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Contributors to this case-study include Mary Albert, Kathy Hughes and M.E. (Bette) Meek of 
the Existing Substances Division, Safe Environments Programme, Health Canada, Ottawa, 
Ontario, Canada. The case-study was prepared for the purpose of illustrating and testing the 
draft World Health Organization/International Programme on Chemical Safety (WHO/IPCS) 
framework on the risk assessment of combined exposures to multiple chemicals. It is 
presented here to facilitate the process of public comment. 
 

 



An example of a framework analysis for a screening assessment conducted under the 
Canadian Environmental Protection Act is presented here. The assessment group is 
polybrominated diphenyl ethers, or PBDEs. The tiers of assessment for this assessment group 
are illustrated conceptually in Figure 1. 
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Figure 1: Conceptual illustration of tiers of analysis for PBDEs.  

 
1. CONSIDERING THE NEED FOR A FRAMEWORK 
ANALYSIS  
 
Relevant data are considered here as a basis to determine whether or not a framework 
analysis is appropriate and the potential nature of the assessment group. 
 
• What is the nature of exposure? Are the key components known? Are there data available 

on the hazard of the mixture itself? 
 

The focus of this assessment is consideration of the risk of exposure of the population in the 
general environment, including through consumer products, as a basis to consider whether 
subsequent risk management is required. The majority of identified data relevant to the 
evaluation of human health risk relate to the commercial mixtures, with much less 
information being available for individual congeners. 
 
Uses of PBDEs in Canada are similar to those in other countries, primarily as additive flame 
retardants in a wide variety of consumer products, such as internal electric/electronic 
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components of and casings for household appliances/electronics (e.g. hair dryers, televisions, 
computers), furniture upholstery and cushioning, and wire and cable insulation. The three 
main commercial mixtures containing the seven isomers that were the subject of the 
assessment are commercial pentabromodiphenyl ether, or ComPeBDE (usually containing a 
mixture of PBDEs with 4–6 bromines), commercial octabromodiphenyl ether, or 
ComOcBDE (usually containing a mixture of PBDEs with 6–9 bromines), and commercial 
decabromodiphenyl ether, or ComDeBDE (usually containing PBDEs with 9–10 bromines).  
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• Is exposure unlikely or very low, taking into account the context?  
 
No. There is potential for exposure of the general population through direct contact with 
products in which these PBDEs are contained. The general population is also potentially 
exposed to PBDEs in the environment through the use and disposal of these products. 
 
• Is there a likelihood of co-exposure within a relevant timeframe? 

 
Yes. There is overlap in congeners within the commercial mixtures and reason to believe that 
their kinetics will be similar, based on similarity in physicochemical properties. 
 
• What is the rationale for considering compounds in an assessment group?  
 
The assessment group contains seven isomers with identical base structure, overlap in 
congeners within the commercial mixtures, similarities in uses and common target organs. 
Trends in physicochemical properties and toxicity vary consistently with increasing degree of 
bromination. 
 
2. PURPOSE AND FOCUS OF THE ASSESSMENT 
 
This case-study addresses a screening-level risk assessment for PBDEs conducted under the 
Canadian Environmental Protection Act. The principal objectives of screening assessments 
are to efficiently identify those substances that can be set aside as non-priorities for further 
work or for which risk should be more fully characterized in priority substance assessments. 
There is also provision to recommend risk management on the basis of both screening and 
priority substance assessments.  
 
Several PBDEs were identified as meeting criteria specified within regulations under the 
relevant legislation for persistence and/or bioaccumulation. They were also considered to be 
“inherently toxic” to non-human organisms. On this basis, they were nominated for inclusion 
in a pilot phase for preparation of a screening assessment. 
 
PBDEs are a class of substances containing an identical base structure that differ in the 
number of attached bromine atoms (n = 1–10). Selection of the seven PBDE congener groups 
considered in this assessment was based on their potential use in Canada (i.e. their 
designation as existing substances included on the Domestic Substances List) (Table 1). The 
three main commercial mixtures containing these seven isomers are commercial 
pentabromodiphenyl ether, or ComPeBDE (usually containing a mixture of PBDEs with 4–6 
bromines), commercial octabromodiphenyl ether, or ComOcBDE (usually containing a 
mixture of PBDEs with 6–9 bromines), and commercial decabromodiphenyl ether, or 
ComDeBDE (usually containing PBDEs with 9–10 bromines).  
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Table 1: List of PBDEs considered in the assessment (Health Canada, 2006). 
 
