Radiation Risk Communication
in Paediatric Imaging

Global Initiative on Radiation Safety in Health Care Settings

Workshop Report

L. Lau (Rapporteur)
Delegates at the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Bonn, Germany on 2nd December 2012 for the WHO Radiation Risk Communication in Paediatric Imaging Workshop

Acknowledgement

The Department of Public Health and Environment of the World Health Organization expresses its sincere gratitude to all those who participated and contributed to this Workshop. We thank the delegates for their commitment and enthusiastic support to the Workshop, forming part of the WHO Global Initiative on Radiation Safety in Health Care Settings. Special thanks goes to the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety for hosting this event and the WHO colleagues for their support prior to, during, and after the Workshop. We are most grateful to Drs. Denis Remedios (RCR) and Donald Miller (US FDA) for chairing the sessions and Dr. Lawrence Lau (IRQN) for his contribution towards the preparation of this report.
Radiation Risk Communication in Paediatric Imaging Workshop

Global Initiative on Radiation Safety in Health Care Settings

Bonn, Germany

2nd December 2012

Table of contents

1. Executive summary ..5
2. Rationale ..5
 2.1 Global Initiative on Radiation Safety in Health Care Settings ...5
 2.2 Objectives ..6
 2.3 Risk communication in paediatric imaging ..6
3. Radiation Risk Communication in Paediatric Imaging Workshop ..7
 3.1 Participants ...7
 3.2 Format ..7
4. Proceedings ..7
 4.1 Setting the scene: issues and trends ...7
 4.1.1 Health risks of radiation exposure early in life ...7
 4.1.2 Pediatric imaging today: making the right choice ..8
 4.1.3 Paediatric imaging today - procedures, doses, child-sizing initiatives8
 4.1.4 A culture shift to improve practice: radiation protection culture9
 4.1.5 Discussion ...9
 4.2 Creating a dialogue in paediatric health care, opportunities and challenges9
 4.2.1 Risk communication in public health ..9
4.2.2. Communication between referrers and radiological practitioners

4.2.3. Role of family doctors

4.2.4. Role of other health care providers

4.2.5. The view of patients and parents

4.2.6. Discussion

4.3 Case studies

4.3.1. Radiologists, referrers, patients and carers: The RCR experience

4.3.2. Dialogue between scientists and the public

4.3.3. Dialogue between paediatric radiologists and referrers and parents

4.3.4. Dialogue between pediatricians and parents – a regional experience

4.3.5. The IAEA experience on communicating radiation risks and benefits in pediatric imaging

4.4 Message mapping

4.5 Feedback on the communication tool

4.6 Conclusion

5. Deliverables and the next step

6. Appendix 1: List of participants

7. Appendix 2: Workshop Agenda

8. Appendix 3: A list of useful links

9. Appendix 4: A list of abbreviations
1. Executive summary

The World Health Organization (WHO) is conducting a Global Initiative on Radiation Safety in Health Care Settings (GIRSHCS) and radiation protection of children is one of the initiative’s priorities. Children are considerably more sensitive to the effects of radiation than adults; have a longer life span to develop long-term radiation-induced effects; and could receive a higher dose than necessary if adult parameters are used in paediatric imaging. However, awareness of radiation risks and radiation exposures in paediatric imaging procedures amongst referrers, patients and the public is low. There is a need to develop and implement a risk communication tool to underpin Good Medical Practice and educate the health care professionals. The targeted messages should be clear, concise and tailored to a specific stakeholder group. Message mapping is important. Risk communication in paediatric imaging is a team action. Professional experts contribute by crafting and tailoring evidence-based key messages and communication experts enhance these by fine-tuning the language and delivery to meet different end-user needs. As key stakeholders, patients and carers, in addition to health care professionals must be involved and represented in all processes, preferably at an early stage. This Radiation Risk Communication in Paediatric Imaging Workshop aims to review the emerging issues and trends, identify the gaps and needs, develop and improve key messages for different stakeholder groups, and evaluate feedback for a drafted communication tool. Based on the Workshop findings, the communication tool will be finalized. This tool together with other Global Initiative and other related actions would contribute to improvements paediatric imaging practice.

2. Rationale

2.1 Global Initiative on Radiation Safety in Health Care Settings

In 2008, the WHO launched a Global Initiative on Radiation Safety in Health Care Settings (GIRSHCS) and it is currently conducting activities under three areas of work:

- Risk assessment: to assess risks and potential impacts;
- Risk communication: to engage and communicate with the stakeholders; and
- Risk management: to implement policies and health interventions.

The WHO advances medical radiation and health related activities by facilitating the adoption and application of regulations; evaluating radiation medicine and medical imaging procedures; facilitating workforce educating and training; providing advice for the incorporation of appropriate technologies; and publishing, co-sponsoring and disseminating guidance tools and technical documents.
2.2 Objectives

The objectives of Global Initiative are to mobilize the health sector towards safer and more effective use of radiation in health and to improve patient care by identifying Member States (MS) needs and improving capacity, determining WHO’s roles, identifying priorities, and defining how best to complement other international, regional and national actions to improve radiation safety in health care settings. These objectives will be achieved by developing and facilitating the implementation of evidence-based guidance tools, recommendations, and policies; and providing technical support to and facilitating capacity building of MS by focusing on the public health aspects and considering the risks and benefits of the use of radiation in health. It aims to improve MS capacity to: assess risks and potential impacts; develop and implement policies that take into account of the potential health impacts, costs and benefits; monitor and evaluate the effectiveness of policies and interventions; and engage and communicate with stakeholders.

2.3 Risk communication in paediatric imaging

Health professionals generally have a low awareness of the exposures involved in radiologic procedures and the magnitude of radiation-related health risks. An area of particular concern is the unnecessary use of radiation when clinical evaluation or alternative imaging not using ionizing radiation could provide an accurate diagnosis.

Radiation protection of children is one of the Global Initiative’s priorities. Risk communication is an exchange of views between those responsible for assessing, minimizing and controlling radiation risks and those who may be affected. Children are considerably more sensitive to radiation than adults; have a longer life span to develop long-term radiation-induced health effects like cancer; and could receive a higher dose than necessary if adult parameters are used in paediatric imaging.

Procedure justification, optimization of radiation protection and diagnostic data and error minimization of radiologic procedures are particularly critical in paediatric practice. There is a need to promote a focused educational campaign to empower health professionals, patients and families to make informed decisions about the use of radiation for medical imaging procedures. The aim is to raise awareness with a positive message; improve communication on the benefits and risks; and strengthen advocacy towards a safer and more appropriate use of radiation in health care and risk prevention. One of the key measures is by the development and use of guidance tools tailored to improve radiation risk communication.

