What are Nuclear Medicine Exams?

Nuclear medicine (NM) exams look at how a radioactive substance travels through the body. The substance—called a tracer—moves with normal body fluids or is absorbed into the body through an IV. The NM exam and surgery led to complete recovery.

What is a NM exam?

A single-photon emission computed tomography (SPECT) is a NM exam that combines an image from a radionuclide scan with a CT scan. PET-CT is another example of a hybrid imaging exam. SPECT images can be used with other exams and offer additional information that is not available from other imaging techniques. These exams are called "nuclear" simply because the substance used in them is radioactive. Nuclear medicine (NM) exams look at how radioactive substances travel through the body.

How much radiation is used in NM exams?

The amount of radiation in NM exams depends on the type of exam and the size of the child. Most of the commonly used NM exams deliver very low radiation doses to children. The length of time it takes the radioactivity to disappear from the body depends on the type of exam. The radiation risk is not a risk for others, but family members can seek advice from health professionals if they are concerned.

What are the potential risks for my child during and after this NM exam?

There are many ways to be sure the amount of radioactivity is right. There are many ways to be sure the amount of radioactivity is right. The risk of not having necessary NM exams is much greater than the potential harm. There are many ways to be sure the amount of radioactivity is right. There are many ways to be sure the amount of radioactivity is right.

How will this NM exam affect the right amount of radioactivity?

When NM exams are necessary and an appropriate dose is used, they provide far more benefit than potential harm. There are many ways to be sure the amount of radioactivity is right. There are many ways to be sure the amount of radioactivity is right.

Are there risks from the imaging?

There are two types of radiation: ionizing and non-ionizing. Ionizing radiation can remove electrons and make atoms vibrate, but does not have enough energy to remove electrons. In contrast, non-ionizing radiation can only vibrate and does not have enough energy to remove electrons. Medical and dental X-rays, fluoroscopy are examples of exams that use ionizing radiation. In contrast, ultrasound and magnetic resonance imaging are examples of exams that use non-ionizing radiation. Ionizing radiation is energy in the form of beta particles or high-energy electromagnetic waves. People are exposed to cosmic radiation from outer space and also in the body. The result of radiation exposure depends on the amount of radiation the child is exposed to and how long the exposure lasts. When NM exams are necessary and an appropriate dose is used, they provide far more benefit than potential harm. There are many ways to be sure the amount of radioactivity is right.

What questions do we need to know about radiation?

Ionizing radiation is energy in the form of beta particles or high-energy electromagnetic waves. People are exposed to cosmic radiation from outer space and also in the body. The result of radiation exposure depends on the amount of radiation the child is exposed to and how long the exposure lasts. When NM exams are necessary and an appropriate dose is used, they provide far more benefit than potential harm. There are many ways to be sure the amount of radioactivity is right.

Potential harm.

There are many ways to be sure the amount of radioactivity is right. There are many ways to be sure the amount of radioactivity is right. The risk of not having necessary NM exams is much greater than the potential harm. There are many ways to be sure the amount of radioactivity is right. There are many ways to be sure the amount of radioactivity is right.