Congener group Acronym CAS No. No. of individual 

congeners
Tetrabromodiphenyl ether  TeBDE 40088-47-9 42
Pentabromodiphenyl ether PeBDE 32534-81-9 46
Hexabromodiphenyl ether  HxBDE 36483-60-0 42
Heptabromodiphenyl ether  HeBDE 68928-80-3 24
Octabromodiphenyl ether  OcBDE 32536-52-0 12
Nonabromodiphenyl ether  NoBDE 63936-56-1 3
Decabromodiphenyl ether  DeBDE 1163-19-5 1
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3. THE FRAMEWORK ANALYSIS 
 
Having determined that a framework analysis is appropriate and (at least) the initial 
composition of an assessment group, available data are considered in a tiered (hierarchical) 
and integrative (considering both exposure and hazard) fashion, relying in early stages on 
crude and conservative estimates as a basis to determine whether additional assessment 
and/or data generation are required. In each of the tiers, estimates of exposure and measures 
of potency are developed and compared and uncertainties considered. The margin between 
estimated exposure and hazard is considered in the context of associated uncertainties as a 
basis to consider whether or not a higher-tier assessment is required. The nature of 
considerations that constituted the basis for determining that a higher-tier assessment is 
required (i.e. adequacy of the margin of exposure in the context of uncertainty associated 
with both estimated exposure and hazard) is explicitly stated. 
 
3.1 Tier 0 
 
3.1.1 Exposure assessment  
A semiquantitative measure of exposure was available for these substances developed on the 
basis of the relative ranking of PBDEs during the categorization of all substances on the 
Domestic Substances List under the Canadian Environmental Protection Act. In this exercise, 
potential for exposure was determined based on their volume of production, the numbers of 
producing and/or using companies and the sum of “expert ranked uses”. Expert ranking for 
the latter was based on the extent to which the uses were considered to contribute to potential 
exposure of the general population, derived from several workshops involving relevant 
experts. 
 
On this basis, four of the congeners (tetra, penta, hexa and hepta) were considered to present 
“lowest potential for exposure of the general population in Canada”; three of the congeners 
(octa, nona and deca) were considered to present “intermediate potential for exposure of the 
general population”. Semiquantitative measures of exposure were developed through 
comparison of relative rankings, physicochemical properties and use patterns with substances 
for which deterministic estimates of exposure were available.  
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In view of the absence of reference or tolerable intakes or concentrations for the relevant 
congeners, a hazard index (i.e. the sum of exposures divided by the reference value for each 
of the individual components of an assessment group) could not be developed.  
 
3.1.3 Risk characterization/analysis of uncertainties  
As these summed semiquantitative estimates of exposure exceeded a conservative measure of 
hazard (i.e. the lowest-observed-effect level [LOEL] for the most toxic congener), additional 
assessment was considered necessary (see section 3.2.2 below).  
 
3.2 Tier 1 
 
3.2.1 Exposure assessment 
Available data upon which to base estimates of population exposure to PBDEs are quite 
disparate, ranging from concentrations in specific media for individual congeners or congener 
groups to concentrations of total PBDEs, without further identification of specific congeners. 
In view of the limitations of the data to meaningfully estimate exposure to individual 
congeners or congener groups and the limited objectives of a screening assessment, 
conservative upper-bounding estimates of total intake of PBDEs were derived based on 
maximum levels in air, water, dust, food and human breast milk and standard intake values 
for six age groups within the Canadian population.  
 
Based on reported concentrations of PBDEs in ambient and indoor air, water, various 
foodstuffs, human breast milk and dust, along with standard reference values for intake, an 
upper-bounding estimate of daily intake of total PBDEs (i.e. the tetra to deca congeners 
considered here) ranged from 0.2 to 2.6 µg/kg body weight (bw) per day for six different age 
groups of the general population, including breastfed infants, in Canada (Health Canada, 
2006). Food (including breast milk) represents the principal source of exposure for the 
majority of the age groups (although dust was the principal source of exposure for the 0- to 6-
month-old non-breastfed age group). The age group with potentially the greatest exposure 
was 0- to 6-month-old breastfed infants, with breast milk accounting for 92% of the exposure 
(see Table 3 in the appendix at the end of case-study A). 
 
These upper-bounding estimates of exposure were considered conservative, in that they were 
based on summed estimates for all congeners for which data were available and highest 
measured concentrations for many media. Quantitative implications of this degree of 
conservatism were taken into account in determining the adequacy of the margin of exposure 
(see section 3.2.3).  
 
Upper-bounding estimates of intake in food for subpopulations consuming more traditional or 
country foods were not substantially greater (i.e. less than 2-fold). Similarly, estimates of 
intake from dermal contact with dust or oral contact with household products treated with 
flame retardants containing the penta and octa congeners were also negligible in comparison 
with intake from food (Health Canada, 2006). 
 