Building on the momentum from a workshop on radiation risk communication held in the WHO Headquarters in 2010, a second Workshop on Radiation Risk Communication in Paediatric Imaging was conducted on 2nd December 2012 in Bonn, Germany. The main objectives of this Workshop are:
To test a tool for radiation risk communication in paediatric imaging;
To identify gaps and needs and collect stakeholders feedback; and
To improve informational, motivational and persuasive messages tailored to different end-users for effective radiation risk communication of radiation benefits and risks.

3. Radiation Risk Communication in Paediatric Imaging Workshop

3.1 Participants

56 participants, consisting of individual experts from 19 MS and representatives from 12 international organizations, UN agencies, professional organizations, scientific societies, academic institutions, research institutions, patient advocacy organizations, regulatory authorities and Health Ministries attended the Workshop. A list of the delegates is appended in Appendix 1 of this report.

3.2 Format

The Workshop was held on 2nd December 2012 and hosted by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety in Bonn. The Workshop agenda is presented in Appendix 2 of this report.

The one-day program started with an overview of issues and trends, covering: health risks of radiation exposure early in life, making the right choice in paediatric imaging and practice improvement by a radiation protection culture. The challenges and opportunities in radiation risk communication in paediatric imaging were presented, including public health, patient, carer, and health care provider perspectives.

Small groups were assigned to discuss good practices, map key messages, and review experience and lessons from recent radiation risk communication actions. The message mapping process aimed to identify and discuss practical tips, traps, and pitfalls, i.e. what to say, how to explain, and how to tailor message to a specific audience. A summary of these discussions and a preliminary feedback for the radiation risk communication tool were then presented.

4. Proceedings

4.1 Setting the scene: issues and trends

4.1.1 Health risks of radiation exposure early in life

The balance of evidence from epidemiologic, animal and mechanistic studies favor a simple
proportionate relationship at low doses between radiation exposure and cancer risk. However, there are challenges when attributing health risks to medical radiation exposure due to uncertainties associated with risk assessment at low doses, and insufficient statistical power in epidemiological studies. Based on the “EPA radiogenic cancer risk projections for the United States”, the major sources of uncertainty include: sampling error, applying risk from life span studies to the U.S. population, dose and dose-rate effectiveness factor, and age / temporal dependence. Laboratory studies suggest other factors that could influence cancer risks, e.g. adaptive response, bystander effect, and genomic instability etc. The significant of these elements in human carcinogenesis is unclear. The radiation risks in children are higher but this lifetime attribute risk decreases with age. For example, as a result of the same exposure, the incidence of cancer is approximately double for the newborn when compared to a 10-year-old child.

4.1.2. Pediatric imaging today: making the right choice

The principles of radiation protection include justification and optimization. Imaging modalities not employing ionizing radiation should be selected first if and when appropriate. To minimize unjustified procedure and exposure, the referrers should consider a number of questions before requesting the procedure:

- Has the procedure been done already?
- Will it affect patient management and do I need it?
- Do I need it now?
- Is it the best procedure?
- Have I explained clearly to the radiologist why it is needed?

The availability of evidence-based referral guidelines and the promotion of their use by education and audit are encouraged.

4.1.3. Paediatric imaging today - procedures, doses, child-sizing initiatives

Imaging is frequently used in children and this is increasing. The radiation doses in children can be high and variations are large. Effective radiation protection in paediatric imaging must include education. The Imaging Gently (Alliance for Radiation Safety in Paediatric Imaging) Campaign aims to improve paediatric imaging and to change practice by increasing awareness of the opportunities to promote radiation protection in the imaging of children. It provides information in paediatric imaging procedures including translations and recommends child-size protocols. The procedures employing ionizing radiation are targeted, covering CT, fluoroscopy, nuclear medicine, and dental radiology. It advocates and collaborates with other stakeholders for an appropriate use of procedures and the application of child-size exposures. Judged by the visits to the website and the result of surveys, the
campaign is very effective, leading to a change in practice and a lowering exposure to more than half of those surveyed.

4.1.4. A culture shift to improve practice: radiation protection culture

The Four T’s of Leadership: truth, trust, teamwork and training, and the Five Rights of Imaging: right test, right order, right way, right report and right follow-up action are used to improve practice performance and radiation protection culture.

4.1.5. Discussion

There are uncertainties when attributing health risks at low levels. The media often publish negative information. It is desirable for health professionals to have the necessary media skills to underpin effective communication of the key issues in a way the public understands. Communication involves different stakeholders. There is a need to strengthen the education and training of health professionals including general practitioners.

4.2 Creating a dialogue in paediatric health care, opportunities and challenges

4.2.1. Risk communication in public health

In a 2011 Gallup International survey on communication between doctors and patients, doctors’ performance trended downwards basing on patient perception, trust, satisfaction, and their compliance to medical advice. There is an increasing dependence on web-based health advice. Patient-centred communication is best because it yields diagnostic information, builds rapport and indicates to the patients that they are being listened to and what they have to say is important. Some practical tips to successful risk communication in public health are:

- Defining the desired outcome;
- Knowing the audience and being aware of the active resisters (blockers) and passive resisters (avoiders) compare to the active supporters (champions) and passive supporters (silent boosters);
- Choosing the right strategy and acknowledging patient perceptions;
- Tailoring the message to the stakeholder;
- Understanding emotions and managing these accordingly to achieve the desired outcome; and
- Being aware of the communication gap between doctors and patients and by closing this gap.

4.2.2. Communication between referrers and radiological practitioners

From a regulator's perspective, risk communication is pivotal and complex, and has to address different scenarios and interactions. The scenarios cover healthcare, biomedical research, and prenatal and medico-legal exposures. The interactions involve patients, medical practitioners, biomedical researchers, radiological practitioners, medical radiation technologists, medical physicists, and Ethics
Committees.
The stakeholders for communication on procedure justification are the patient, referrer, and radiological practitioner; and optimization are the radiological practitioner, radiological technologist, and medical physicist. In biomedical research, there is no specific justification for an individual volunteer; instead the exposure has to be justified "generically". It should be in accordance to the Helsinki Declaration and is subjected to the approval of an Ethics Committee or a body assigned to fulfill this task. In biomedical research, the researcher communicates radiation risks to the Ethics Committee or the institutional body on the one hand and discusses these risks with the patient and radiological practitioner on the other.
The elements underpinning successful risk communication include: accepting and involving the counterpart as a legitimate partner; being honest, frank and open; speaking clearly and with compassion; coordinating and collaborating with other credible sources; and meeting the need of the media.

4.2.3. Role of family doctors

Family doctors look after four times as many patients when compared to doctors from academic institutions. They play important roles, because family doctors are the first and last point of patient contact in an episode of care. Countries with a poor family doctor system have poorer health outcomes. The diseases seen in family practice could at times be complex and time consuming. One of the challenges in family practice is the access to and application of evidence-based recommendations and tools. It is important for the patients and family doctors to be actively involved in guideline development. The importance of relationship building and effective communication was stressed.

