
- Disposable tubing and masks (auto-disabling?) may increase per-dose costs
 - Respiratory pathogens may cross-contaminate if dose pathways reused
- May require patient cooperation (? Infants, children)
- Different anatomies an obstacle in development and predictable and consistent dosing
 - Animal models to humans
 - Human-to-human variation
- Health workers constantly exposed to stray antigen
- Some methods tedious (30 seconds per dose)

NEW DELIVERY METHODS: INFLUENZA
✔ Cutaneous, including Classic Intradermal (ID)
✔ Improving on Dr. Mantoux’s ID Method
✔ Mechanical Disruption of Stratum Corneum
✔ Coated Microneedles
✔ Hollow Microneedles
✔ Quashing Microneedles
✔ Other (Kinetic, Electromagnetic, Chemical, Sonic)
✔ Jet Injection
✔ Intranasal Spray
✔ Pulmonary Inhalation of Wet/Dry Aerosols
✔ Oral Ingestion
✔ Issues; Relative Pros and Cons

Thank you
Classical Intradermal Vaccination

- **Influenza ID by Needle, ‘30s-’70s (cont.)**
 - Majority of reports ID immune response > SC/IM
 - Outbreak attack rates: ID 40 CCA = 10% (v.e. 75%)
 - SC 200 CCA = 10% (v.e. 75%)
 - unimmunized = 33% (referee)
 - Adult 4-fold rise: ID 20 CCA 41% = SC 200 CCA 43%
 - Non-race elderly 4-fold: ID 0.1 ml = SC 1.0 or 0.5 ml > SC 0.25 ml
 - ID 0.1 ml x2 = SC 1.0 ml x2
 - Adult ID 160 CCA 88%, Children SC 400 CCA 86%
 - 0.1 ml ID equivalent antibody titers to 0.5 ml IM
 - Local reactions
 - Immune responses
 - Skin: mild erythema, rash, itching
 - Routes
 - ID: 0.1 ml
 - SC: 0.5 ml

Cutaneous Vaccination

- **Mechanical Disruption of Stratum Corneum**
 - Shaved human abdominal skin, then 30 toothbrush strokes, applied liquid vaccine and occlusive patch
 - Adenovirus vector expressing hemagglutinin of influenza strain A/PR/8/34 (H1N1) (uncontrolled)
 - Immune responses
 - Skin: similar to good immune responses at highest doses
 - Intradermal: bad
 - Local reactions
 - Skin: mild erythema, rash, itching
 - Nose: mild irritation

Jet Injection

- **Clinical Evidence**
 - Generally equivalent to or better than needle-syringe
 - Antigen-presenting dendritic/Langerhans cells in skin
 - Routes
 - ID, SC (MUBs), one DCB
 - SC (DCBs, investigational)
 - Often more local reactions than needle-syringe (alum?)
 - Other vaccines: HIV, DNA, cancer, etc.
RESEARCH ON NEW VACCINE DELIVERY METHODS: FOCUS ON INFLUENZA
Bruce G. Weniger, MD, MPH (Associate Editor, Vaccine)
Second WHO Consultation on Global Action Plan for Influenza Vaccines (GAP-II), 12-14 July 2011, Geneva, Switzerland

Jet Injection
PharmaJet® SC and IM “DSJI” Injectors
- Metal-spring powered
- Separate cocking station
- Color coded
 - Blue
 - Thicker-skinned adults
 - Green and Violet (not shown)
 - Thinner-skinned children and elderly

Jet Injection
PharmaJet® Collaborations
- R&D
 - CDC for intradermal system
 - PATH for technical, bench, regulatory, country-access
 - U.S. Army for investigational smallpox vaccine
- Netherlands Vaccine Institute for IPV
- Clinical trials of SC/IM injectors
 - PATH and/or WHO and local institutions
 - Measles-Mumps-Rubella (MMR) vaccine SC (Brazil)
 - 582 Brazilian infants aged 12 - 18 months
 - Yellow fever vaccine (YEL) trial (Brazil)
 - DTP-HIB or DTP-HIB-HBV vaccines (Brazil)

Intranasal Drops
Simple Instillation
- MEM71-reassortant inactivated split-virus antigen.
- Nasal instillation of drops
 - 0.01, 0.1, 1.0, or 10 μg virus + 10 μg ISCOMATRIX™ adjuvant
 - No IM/SC controls
 - Challenged with 10^4.5 pfu infectious MEM71 virus
 - Caveat: some antigen swallowed? Only Ag reaching lower respiratory tract successful