3.2.2 Hazard assessment  
The majority of identified data on the toxicity of PBDEs relate to the commercial mixtures, 
with much less information being available for individual congeners. Although a full range of 
toxicity studies was not available for all congeners or commercial mixtures, target systems 
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and organs for the PBDEs are similar, including the liver, the thyroid and early behavioural 
development. Based on preliminary assessment of the available toxicological data, the critical 
effects and effect levels for the ComPeBDE, ComOcBDE and ComDeBDE commercial 
mixtures, as well as for each of the congener groups considered in this assessment (where 
possible), are presented in Table 2 (supporting data are presented in Table 4 in the appendix 
to this case-study). Critical effects of PBDEs were those that occur on the liver and on 
neurobehavioural development. Owing to the limited nature of the database for some 
substances, confidence in the assessment for each PBDE congener group and commercial 
mixture varies. 
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Table 2: Overview of critical health effects and effect levels for PBDE congener 

groups and commercial products (Health Canada, 2006).  
Congener LOEL (mg/kg-

bw per day) 
End-point  References 

TeBDE 11 Developmental: behavioural 
(mouse) 

Eriksson et al. (2001) 

PeBDE 0.8 Developmental: behavioural 
(mouse) 

Eriksson et al. (1998, 2001) 

HxBDE 0.9 Developmental: behavioural 
(mouse) 

Viberg et al. (2002a) 

HeBDE – –  
OcBDE – –  
NoBDE – –  
ComPeBDE  2 Liver histopathology: subchronic 

dietary study (rat) 
Great Lakes Chemical 
Corporation (undated a) 

ComOcBDE 5 Liver weight: subchronic dietary 
study (rat) 

Great Lakes Chemical 
Corporation (1987) 

ComDeBDE/ 
DeBDE 

2.2 Developmental: behavioural 
(mouse) 

Viberg et al. (2001a, 2001b, 
2003); Viberg (2002)  
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The selected critical effect level was the conservative value of 0.8 mg/kg-bw (for PeBDE), 
based on neurobehavioural effects consisting of changes in locomotion, rearing and total 
activity in a dose- and time-related manner observed in neonatal mice administered a single 
oral dose by gavage on postnatal day 10 and observed for a subsequent 5-month period. 
Selection of this critical effect level was supported by additional information on similar 
effects being observed in mice exposed to the penta congener by maternal administration and 
in neonatal mice administered single, relatively low doses of the tetra, hexa and deca 
congeners by the same investigators. A somewhat lower LOEL of 0.44 mg/kg-bw per day for 
ComPeBDE, based on alterations in hepatic enzyme activities, was not considered critical 
based on the lack of observation of histopathological changes in the liver at this or higher 
doses (Health Canada, 2006).  
 
3.2.3 Risk characterization/analysis of uncertainties  
As a basis for development of conservative margins for the purposes of screening and in light 
of the similarity of health effects associated with the various PBDEs considered here, the 
selected critical effect level was compared with an upper-bounding estimate of exposure to 
total PBDEs (i.e. the tetra to deca congeners considered here) for the potentially most highly 
exposed subgroup. 
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Comparison of the critical effect level (i.e. 0.8 mg/kg-bw for neurodevelopmental effects in 
mice following neonatal exposure) with the upper-bounding deterministic estimate of 
exposure for the intake of total PBDEs (2.6 µg/kg-bw per day in breastfed infants) resulted in 
a margin of exposure of approximately 300.  
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Margins based on available biomonitoring data were approximately 10-fold less. These were 
estimated through back-calculation of intakes by first-order kinetic modelling of limited data 
on levels in blood of the general population and comparison of estimated body burden for the 
critical study in animals with that for breastfed infants. However, confidence in these 
estimates was considered to be less, owing to the considerable limitations of the relevant data 
on biological half-lives of PBDEs in humans and their seeming inconsistency with what 
would be expected based on relevant physicochemical properties.  
 
The degree of conservatism in this margin is relevant to its interpretation. One critical aspect 
is the large interindividual variability in levels of PBDEs in breast milk within the general 
population. It should be noted that mean and median values for levels in breast milk were as 
much as 400- and 200-fold less, respectively, than the maximum values on which the 
estimates of exposure were based. In addition, the critical effect level with which the estimate 
of exposure was compared was that for the most sensitive effect for the most toxic congener. 
In comparison, effect levels in chronic studies for the same congener were approximately 100 
times greater than that used to calculate the margin of exposure. 
 
The margin of exposure does not, however, take into account the potential continuing 
increase in body burden of PBDEs (based on data for breast milk), should similar use patterns 
continue. Based on limited data, levels of PBDEs in human breast milk in Canada appear to 
be increasing with time (e.g. there was a 9-fold increase in mean concentration between 1992 
and 2001). Prediction of trends in body burdens is precluded by the limited information on 
the toxicokinetics of PBDEs in humans and experimental animals and transfer from human 
breast milk to infants as well as the uncertainty in half-lives for removal processes for PBDEs 
in environmental media.  
 
Determination of the adequacy of the derived margin to address elements of uncertainty 
associated with limitations of the database for health effects and population exposure (in 
which confidence overall is considered to be moderate), intraspecies and interspecies 
variations in sensitivity, as well as the biological adversity or severity of the effects deemed 
critical was found to require additional in-depth evaluation of the relevant data. Development 
of additional, more meaningful information on population exposure to PBDEs was also 
considered desirable.  
 