4.2.4. Role of other health care providers

Radiographers and radiological technologists are front line practitioners in paediatric imaging and play key roles in radiation reduction by acting as family and patient advocates; using child size protocols and appropriate technique; and ensuring diagnostic images are obtained. In practice, this includes appropriate use of immobilization devices, distraction tools, short exposure time, limited views, collimation, lead shielding and ALARA. In CT, it is important to adjust the dose to patient size; to use automatic dose reduction; to standardize and regularly review protocols; to analyze exposures; and to participate in quality and accreditation programs.
Radiographers collaborate with radiologists and medical physicists as a team to ensure radiation protection by justification and optimization. For procedure justification, these include the use of referral guidelines and the communication of benefits and risks to patient and parent. The optimization of radiation protection and diagnostic data include contributions to equipment commissioning,
maintenance, quality control and quality assurance programs. The importance of continuing professional development was stressed by keeping up-to-date with international guidelines in optimization and best practice for dose reduction. Radiation protection is a shared responsibility; a team approach will ensure dose-optimized and diagnostic images are obtained in pediatric imaging.

4.2.5. The view of patients and parents

Some of the issues for patients or carers include low awareness, knowledge and understanding in radiological procedures including the benefits and risks; and variations in the choice and performance of procedures including exposure. There is a need to improve: access to information; practitioner education; and communication to facilitate informed discussion and choice of options.

Public debate has generated disproportionate anxiety about radiation risks and it is important to ensure communication is factual, evidence-based and not alarming. Education addresses information deficit, removes misconceptions, and allows informed consent or refusal. The joint decision, consent or refusal, should be documented in the medical record.

Supporting actions to patients and general practitioners include: access to medical records, exposure tracking and dose record for patients; education and means to support gatekeeper role for general practitioners; and information sharing for both including better use of discharge summaries. The identification and implementation of measures to improve reporting and learning; partnership and collaboration; openness and transparency; and engagement of the stakeholders are the ways forward.

For example, recognition of patients’ role and participation in policy development is encouraged.

4.2.6. Discussion

When developing guidance tools, it is useful to take into account of the social setting and the issues that are of interest or concern to the end-users. Good communication is specific and individually tailored. A useful communication tool should be simple to use and practical. It is important to consider the recipient’s emotions. A challenge relating to equipment manufacturers and vendors is the need for a standardized terminology. The concern on exposures associated with the use of second hand equipment was raised.

4.3 Case studies

The purpose is to share experience and lessons from recent communication projects in health care, focusing on radiation benefits and risks and paediatric imaging. This is a review of what has been done in response to a particular challenge and will be a useful guide to future actions.

4.3.1. Radiologists, referrers, patients and carers: The RCR experience

The Royal College of Radiologists (RCR) has been providing guidance to radiologists, referrers,
patients, carers, and regulators on an appropriate use of radiologic imaging for many years. The approaches include: publication of referral guidelines and other inter-collegiate guidance documents; hosting a public information section in the RCR website; provision of education and training to radiologists, e.g. in justification and optimization; and advocacy in the drafting of related legislations and regulations.

Radiologists communicate to different stakeholders. For the patients, the examples include procedure information with appointment letter, web-based information, and direct discussions with patients and patient liaison groups. For the referrers, the examples include direct discussions, referral guidelines, clinical meetings, educational message in reports, web-based information and interaction with professional groups.

The collaboration with and participation of other stakeholders in the development of guidance tools, e.g. referral guidelines is important. Following the release of referral guidelines, the overall referrals fell by 13%. Randomized trial of educational message in reports was effective by reducing use by up to 20% without affecting the quality of referrals.

The strengths supporting the use of referral guidelines in the UK include a relatively uniform National Health Service system, the acceptance of radiological advice by the referrers, and the advice is provided by a trusted source for over 20 years. The challenges are resource-intense guideline development, guidelines dissemination, implementation, and uptake. The opportunities include sharing knowledge and resources, implementing electronic requesting system, monitoring by national clinical audits, and strengthening collaborations with referrers, regulators, professional organization, and patient groups.

4.3.2. Dialogue between scientists and the public

Following the Fukushima nuclear power plant accident, the issues that the public has concern about and expects reliable information from the scientific leaders and authorities include: radiation protection, including dose measurements; exposure estimation and accuracy, including external exposure, internal exposure and dosimetry; cancer risk estimation; and the impacts of the accident to daily life. The common queries on everyday routine include food and water contamination and decontamination; outdoor activities for children; and the justification for radiologic procedures etc. Scientific information is delivered to the public via the Internet, public lectures, seminars, and telephone consultations. This communication is bi-directional between the scientists and the public: about anxiety and unknown risks on the one hand and trustworthy scientific information on radiation effects, risks and protection on the other. The challenge is limited resources for an individual institution. Apart from attending scientific lectures or surfing the Internet the public obtains information from the
media and friends. However some of such information may not be scientifically robust. Individuals have different points of view and sense of value.

4.3.3. Dialogue between paediatric radiologists and referrers and parents

Following the aftermath of the Fukushima accident, there is increasing public awareness and anxiety on radiation risks and radiation-related health effects. There is a reduction in the use of CT due to deceased request, and patient refusal or cancellation. This “over” reaction and emerging trend could be a barrier to the use of appropriate and justified radiologic procedures. To overcome patient concern, anxiety, refusal and cancellation, the referring physicians in paediatric clinics are well placed to directly explain the benefits and risks to those involved at the first instance.

4.3.4. Dialogue between pediatricians and parents – a regional experience

A survey was recently conducted in five South America countries to assess the perception of radiation risk from paediatric imaging procedures and the communication between parents (mothers) and medical practitioners; and to determine the range and use of existing tools and strategies. The practitioners’ awareness and knowledge of radiation exposure in procedures is low; their awareness of public health risk communication campaign and the need for communication with other health professionals is low; and the recording of procedure exposures in children is poor. For the mothers, the benefits and risks from and the exposure delivered in procedures were not provided and mothers were unaware of the need for or did maintain a record of procedure exposures. The challenges therefore include: awareness and knowledge; means to keep the doctors informed; public and doctors access to reliable information in a local language; communication with patients and families; maintenance of procedure exposures in medical record and by patients; and range of available tools.

It is encouraging noting the interest in, and involvement and participation of the key stakeholders in this survey, including the Societies of Paediatric and others. To overcome low awareness among decision makers and leaders, capacity building is urgently needed by the training of trainers, educators and leaders. Strategic partners from different sectors should be engaged to develop and disseminate evidence-based information and education tools and to create and promote dialogue between the end-users. The WHO plays a leadership and coordinating role by facilitating inter-sectorial stakeholder engagement and dialogue covering a range of emerging health issues.

4.3.5. The IAEA experience on communicating radiation risks and benefits in pediatric imaging

The International Atomic Energy Agency hosts a Radiation Protection of Patient’s website for health professionals; member states; patients; and public, including special groups, e.g. pregnant women and children. Resources are freely available covering questions and answers on common radiation protection issues, publications, standards, training material, presentations, and posters many of which
are available in translations. These resources are developed in collaboration with other stakeholders and in paediatric imaging the Image Gently Campaign. Link is provided to the Image Gently and other sites for more resources on paediatric imaging, radiation protection in children and radiation risk communication.