However, in view of the smaller margin between the most conservative estimated critical 
values for exposure and effects on the environment in comparison with that for human health 
and resulting recommended action to protect the environment, in-depth evaluation of PBDEs 
from a human health perspective was considered a low priority at this time. This conclusion 
is consistent with experience in other countries that risk management actions to protect the 
environment have resulted in a reduction of exposure of humans. It also contributes to 
increasing efficiency in the assessment and management of prioritized chemical substances. 
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Table 3: Upper-bounding estimate of PBDE daily intake for the general population.  
 

Estimated intake (µg/kg-bw per day) of PBDEs by various age groups 
0–6 monthsa

Route of 
exposure 

Formula fedb Breastfedc Not formula fed
0.5–4 yearsd 5–11 yearse 12–19 yearsf 20–59 yearsg 60+ yearsh

Ambient airi 7.7 × 10−5 7.7 × 10−5 7.7 × 10−5 1.7 × 10−4 1.3 × 10−4 7.3 × 10−5 6.3 × 10−5 5.5 × 10−5

Indoor airj 4.4 × 10−4 4.4 × 10−4 4.4 × 10−4 9.3 × 10−4 7.3 × 10−4 4.1 × 10−4 3.6 × 10−4 3.1 × 10−4

Drinking-
waterk

5.2 × 10−7 5.9 × 10−7 4.6 × 10−7 2.6 × 10−7 2.8 × 10−7 2.9 × 10−7

Foodl

 
1.4 × 10−3 2.4 

2.0 × 10−2 5.8 × 10−1 4.8 × 10−1 2.7 × 10−1 2.6 × 10−1 1.7 × 10−1

Soil/dustm 2.3 × 10−1 2.3 × 10−1 2.3 × 10−1 3.6 × 10−1 1.2 × 10−1 2.8 × 10−2 2.4 × 10−2 2.3 × 10−2

Total intake 2.3 × 10−1 2.6 2.5 × 10−1 9.5 × 10−1 6.0 × 10−1 3.0 × 10−1 2.8 × 10−1 1.9 × 10−1

a Assumed to weigh 7.5 kg, to breathe 2.1 m3 of air per day, to drink 0.2 litres/day (not formula fed) and to ingest 30 mg of soil per day. Consumption of 
food groups reported in Health Canada (1998). 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

b Formula-fed infants are assumed to have an intake rate of 0.75 kg of formula per day. TeBDE to HeBDE congeners were identified in a composite 
sample of baby formula at a value of 14 ng/kg (Ryan, undated). This study was the only data point for the medium. 

c The sum of the maximum concentrations of TeBDE to HeBDE identified in 72 samples of human breast milk collected in 1992 in Canada was 589 ng/g fat 
(Ryan & Patry, 2001a, 2001b; Ryan et al., 2002a, 2002b). Breastfed children 0–6 months of age are assumed to have an intake rate of 0.75 kg of breast 
milk per day (Health Canada, 1998). The percent fat of human breast milk has been estimated at 4% (USEPA, 1997). No data on levels of OcBDE, 
NoBDE or DeBDE in human milk were identified. Data considered in the selection of critical data also included Darnerud et al. (1998, 2002), Meironyte et 
al. (1998), Ryan & Patry (2000), Strandman et al. (2000), Atuma et al. (2001), Papke et al. (2001), Hori et al. (2002), Meironyte Guvenius et al. (2002) 
and Ohta et al. (2002). 

d Assumed to weigh 15.5 kg, to breathe 9.3 m3 of air per day, to drink 0.7 litres of water per day and to ingest 100 mg of soil per day. Consumption of food 
groups reported in Health Canada (1998). 

e Assumed to weigh 31.0 kg, to breathe 14.5 m3 of air per day, to drink 1.1 litres of water per day and to ingest 65 mg of soil per day. Consumption of food 
groups reported in Health Canada (1998). 

f Assumed to weigh 59.4 kg, to breathe 15.8 m3 of air per day, to drink 1.2 litres of water per day and to ingest 30 mg of soil per day. Consumption of food 
groups reported in Health Canada (1998). 

g Assumed to weigh 70.9 kg, to breathe 16.2 m3 of air per day, to drink 1.5 litres of water per day and to ingest 30 mg of soil per day. Consumption of food 
groups reported in Health Canada (1998). 

h Assumed to weigh 72.0 kg, to breathe 14.3 m3 of air per day, to drink 1.6 litres of water per day and to ingest 30 mg of soil per day. Consumption of food 
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groups reported in Health Canada (1998). 
i The maximum sum of the PBDEs (not all congeners were specified, but the majority of the value was from TeBDE to HxBDE congener groups) was 2.2 

ng/m3, measured in 14 ambient air samples from the Yukon, Canada, in the year 1994–1995 (Bidleman et al., 2001). Canadians are assumed to spend 3 
h outdoors each day (Health Canada, 1998). Data considered in the selection of critical data also included Bergman et al. (1999), Dodder et al. (2000), 
Alaee et al. (2001), Sjodin et al. (2001), Strandberg et al. (2001), Gouin et al. (2002) and Harner et al. (2002). 

j No data on levels of PBDEs in residential indoor air were identified. Three samples of indoor air from “domestic” sources in the United Kingdom were 
analysed, and the sum of one congener of TeBDE, two congeners of PeBDE and two congeners of HxBDE was reported at a maximum value of 1.6 
ng/m3 (Wijesekera et al., 2002). Six samples of indoor air from a laboratory in Norway were analysed, and one HeBDE congener was not detected 
(detection limit = 0.006 ng/m3) (Thomsen et al., 2001). Two samples of air from a teaching hall in Sweden were analysed, and DeBDE was reported at a 
maximum concentration of 0.17 ng/m3 (Sjodin et al., 2001). No data were available for OcBDE or NoBDE. These values were added together and used to 
calculate the upper-bounding estimate of exposure. Canadians are assumed to spend 21 h indoors each day (Health Canada, 1998). Data considered in 
the selection of critical data also included Bergman et al. (1999) and Pettersson et al. (2001).  

k No data on levels of PBDEs in drinking-water were identified. As a surrogate, the maximum value of PBDEs as a group (13 pg/l) detected in surface 
water from Lake Ontario was used (Luckey et al., 2001). Data considered in the selection of critical data also included Environment Agency Japan (1983, 
1989, 1991). 

l The concentrations of the sum of PBDEs were reported in 49 specific food items; the highest food item values were assumed to represent the 
concentration in each of the eight food groups (dairy, fats, vegetables, cereal products, meat and poultry, eggs, mixed dishes and fish) that include these 
food items. A concentration of zero was assumed for the remaining four food groups (fruits; foods primarily sugar; nuts and seeds; and soft drinks, 
alcohol, coffee, tea). Values for the TeBDE to HeBDE congeners were reported in a Canadian study of 40 food composite samples. The maximum values 
used in the upper-bounding estimate of exposure were for fat (113 ng/kg), cheese (62 ng/kg), meat (1183 ng/kg), egg (332 ng/kg), mixed dishes (207 
ng/kg), cereal products (70 ng/kg) and vegetables (104 ng/kg) (Ryan, undated). Twenty-one samples of salmon from Lake Michigan collected in 1996 
identified a maximum of 148.6 ng/g wet weight for TeBDE to HxBDE (Manchester-Neesvig et al., 2001). HeBDE was detected in marine fish (0.030 ng/g 
whole weight) sampled in the Yukon (Ryan, undated). No data on levels of OcBDE in food were identified. One study in the United Kingdom used the 
commercial OcBDE product DE-79 for identification and found levels of up to 12 µg/kg wet weight in fish muscle (Allchin et al., 1999). Neither DeBDE nor 
NoBDE was detected in farmed or wild salmon from British Columbia, with detection limits of 0.65 pg/g and 1.04 pg/g wet weight, respectively (Easton et 
al., 2002). Samples of chicken fat from the southern United States contained a maximum of 0.01 ng OcBDE/g (unspecified isomer), 0.04 ng NoBDE/g 
(unspecified isomer) and 2.91 ng DeBDE/g (Huwe et al., 2002). The maximum values or detection limits were added together and used to estimate the 
upper-bounding estimate of exposure. Data considered in the selection of critical data also included Kruger (1988), DeBoer (1990), Jansson et al. (1993), 
Sellstrom et al. (1993, 1998), Loganathan et al. (1995), Haglund et al. (1997), Alaee et al. (1999, 2002), Asplund et al. (1999a, 1999b), Ikonomou et al. 
(1999, 2002), Olsson et al. (1999), Dodder et al. (2000, 2002), Hale et al. (2000, 2001), Christensen & Platz (2001), Johnson & Olson (2001), Jones et al. 
(2001), Moisey et al. (2001), Zegers et al. (2001), Boon et al. (2002), Christensen et al. (2002), Jacobs et al. (2002), Luross et al. (2002), Norstrom et al. 
(2002), Ohta et al. (2002), Rice et al. (2002), Wakeford et al. (2002), Wijesekera et al. (2002) and Rayne et al. (2003). 

m No data on levels of TeBDE to HeBDE in soil not influenced by point sources were identified. As a surrogate, the sum of the maxima of one congener of 
TeBDE (BDE47) and two congeners of PeBDE (BDE99, BDE100) was reported as 35 760 ng/g in household dust from Massachusetts, USA (Rudel et 
al., 2003). The sum of the maximum values of a further congener of TeBDE (BDE49), PeBDE (BDE85), HxBDE (BDE153, BDE154), HeBDE (BDE183) 
and DeBDE was reported as 20 443 ng/g in household dust from Germany (Knoth et al., 2002). No data on levels of OcBDE in soil or dust were available. 
OcBDE was detected in sediment from Japan at a maximum level of 22 µg/kg dry weight (Environment Agency Japan, 1989, 1991). These values were 
added together and used as a surrogate for soil in the upper-bounding estimate of exposure. Data considered in the selection of critical data also included 
Sellstrom et al. (1998), Allchin et al. (1999), DeBoer et al. (2000), Christensen & Platz (2001), DeBoer & Allchin (2001), Hale et al. (2001, 2002), 
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Leonards et al. (2001), Pettersson et al. (2001), Dodder et al. (2002), Matscheko et al. (2002) and Rayne et al. (2003). 
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Table 4: Summary of health effects information for PBDE congener groups and commercial mixtures.a 