The key messages for paediatric imaging are the provision of concise, comforting and reassuring points focusing on: benefits, risks and procedure justification; discussion with doctors; consideration of non-ionizing procedures; and good record keeping. Knowing when and how to deliver a positive message stressing that medical radiation procedure is safe is important. Given the large variations in exposures for paediatric CT procedures across facilities, there is a need to educate providers and improve optimization.

The lessons learnt are to keep the messages simple when consensus with experts is required; and to evaluate feedback and impact to improve the content and use of these resources.

4.4 Message mapping

The goals for risk communication are to enhance knowledge and understanding; build trust and credibility; and encourage positive attitudes, behaviors and beliefs. Effective communication will ensure consistency between spokespersons, collaborators, advocates, i.e. “speaking with one voice”; ensure consistency across different communication outlets; and prevent omission of facts or misstatements. Success hinges on adequate preparation and messages targeted to a specific stakeholder group. These include identifying the key questions for a certain groups, mapping the key messages, testing and trialing, and applying graphics and visual aids as necessary. The evidence suggests that “simple” is best, i.e. keeping 9 words per message on the average. The challenge is how to make the message simple and appropriate.

The delegates were assigned into small groups to discuss and identify the practical tips and pitfalls on what to say, how to explain, and to develop tailored messages for a particular group of audience. The key messages are summarized in Table 1.
Table 1: A summary of the key messages on CT procedures for the different stakeholder groups.

<table>
<thead>
<tr>
<th>Key message 1</th>
<th>Key message 2</th>
<th>Key message 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups A: Key messages for patients, parents and carers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT is a widely used and very effective test using x-rays</td>
<td>It is the best test to inform further actions, if any</td>
<td>The benefits greatly exceed the risks (for you)</td>
</tr>
<tr>
<td>Groups B: Key messages for patients, parents and carers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT is more appropriate for your condition</td>
<td>The risk is small compared with the benefits</td>
<td>If it was my own child, I will go for it</td>
</tr>
<tr>
<td>Group C: Key messages for referrers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait, observe and consider alternatives (after reviewing the clinical findings, previous investigations and provisional diagnosis)</td>
<td>Assess the impact of procedures on management, consult guidelines and radiologist, consider dose</td>
<td>Provide information to parents by a simple way, involve parents in decision, inform consent</td>
</tr>
<tr>
<td>Group D: Key messages for referrers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain proper clinical history and examination, including pregnancy and previous CT</td>
<td>Use guidelines, consider alternatives, write informative referral, and communicate with radiological practitioner if necessary</td>
<td>Risk communication to patients on the benefits and risks is indicated and includes broad estimation for dose and risk</td>
</tr>
<tr>
<td>Group E: Key messages for radiological medical practitioners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation risk from CT is low</td>
<td>Guidelines support the appropriate use of CT</td>
<td>Dose and risk are reduced by optimizing techniques</td>
</tr>
<tr>
<td>Group F: Key messages for nurses and other health care providers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT is the best choice for this particular case</td>
<td>The risk is low and paediatric protocols minimize exposures</td>
<td>Inform the parents, compare risks and stay calm</td>
</tr>
<tr>
<td>Group G: Key messages for administrators, policy makers, regulators and authorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assign roles and responsibilities in the justification process</td>
<td>Ensure paediatric protocol is available and used</td>
<td>Audits of facilities must be performed</td>
</tr>
<tr>
<td>Group H: Key messages for communicators, media and press</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There could be a life threatening situation</td>
<td>CT is preferred for detecting life threatening injuries</td>
<td>CT can be performed safely</td>
</tr>
</tbody>
</table>
4.5 Feedback on the communication tool

A draft tool on radiation risk communication in paediatric imaging was circulated prior to the Workshop. The feedback that was presented during the Workshop was based on the preliminary responses received and these include:

- The messages should be concise, clear, simple, understandable and user-friendly;
- One tool doesn’t fit all and the tailoring to a specific end-user group is needed;
- Avoid providing excessive detail or using technical terms;
- This resource when structured accordingly, could be included in the curricula of undergraduate and postgraduate programs for health professionals;
- An awareness of the factors affecting patients’ and carers’ comprehension of these messages at the point of care and the need for tailoring the content and delivery is needed;
- For the public, the information should start at a basic level, but more detailed information should be available through trustworthy websites; and
- To meet the needs of different settings, translation into a local language by employing expressions commonly used by the community and considering the cultural issues will improve uptake.

The practice of paediatric imaging should be “optimized” and the art of communication should be strengthened. The aim is to develop a tool to fill this gap. Effective communication is challenging and this tool should be an example of a good communication tool. Teamwork will deliver a better tool and lead to better outcome, e.g. clinical and scientific experts to assemble the facts; communication experts to fine-tune the message in co-operation with patient representatives; and graphic designers to enhance the interface.

4.6 Conclusion

The concluding and take home points are summarized as follows:

1. The importance of risk communication in paediatric imaging is stressed in view of the radiation sensitivity in children and their long life span for future manifestation of the biological effects;
2. Awareness of radiation risks and radiation doses in paediatric imaging procedures amongst referrers, patients and the public is low;
3. It is important to tailor the messages to specific stakeholders - message mapping is useful;
4. Professional experts contribute by crafting and tailoring evidence-based key messages and communication experts enhance these by fine-tuning the language and the delivery to meet the needs of different end-users;
5. The patients and carers must be involved and represented in all processes, preferably at an early
6. Risk communication in paediatric imaging is a team action. In practice, this will often involve the front line professional, i.e. the radiographer. The contribution from a medical physicist is needed for higher risk situations; and

7. A risk communication tool is important and useful. This should be used for education. The targeted messages should be clear and concise.