 
Congener group Commercial mixture End-point

  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Acute toxicity: 
oral 

   Low  oral 
LD

est
50 (rabbit) = 

>2000 mg/kg-bw 
(Kopp, 1990) 

  Lowest oral LD50 (rat) = 5000 
mg/kg-bw 
(Pharmakon Research 
International Inc., 1984) 
[Additional studies: Great 
Lakes Chemical Corporation, 
undated a / 1982 / 1988 / Dow 
Chemical Company, 1977 / 
Ameribrom Inc., 1990; Fowles 
et al., 1994] 

Lowest oral LD50 (rat) = 
>5000 mg/kg-bw 
(Kopp, 1990) 
[Additional studies: Great 
Lakes Chemical 
Corporation, 1982 / 1987 / 
1988 / 1990; Chemische 
Fabrik Kalk GmbH, 1982] 

Lowest oral LD50 (rat) = 
>2000 mg/kg-bw (77.4% 
DeBDE, 21.8% NoBDE, 
0.8% OcBDE) 
(Norris et al., 1973 / 1974 / 
1975a / 1975c) 
[Additional studies: Great 
Lakes Chemical 
Corporation, undated b / 
1982 / 1984; Kitchin et al., 
1992 / 1993 / Kitchin and 
Brown, 1994] 

Acute toxicity: 
inhalation 

      Lowest inhalation LC50 (rat) = 
>200 000 mg/m3  
(Great Lakes Chemical 
Corporation, undated a)  
[Additional studies: / Dow 
Chemical Company, 1977 / 
Great Lakes Chemical 
Corporation, 1982 / 1988 / 
Kopp, 1990; Haskell 
Laboratory, 1987] 

Lowest inhalation LC50 
(rat) = >50 000 mg/m3

(USEPA, 1986) 
[Additional studies: Great 
Lakes Chemical 
Corporation, 1987 / 1988] 

Lowest inhalation LC50 (rat) 
= >48 200 mg/m3

(Great Lakes Chemical 
Corporation, undated b) 
[Additional studies: / Great 
Lakes Chemical 
Corporation, 1982; 1984] 

Acute toxicity: 
dermal 

      Lowest dermal LD50 (rabbit) = 
>2000 mg/kg-bw 
(Great Lakes Chemical 
Corporation, undated a) 
[Additional studies: / Dow 
Chemical Company, 1977 / 
Great Lakes Chemical 
Corporation, 1982 / 1988] 

Lowest dermal LD50 (rat) = 
>2000 mg/kg-bw 
(Great Lakes Chemical 
Corporation, 1987) 
[Additional studies: / Great 
Lakes Chemical 
Corporation, 1982 / 1990] 

Lowest dermal LD50 (rabbit) 
= >2000 mg/kg-bw 
(Great Lakes Chemical 
Corporation, undated b) 
[Additional studies: / Great 
Lakes Chemical 
Corporation, 1982; 1984] 
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Short-term 
repeated-dose 
toxicity 
 
 

Lowest oral 
(gavage) 
LOEL (rat and 
mouse) = 18 
mg/kg-bw per 
day: decreased 
thyroxine levels 
(2,2',4,4'-
TeBDE, 98% 
purity, 14 days) 
(Hallgren & 
Darnerud, 1998 
/ 2002; 
Darnerud and 
Thuvander, 
1998) 
[Additional 
studies: /  
Thuvander & 
Darnerud, 1999 
/ Hallgren et 
al., 2001] 

     Lowest oral (diet) LOEL (rat) 
= 5 mg/kg-bw per day: 
increased absolute and 
relative liver weights (28 days) 
(Great Lakes Chemical 
Corporation, undated a) 
[Additional studies: / Dow 
Chemical Company, 1977 / 
Great Lakes Chemical 
Corporation, 1982 / 1988; 
Carlson, 1980a; Von 
Meyerinck et al., 1990; Fowles 
et al., 1994; Darnerud & 
Thuvander, 1998 / Thuvander 
& Darnerud, 1999 / Hallgren et 
al., 2001; Zhou et al., 2001]  

Lowest oral (diet) LOEL 
(rat) = 5 mg/kg-bw per day: 
increased absolute and 
relative liver weights (28 
days) 
(Great Lakes Chemical 
Corporation, 1987) 
[Additional studies: / Great 
Lakes Chemical 
Corporation, 1988; Dow 
Chemical Company, 1982 / 
Ethyl Corporation, 1990; 
Carlson, 1980a; Zhou et 
al., 2001] 
Lowest inhalation LOEC 
(rat) = 12 mg/m3: dose-
related hepatic lesions 
(14 days) 
(Great Lakes Chemical 
Corporation, 1987) 
[Additional study: / Great 
Lakes Chemical 
Corporation, 1988] 