5. **Deliverables and the next step**

The deliverables include a Workshop Report and a communication package consisting of advocacy messages and a radiation risk communication tool for health professionals, patients, family and the public. These resources provide the stakeholders with evidence-based information and trustworthy advice to improve their understanding and communication of radiation risks in paediatric imaging. The next steps are to inform the stakeholders of the availability of this communication tool, to disseminate and advocate its use in practice.
6. Appendix 1: List of participants

Radiation Risk Communication in Paediatric Imaging Workshop
Global Initiative on Radiation Safety in Healthcare Settings
2nd December 2012, Bonn, Germany

Argentina
Raul Cabrejas
Hospital Universitario Austral Rp25 y Anchorena,
B° Sta Silvina 51; 1629, Pilar,
Buenos Aires, Argentina.
Tel: +54 91162573219
Email: raul.c.cabrejas@gmail.com
Mercedes Portas
Burns Hospital,
Buenos Aires, Argentina.
Email: mportas84@gmail.com
Ana Maria Rojo
Nuclear Regulatory Authority,
Libertador 8250,
Buenos Aires, Argentina.
Email: arojo@arn.gob.ar
Rodolfo Touzet
Comision Nacional de Energia Atomic,
Av Libertador 8250,
Buenos Aires, Argentina.
Tel: +54 11 4704 1115
Email: rtouzet@cnea.gov.ar

Australia
Stephanie Newell
WHO Patients for Patient Safety Network,
Email: newellsteph@gmail.com

Austria
Manfred Ditto
Federal Ministry of Health,
Department - Radiation Protection,
Radetzkystraße 2,
A-1030 Vienna, Austria.
Tel: +43 1 71100 4123
Email: manfred.ditto@bmg.gv.at

Belgium
Lodewijk van Bladel
Federal Agency for Nuclear Control (FANC),
Rue Ravenstein 36,
B-1000 Brussels, Belgium.
TEL: +32 475 725445
Email: lodewijk.vanbladel@fanc.fgov.be
Sylviane Carbonelle
Federal Agency for Nuclear Control (FANC),
Rue Ravenstein 36,
B-1000 Brussels, Belgium.
Tel: +32 2 289 20 75
Email: sylviane.carbonnelle@fanc.fgov.be
Ana Vaniqui
Belgian Nuclear Research Centre (SCK CEN),
Institute of Environment, Health and Safety,
Department of Radiation protection Dosimetry and Calibration,
Boeretang 200, B-2400 Mol, Belgium.
Tel: +32(0) 14 33 23 91
Email: avdsanta@sckcen.be
Bolivia
Lidya Nieves Quevedo Limón
President, Bolivian Society of Radiation Protection,
Sucre, Bolivia.
Tel: +591 70315453
Email: dra_lidyaquevedol@yahoo.com

Brazil
Carlos Eduardo Almeida
Email: cea71@yahoo.com.br
Paulo R. Costa
Dept. de Física Nuclear - Instituto de Física,
Universidade de São Paulo,
Av. Do Matão trav. R 187,
Cidade Universitária,
São Paulo, Brazil.
Tel: +55 11 30917005
Email: pcosta@if.usp.br
Mateus Yoshimura
University de São Paulo,
Institute of Physics / Departamento de Física Nuclear, IFUSP,
Rua do Matão, 187 - Travessa R,
CEP: 05508-090 Butantã,
São Paulo, Brazil.
Tel: +55 11 30916991
Email: e.yoshimura@if.usp.br

France
Bernard Aubert
Institu de Radioprotection et Surete Nucléaire (IRSN),
BP 17, 92262 Fontenay-aux-Roses,
Cedex, France.
Tel: + 33 1 58 35 80 20
Email: bernard.aubert@irsn.fr
Hubert Ducou Le Pointe
President of the French Society of Paediatric Radiology,
Service de Radiologie,
Hôpital d'Enfants Armand-Trousseau,
Paris, France.
Tel: +33 1 44 73 61 24
Email: hubert.ducou-le-pointe@trs.aphp.fr

Germany
Jürgen Griebel
Department Radiation Protection and Health,
Bundesamt für Strahlenschutz (BfS),
Fachbereich Strahlenschutz und Gesundheit,
Fachgebiet Diagnostische Radiologie,
Ingolstädter Landstr. 1,
85764 Neuherberg, Germany.
Tel: + 49 1888 333 2320
Email: jgriebel@bfs.de
Juergen Kopp
Klinikum Augsburg,
Stenglinstr.2,
D-86156 Augsburg, Germany.
Tel: +49 1717242887
Email: juergen.kopp@klinikum-augsburg.de
Brigitte Stöver
Former Charité Berlin,
Sonnenschein 62,
42719 Solingen, Germany.
Tel: +49 0212 24769877
Email: brigitte.stoever@charite.de
Hajo Zeeb
Bremer Institut für Epidemiologie und Präventionsforschung gmbh,
Achterstraße 2,
D - 28359 Bremen, Germany.
Fax: +49 421 218 56941
Email: zeeb@bips.uni-bremen.de

Ireland
Jack Madden
Radiological Protection Institute of Ireland,
Regulatory Service,
Regulatory & Information Management Division,
Ireland.
Email: jmadden@rpii.ie

Dara Murphy
Radiology Department,
Our Lady’s Children’s Hospital,
Crumlin,
Dublin 12, Ireland.
Tel: +353 1 4282757
Email: dara.murphy@olch.ie

Margaret Murphy
Patients for Patient Safety Network,
Dublin, Ireland
Email: margaretmurphyireland@gmail.com

Colm A. Saidlear
Chief Physicist & Radiation Protection Advisor,
Medical Physics / Department of Radiology,
Children's University Hospital,
Temple Street,
Dublin 1, Ireland.
Tel: +353 1 8784803
Email: colm.saidlear@cuh.ie

Japan
Keiichi Akahane
Radiological Protection Section,
Research Center for Charged Particle Therapy,
National Institute of Radiological Sciences (NIRS),
4-9-1 Anagawa, Inage-ku,
Chiba 263-8555, Japan.
Tel: +81 43 2063000
Email: akahane@nirs.go.jp

Osamu Miyazaki
National Centre for Child Health and Development,
2-10-1 Okura, Seatagaya-ku,
Tokyo, Japan.
Tel: +81 3 5494 7289
Email: osamu-m@rc4.so-net.ne.jp

Luxembourg
Christina Bokou
Fédération des Hôpitaux Luxembourgeois (FHL),
5, rue des Mérovingiens,
L- 8070 Bertrange, Luxembourg
Tel: +352 42 41 42 62
Email: christina.bokou@ehl.lu

Alexandra Schreiner-Karoussou
Ministry of Health,
Direction de la Santé,
Division de la Radioprotection,
Villa Louvigny, Allée Marconi,
L-2120 Luxembourg.
Email: alexandra.schreiner@ms.etat.lu
Malta Jonathan PorTelli
Assistant Lecturer,
Department of Radiography,
Faculty of Health Sciences,
University of Malta,
Block A, Level 1, Room 67,
Mater Dei Hospital,
Msida, MSD2090, Malta.
Tel: +356 2340 1155
Email: jonathan.porTelli@um.edu.mt

Myanmar Tin-Oo Nil
Deputy Director (Research),
Department of Medical Research, Lower Myanmar,
No. 5 Ziwaka Road,
Yangon, 11191,
Dagon Po, Myanmar
Tel: +95 01 375 447, or 01 375 459
Email: tinoo-zn@yangon.net.mm or dr.tinoo.dmr@gmail.com

Nepal Thakur Prasad Lamsal
Radiography Department,
District Hospital Dadeldhura,
Amargadi Municipality-5,
Dadeldhura, Mahakali Zone,
Far-West Regional Development Region, Nepal,
Nepal Radiological Development Initiative
Neelkantha-2, Rayatar, Dhading Bensi
Dhading District,
Bagmati Zone, Nepal
Tel: +977 010 520959
Email: thakur.lamsal@hotmail.com