Lowest oral (diet) LOEL 
(rat) = 80 mg/kg-bw per day: 
enlarged livers, generative 
cytoplasmic changes in the 
kidney and thyroid 
hyperplasia (77.4% DeBDE, 
21.8% NoBDE, 0.8% 
OcBDE, 30 days) 
(Sparschu et al., 1971 / 
Norris et al., 1973 / 1974 / 
1975a / Kociba et al., 
1975a) 
[Additional studies: Great 
Lakes Chemical 
Corporation, undated b / 
1982 / 1984; Carlson, 
1980a; NTP, 1986; Zhou et 
al., 2001] 
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Subchronic 
toxicity 
 

      Lowest oral (diet) LOEL (rat) 
= 2 mg/kg-bw per day: liver 
cell degeneration and necrosis 
(composition not stated, 90 
days) 
(Great Lakes Chemical 
Corporation, undated a) 
[Additional studies: / Dow 
Chemical Company, 1977 / 
Great Lakes Chemical 
Corporation, 1982 / 1988 / Wil 
Research Laboratories Inc., 
1984; Carlson, 1980b] 
 
 

Lowest oral (diet) LOEL 
(rat) = 5 mg/kg-bw per day 
(100 mg/kg diet): increased 
absolute and relative liver 
weights (composition not 
stated, 13 weeks) 
(Great Lakes Chemical 
Corporation, 1987) 
[Additional studies: / 
International Research and 
Development Corporation, 
1977 / Great Lakes 
Chemical Corporation, 
1988; Carlson, 1980b] 
Lowest inhalation LOEC 
(rat) = 15 mg/m3: 
centrilobular hepatocellular 
hypertrophy (13 weeks) 
(Great Lakes Chemical 
Corporation, 2001) 

No effects observed in mice 
at highest dose of 8060 
mg/kg-bw per day (99% 
DeBDE, 13 weeks) 
(NTP, 1986) 
[Additional studies: NTP, 
1986 (rats); Hazleton 
Laboratories, 1979a; 1979b; 
Rutter & Machotka, 1979] 
 
 
 
 
 

Carcinogenicity/ 
chronic toxicity 

        Increased incidence of 
neoplastic nodules in the 
liver in rats at ≥1120 
mg/kg-bw per day (diet); no 
increase in incidence of 
hepatic carcinomas (103 
weeks) 
A marginal increase 
(statistically significant only 
at the low dose) in the 
incidence of hepatocellular 
adenomas and 
carcinomas combined in 
mice at ≥3200 mg/kg-bw 
per day (diet, 103 weeks)  
(NTP, 1986 / Huff et al., 
1989) 
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 

        Lowest oral (diet) non-
neoplastic LOEL (rat) = 
2240 mg/kg-bw per day: 
thrombosis, degeneration of 
the liver, fibrosis of the 
spleen and lymphoid 
hyperplasia 
(NTP, 1986 / Huff et al., 
1989) 
[Additional studies: Kociba 
et al., 1975a / 1975b / 
Norris et al., 1975a / 1975b 
/ Dow Chemical Company, 
1994] 

Genotoxicity 
and related end-
points: in vivo 

       
 
 
 

 Negative: rat bone marrow 
(cytogenetic aberrations), 
rat liver (DNA damage 
measured by alkaline 
elution) 
(Norris et al., 1975c; Kitchin 
et al., 1992 / 1993 / Kitchin 
& Brown, 1994)  
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Genotoxicity 
and related end-
points: in vitro 

Positive: 
mammalian 
cells (intragenic 
recombination) 
(Helleday et al., 
1999) 

     Negative: Salmonella 
typhimurium, Saccharomyces 
cerevisiae (mutagenicity) 
(Great Lakes Chemical 
Corporation, undated a) 
[Additional studies: Dow 
Chemical Company, 1977 / 
Great Lakes Chemical 
Corporation, 1982 / 1988 / 
Ethyl Corporation, 1985 / 
Ameribrom Inc., 1990; 
Chemische Fabrik Kalk 
GmbH, 1978; Dead Sea 
Bromide Works, 1984; Zeiger 
et al., 1987] 
Positive: S. typhimurium 
(ISC Chemicals Ltd, 1977) 
Weak positive: human 
peripheral blood lymphocytes 
(chromosomal aberrations) (no 
composition data provided) 
(Microbiological Associates 
Inc., 1996a / 1996b) 

Negative: S. typhimurium, 
S. cerevisiae 
(mutagenicity), human 
fibroblast cells (DNA 
damage), Chinese hamster 
ovary cells (sister 
chromatid exchange), 
human peripheral blood 
lymphocytes (chromosomal 
aberrations) 
(Great Lakes Chemical 
Corporation, 1982 / 1987 / 
1988; Microbiological 
Associates Inc., 1996c / 
1996d; Great Lakes 
Chemical Corporation, 
1999)  
 
 