Norway Eva Godske Friberg
Head of section,
Section for dosimetry and medical applications,
Norwegian Radiation Protection Authority (NRPA),
Department For Radiation Protection and Nuclear Safety,
PO Box 55 N-1332 Østerås,
Norway.
Tel: +47 67 16 26 20 or +47 92 06 37 54
Email: Eva.friberg@nrpa.no
Reidun Silkoset
Senior Adviser,
Norwegian Radiation Protection Authority (NRPA),
Department For Radiation Protection and Nuclear Safety,
PO Box 55 N-1332 Østerås,
Norway.
Tel: +47 67 16 25 00
Email: Reidun.silkoset@nrpa.no

Portugal Pedro Vaz
Unidade de Protecção e Segurança Radiológica,
Instituto Superior Técnico, Universidade Técnica de Lisboa,
Estrada Nacional 10, km 139,7
2695-066 Bobadela LRS, Portugal.
Tel: +351 219946230
Email: pedrovaz@itn.pt
Russia

Victor Ivanov
Ministry of Health,
Deputy Director, Medical Radiological Research Centre (MRRC),
National Radiation and Epidemiological Registry,
4 Korolyov str. Obninsk,
Kaluga region, Russia, 249036.
Tel: +7 495 956 94 12 or +7 48439 9 33 90
Email: nrer@obninsk.com

UK

Denis J. D’Almada Remedios
Department of Radiology,
Northwick Park Hospital,
Harrow, Middlesex,
HA1 3UJ, U.K.
Tel: +44 (0)20 8869 3895
Email: denis.remedios@doctors.org.uk

USA

Mike Boyd
Radiation Protection Division,
US Environmental Protection Agency,
1200 Pennsylvania Ave, NW Mail Code 6608-J,
20460 Washington DC, USA.
Tel: +1 202 343 9395
Email: boyd.mike@epamail.epa.gov

Jerrold T. Bushberg
Clinical Professor, Radiology and Radiation Oncology,
Director of EH&S and Health Physics Programs,
Assistant Director, Adm. & Prof. Services,
University of California, Davis School of Medicine,
2315 Stockton Blvd,
Building FSSB Suite 2500,
Sacramento, CA 95831, USA.
Tel: +1 916 734 5620 and 916 734 3956
Email: jtbushberg@ucdavis.edu

Angela Shogren
U.S. Environmental Protection Agency,
Radiation Protection Division,
Centre for Radiation Information and Outreach,
1200 Pennsylvania Ave, NW Mail Code 6608-J,
20460 Washington DC, USA.
Tel: +1 202 343 9761
Email: Shogren.Angela@epamail.epa.gov

John Parrish-Sprowl
Professor, Communication Studies,
Co-Director, Global Health Communication Centre,
Faculty, Russian and Eastern European Institute,
Adjunct Professor, Informatics,
Visiting Professor, South East European University,
Cavanaugh Hall 307G,
Department of Communication Studies, IUPUI,
425 University Blvd.,
Indianapolis, IN 46202, USA.
Tel: +1 317 278 3145
Email: johparri@iupui.edu
IOMP
Caridad Borras
International Organization for Medical Physics (IOMP),
Radiological Physics and Health Services Consultant,
1501 44th St., N.W.,
Washington DC 20007-2004, USA.
Tel: +1 202 333 0968
Email: cariborras@starpower.net

IRQN
Lawrence Lau
Chairman, International Radiology Quality Network (IRQN),
Level 9, 51 Druitt Street,
Sydney NSW 2000, Australia
Tel: + 61 3 9836 6215
Email: islau@bigpond.net.au

ISDE
Lilian Corra
International Society of Doctors for the Environment (ISDE),
Buenos Aires, Argentina
Email: liliancorra@gmail.com

ISRRT
Donna Newman
Sanford Health System,
300 NP Ave #307,
Fargo, North Dakota 58102, USA.
Tel: +1 701 234 5664
Email: donna.newman@sanfordhealth.org

UNSCEAR
Ferid Shannoun
UNSCEAR Secretariat,
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
PO Box 500, 1400 Vienna, Austria.
Tel: +43 1 26060 4331
Email: Ferid.Shannoun@unscear.org

WHO
Adriana Velazquez Berumen
Coordinator, Essential Medicines & Pharmaceutical Policies,
20, Ave Appia,
1211 Geneva-27, Switzerland.
Tel: +41 22 791 1239
Email: velazquezberumen@who.int
Gaya Gamhewage
Team Leader,
Corporate Communication,
Director General Office,
20, Ave Appia,
1211 Geneva-27, Switzerland.
Tel: +41 22 791 4030
Email: gamhewageg@who.int
Pablo Jiménez
Regional Advisor in Radiology,
Pan American Health Organization (PAHO),
525 23rd Street, NW,
Washington DC 20337, USA.
Tel: + 1 202 974 3605
Email: jimenezp@who.int
Maria Pérez
Scientist, Radiation and Environmental Health Programme,
Department of Public Health and Environment,
20, Ave Appia,
1211 Geneva-27, Switzerland.
Tel: + 41 22 791 5027
Email: perezm@who.int
Nittita Prasopa-Plazier
HQ/PSP Patient Safety Programme,
20, Ave Appia,
1211 Geneva-27, Switzerland.
Tel: +41 22 791 3712
Email: prasopaplaiziern@who.int
Emilie van Deventer
Team Leader,
HQ / PHE Public Health and Environment,
20, Ave Appia,
1211 Geneva-27, Switzerland.
Tel: +41 22 791 3950
Email: vandeventere@who.int

WONCA
Ernesto Mola
World Organization of National Colleges, Academies and Academic Associations of General Practitioners / Family Physicians (WONCA),
16 Piazza Ludovico Ariosto,
73100 Lecce, Italy.
Tel: +39 0832 650433
Email: ernestomola.mola@gmail.com
 Richard Roberts
President, World Organization of National Colleges, Academies and Academic Associations of General Practitioners/Family Physicians (WONCA),
Wisconsin, USA
Email: Richard.Roberts@fammed.wisc.edu
7. Appendix 2: Workshop Agenda

WORKSHOP AGENDA

09:00 Opening session
Welcome addresses:
Presentation of facilitator/s, chairpersons and meeting rapporteurs

Chairperson/s:

Meeting co-rapporteurs:

Co-facilitators morning sessions:

Co-facilitators afternoon sessions:

Scope and purpose of the workshop, working procedures
Draft tool evaluation form (distribution and explanation)

09:30 Setting the scene: numbers, facts, trends, issues
Health risks of radiation exposure early in life
Paediatric imaging today - making the right choice
Paediatric imaging today - procedures, doses, child-sizing settings
A culture shift to improve practice - radiation protection culture
Q&A, discussion

10:30 Coffee break

11:00 Creating a dialogue in pediatric health care: opportunities and challenges (Panel discussion)
Risk communication in public health
Communication between referrers and providers / radiological practitioners
Role of family doctors
Role of other health care providers
Patients / parents information, informed consent vs. informed decision-making process?
Q&A, discussion

Preparation for the afternoon breakout session: establishing groups, explaining/distributing tasks, nominating rapporteurs.

Proposed WG Rapporteurs:

12:30 Lunch
13:30 Plenary + breakout sessions (2 hours - testing the radiation risk communication tool)

1) **Buzz session** small groups discussion
 Gaya Gamhewage (WHO)

2) **Building on lessons learned**: 4 case studies, 45 minutes to discuss and identify good practices, lessons learned

 1. UK experience: the experience of the RCR in the dialogue between radiologists and referrers, dialogue with patients and parents (role of radiologists as gatekeepers, tools to communicate radiation risks and benefits)
 Denis Remedios (RCR, UK)

 2. JAPAN experience: dialogue between scientists and the public; dialogue between paediatric radiologists and referrers & parents. To discuss whether / how Fukushima Daiichi nuclear accident had implications perception & communication of risks and benefits in paediatric imaging?
 Keiichi Akahane (NIRS/ Chiba)
 Osamu Miyazaki (National Children’s Hospital, Tokyo)

 3. REGIONAL experience: the perception & communication of radiation risks – the dialogue between/with pediatricians, parents, public, tools, methods, gaps, needs
 Lilian Corra (International Society of Doctors for the Environment, ISDE)

 4. GLOBAL experience: the IAEA experience on communicating radiation risks and benefits in pediatric imaging (RPoP website; messages for parents, public, referrers; cooperation with Image Gently)
 Madan Rehani (International Atomic Energy Agency, IAEA and ICRP C3)

3) **Message mapping exercise to communicate radiation risks in paediatric imaging**
 Vince Holahan (NRC), Pek-Lan Kong, John Parrish-Sprowl and co-facilitators

 50 minutes to identify / discuss practical tips, traps, pitfalls: what to say, how to explain it, tailoring messages to a target audience.

15:30 Group photo - Coffee Break
Draft tool evaluation forms (collection of hardcopies)

16:00 Reports of the breakout groups rapporteurs

To discuss the results of the breakout sessions from the perspective of:
- Patients & parents;
- Referrers (pediatricians, general practitioners, family doctors);
- Radiological practitioners (radiologists, radiographers, medical physicists);
- Other health care providers;
- Educational institutions, medical students;
- Competent authorities, health policy makers;
- Scientists, researchers;
- Communication experts; and
- Other/s?

Final discussion

Summary of Panel conclusions
Outcome of the breakout sessions
Feedback on the radiation risk communication tool (short briefing on evaluation forms)
Next steps, take home messages

16:50 Closing remarks

17:00 End of Workshop
Appendix 3: A list of useful links

<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesamt für Strahlenschutz, Germany (BfS)</td>
<td>www.bfs.de</td>
</tr>
<tr>
<td>Department of Radiation Protection, Luxembourg</td>
<td>www.ms.etat.lu</td>
</tr>
<tr>
<td>European Commission (EC)</td>
<td>ec.europa.eu</td>
</tr>
<tr>
<td>European Federation of Radiographer Societies (EFERS)</td>
<td>www.efrs.eu</td>
</tr>
<tr>
<td>Federal Agency for Nuclear Control, Belgium (FANC)</td>
<td>www.fanc.fgov.be</td>
</tr>
<tr>
<td>Image Gently Campaign - Alliance for Radiation Safety in Pediatric Imaging</td>
<td>www.pedrad.org/associations/5364/ig</td>
</tr>
<tr>
<td>International Atomic Energy Agency (IAEA)</td>
<td>www.iaea.org</td>
</tr>
<tr>
<td>International Commission on Radiological Protection (ICRP)</td>
<td>www.icrp.org</td>
</tr>
<tr>
<td>International Organization for Medical Physics (IOMP)</td>
<td>www.iomp.org</td>
</tr>
<tr>
<td>International Radiation Protection Association (IRPA)</td>
<td>www.irpa.net</td>
</tr>
<tr>
<td>International Radiology Quality Network (IRQN)</td>
<td>www.irqn.org</td>
</tr>
<tr>
<td>International Society of Radiology (ISR)</td>
<td>www.isradiology.org</td>
</tr>
<tr>
<td>International Society of Radiographers & Radiological Technologists (ISRRRT)</td>
<td>www.isrrt.org</td>
</tr>
<tr>
<td>National Institute of Radiological Sciences, Japan (NIRS)</td>
<td>www.nirs.go.jp</td>
</tr>
<tr>
<td>National Nuclear Energy Commission, Brazil</td>
<td>www.cnen.gov.br</td>
</tr>
<tr>
<td>Norwegian Radiation Protection Authority (NRPA)</td>
<td>www.nrpa.no</td>
</tr>
<tr>
<td>Nuclear Regulatory Authority, Argentina</td>
<td>www.arn.gov.ar</td>
</tr>
<tr>
<td>Pan American Health Organization (PAHO)</td>
<td>new.paho.org</td>
</tr>
<tr>
<td>UN Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)</td>
<td>www.unscear.org</td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td>www.who.org</td>
</tr>
</tbody>
</table>
9. **Appendix 4: A list of abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPM</td>
<td>American Association of Physicists in Medicine</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>ACS</td>
<td>American cancer Society</td>
</tr>
<tr>
<td>ALARA</td>
<td>As low as reasonably achievable</td>
</tr>
<tr>
<td>AMRO</td>
<td>WHO Regional Office for the Americas</td>
</tr>
<tr>
<td>AOSR</td>
<td>Asian & Oceanian Society of Radiology</td>
</tr>
<tr>
<td>ARPANSA</td>
<td>Australian Radiation Protection and Nuclear Safety Agency</td>
</tr>
<tr>
<td>ASN</td>
<td>Autorité de Sureté Nucléaire (France)</td>
</tr>
<tr>
<td>ASTRO</td>
<td>American Society for Therapeutic Radiology and Oncology</td>
</tr>
<tr>
<td>BfS</td>
<td>Bundesamt für Strahlenschutz (Federal Radiation Protection Agency, Germany)</td>
</tr>
<tr>
<td>BSS</td>
<td>Basic Safety Standards</td>
</tr>
<tr>
<td>CIRSE</td>
<td>Cardiovascular and Interventional Radiological Society of Europe</td>
</tr>
<tr>
<td>CRPPH</td>
<td>Committee on Radiation Protection and Public Health</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DR</td>
<td>Digital Radiology</td>
</tr>
<tr>
<td>DR TREN</td>
<td>Directorate General for Energy and Transport</td>
</tr>
<tr>
<td>DRLs</td>
<td>Diagnostic Reference Levels</td>
</tr>
<tr>
<td>EANM</td>
<td>European Association of Nuclear Medicine</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFOMP</td>
<td>European Federation of Organisations for Medical Physics</td>
</tr>
<tr>
<td>EFRS</td>
<td>European Federation of Radiographer Societies</td>
</tr>
<tr>
<td>EMAN</td>
<td>European Medical ALARA Network</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (US)</td>
</tr>
<tr>
<td>ESR</td>
<td>European Society of Radiology</td>
</tr>
<tr>
<td>ESRO</td>
<td>ESTRO School of Radiology and Oncology</td>
</tr>
<tr>
<td>ESTRO</td>
<td>European Society of Therapeutic Radiology and Oncology</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>Euratom</td>
<td>European Atomic Energy Community</td>
</tr>
<tr>
<td>FANC</td>
<td>Federal Agency for Nuclear Control (Belgium)</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration (US)</td>
</tr>
<tr>
<td>FORO</td>
<td>Ibero-American Forum of Radiological and Nuclear Regulatory Agencies</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Medical Practice</td>
</tr>
<tr>
<td>GI</td>
<td>Global Initiative</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>HIS</td>
<td>Hospital Information System</td>
</tr>
<tr>
<td>HPA</td>
<td>Health Protection Agency (United Kingdom)</td>
</tr>
<tr>
<td>HQ</td>
<td>Head Quarters</td>
</tr>
<tr>
<td>HSE</td>
<td>Human Security and Environment</td>
</tr>
<tr>
<td>HSS</td>
<td>Health Systems & Services</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IAP</td>
<td>International Action Plan</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>ICRE</td>
<td>International Commission on Radiological Education</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiation Protection</td>
</tr>
<tr>
<td>ICRU</td>
<td>International Commission on Radiation Units and Measurements</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IHE</td>
<td>Interventions for Healthy Environments</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labor Office</td>
</tr>
<tr>
<td>IMRT</td>
<td>Intensity-Modulated Radiation Therapy</td>
</tr>
<tr>
<td>INCTR</td>
<td>International Network for Cancer Treatment and Research</td>
</tr>
<tr>
<td>INES</td>
<td>International Nuclear Event Scale</td>
</tr>
<tr>
<td>IOMP</td>
<td>International Organization of Medical Physicists</td>
</tr>
<tr>
<td>IR</td>
<td>Ionizing Radiation</td>
</tr>
<tr>
<td>IRPA</td>
<td>International Radiation Protection Association</td>
</tr>
<tr>
<td>IRQN</td>
<td>International Radiology Quality Network</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>IRSN</td>
<td>Institut de Radioprotection et Sureté Nucléaire (France)</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ISOE</td>
<td>Information System on Occupational Exposure</td>
</tr>
<tr>
<td>ISR</td>
<td>International Society of Radiology</td>
</tr>
<tr>
<td>ISRRRT</td>
<td>International Society of Radiographers and Radiological Technologists</td>
</tr>
<tr>
<td>IUPESM</td>
<td>International Union for Physical and Engineering Sciences in Medicine</td>
</tr>
<tr>
<td>JASTRO</td>
<td>Japanese Society of Therapeutic Radiology and Oncology</td>
</tr>
<tr>
<td>LAR</td>
<td>Lifetime attributable risk</td>
</tr>
<tr>
<td>MDCT</td>
<td>Multi-Detector Computed Tomography</td>
</tr>
<tr>
<td>MoH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MS</td>
<td>Member States</td>
</tr>
<tr>
<td>NAHU</td>
<td>Division of Human Health, IAEA</td>
</tr>
<tr>
<td>NCRP</td>
<td>National Council on Radiation Protection & Measurements (US)</td>
</tr>
<tr>
<td>NEA</td>
<td>Nuclear Energy Agency</td>
</tr>
<tr>
<td>NGOs</td>
<td>Non-Governmental Organizations</td>
</tr>
<tr>
<td>NIRS</td>
<td>National Institute of Radiological Sciences (Japan)</td>
</tr>
<tr>
<td>NM</td>
<td>Nuclear Medicine</td>
</tr>
<tr>
<td>NRC</td>
<td>Nuclear Regulatory Council (US)</td>
</tr>
<tr>
<td>NRPA</td>
<td>Norwegian Radiation Protection Authority</td>
</tr>
<tr>
<td>NSRW</td>
<td>Division of Radiation, Transport and Waste Safety, IAEA</td>
</tr>
<tr>
<td>PACT</td>
<td>Program of Action for Cancer Therapy</td>
</tr>
<tr>
<td>PAHO</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PHC</td>
<td>Primary Health Care</td>
</tr>
<tr>
<td>PHE</td>
<td>Public Health and Environment</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>QI</td>
<td>Quality Improvement</td>
</tr>
<tr>
<td>QM</td>
<td>Quality Management</td>
</tr>
<tr>
<td>RCR</td>
<td>Royal College of Radiology</td>
</tr>
<tr>
<td>RIS</td>
<td>Radiology Information System</td>
</tr>
<tr>
<td>ROSIS</td>
<td>Radiation Oncology Safety Information System</td>
</tr>
<tr>
<td>RP</td>
<td>Radiation Protection</td>
</tr>
<tr>
<td>RPoP</td>
<td>Radiological Protection of Patients</td>
</tr>
<tr>
<td>RSHCS</td>
<td>Radiation Safety in Health Care Settings</td>
</tr>
<tr>
<td>RSM</td>
<td>Radiation Safety & Monitoring</td>
</tr>
<tr>
<td>RSNA</td>
<td>Radiological Society of North America</td>
</tr>
<tr>
<td>RT</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>SFPM</td>
<td>French Society of Medical Physics</td>
</tr>
<tr>
<td>SFRO</td>
<td>French Society of Oncologic Radiotherapy</td>
</tr>
<tr>
<td>SIR</td>
<td>Society of Interventional Radiology</td>
</tr>
<tr>
<td>SOLACI</td>
<td>Latin American Society of Interventional Cardiology</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>SSI</td>
<td>Swedish Radiation Protection Authority</td>
</tr>
<tr>
<td>STUK</td>
<td>Radiation and Nuclear Safety Authority (Finland)</td>
</tr>
<tr>
<td>UN/DESA</td>
<td>United Nations Department of Economic and Social Affairs</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNSCEAR</td>
<td>United Nations Scientific Committee on the Effects of Atomic Radiation</td>
</tr>
<tr>
<td>WAPS</td>
<td>World Alliance for Patient Safety</td>
</tr>
<tr>
<td>WFME</td>
<td>World Federation of Medical Education</td>
</tr>
<tr>
<td>WFNMB</td>
<td>World Federation of Nuclear Medicine and Biology</td>
</tr>
<tr>
<td>WFPHA</td>
<td>World Federation of Public Health Associations</td>
</tr>
<tr>
<td>WG</td>
<td>Working Groups</td>
</tr>
<tr>
<td>WHA</td>
<td>World Health Assembly</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>