Negative: S. typhimurium, 
S. cerevisiae (mutagenicity), 
Escherichia coli WP2uvrA 
(mutagenicity), Syrian 
hamster embryo (cell 
transformation), mouse 
lymphoma (mutagenicity), 
Chinese hamster ovary cells 
(sister chromatid exchange 
and chromosomal 
aberrations)  
(Shoichet & Ehrlich, 1977; 
Great Lakes Chemical 
Corporation, undated b / 
1984 / 1988; 1982; NTP, 
1986; McGregor et al., 1988 
/ Myrh et al., 1990 / Henry 
et al., 1998; LeBoeuf et al., 
1996; MA Bioservices Inc., 
1998) 
Indeterminant: BALB-C-
3T3 cells (transformation) 
(Matthews et al., 1993) 
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Neurodevelop-
mental toxicity 

Lowest oral 
(gavage) 
LOEL (mouse) 
= 10.5 mg/kg-
bw: change in 
activity patterns 
and habituation 
capability 
(2,2',4,4'-
TeBDE >98%, 
one dose on 
postnatal day 
10, observation 
period 5 
months) 
(Eriksson et al., 
2001)  
 

Lowest oral 
(gavage) 
LOEL (mouse) 
= 0.8 mg/kg-
bw: change in 
activity patterns 
and habituation 
(2,2',4,4',5-
PeBDE >98%, 
one dose on 
postnatal day 
10, observation 
period 5 
months) 
(Eriksson et al., 
1998, 2001) 
[Additional 
studies: Viberg 
et al., 2000 / 
2002b / 
Eriksson et al., 
1999 / 2002; 
Branchi et al., 
2002, 2003]  

Lowest oral 
LOEL (mouse) = 
0.9 mg/kg-bw: 
impaired 
spontaneous 
motor behaviour, 
learning and 
memory 
(2,2',4,4',5,5'-
HxBDE, no purity 
data, one dose on 
postnatal day 10, 
observation 
period 6 months) 
(Viberg et al., 
2002a) 
 

   Lowest oral (gavage) LOEL 
(rat) = <100 mg/kg-bw per day 
(not further specified): 
decreased cue-based 
performance in fear 
conditioning test (no 
composition data, gestation 
day 6 to postnatal day 21, 
observation period not stated); 
no change in motor activity 
observed up to 100 mg/kg-bw 
per day 
(Taylor et al., 2003) 
[Additional studies: Gilbert & 
Crofton, 2002; Taylor et al., 
2002; MacPhail et al., 2003] 

 Lowest oral (gavage) 
LOEL (mouse) = 2.22 
mg/kg-bw: changes in 
spontaneous behaviour 
(one dose on postnatal day 
3, observation period 6 
months) 
(Viberg et al., 2001a / 
2001b / 2003 / Viberg, 
2002) 
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Congener group Commercial mixture End-point
  TeBDE PeBDE HxBDE HeBDE OcBDE NoBDE ComPeBDE ComOcBDE ComDeBDE/DeBDE 
Developmental/ 
reproductive 
toxicity 
(see also 
Neurodevelop-
mental toxicity) 

 
 

  
 

   Lowest oral (gavage) LOEL 
(rat) = 3 mg/kg-bw per day: 
decreased thyroxine (product 
DE-71, no composition data, 
postnatal days 23–53) 
(Stoker et al., 2003) 
[Additional studies: Argus 
Research Laboratories Inc., 
1985b / BFRIP, 1990 / 
Hoberman et al., 1998; Zhou 
et al., 2000 / 2002; Taylor et 
al., 2002; 2003; Laws et al., 
2003]  
 
 

Lowest oral (gavage) 
LOEL (rabbit) = 15 mg/kg-
bw per day: increased liver 
weight (0.2% PeBDE, 8.6% 
HxBDE, 45% HeBDE, 
33.5% OcBDE, 11.2% 
NoBDE, 1.4% DeBDE; 
gestation days 7–19) 
(Breslin et al., 1989) 
[Additional studies: 
USEPA, 1986 (determined 
same as Argus Research 
Laboratories Inc., 1985a, 
which states purity to be 
6.9% HxBDE, 46.8% 
HeBDE, 35.9% OcBDE, 
10.4% NoBDE) / 
Hoberman et al., 1998; 
Great Lakes Chemical 
Corporation, 1987 / 1988] 
Lowest inhalation LOEC 
(rat) = 200 mg/m3: lack of 
corpora lutea (no 
composition data, 13-week 
study)  
(Great Lakes Chemical 
Corporation, 2001) 

Highest oral (gavage) 
NOEL (rat) = 1000 mg/kg-
bw per day: increased early 
resorptions were observed 
at this dose, but the values 
were within historical control 
values (composition: 97% 
DeBDE, 2.66% NoBDE; 
gestation days 0–19) 
(Hardy et al., 2002) 
Lowest oral (gavage) 
LOEL (rat) = 1000 mg/kg-
bw per day: increased litters 
with subcutaneous oedema 
and delayed bone 
ossification 
10 and 100 mg/kg-bw per 
day: increased resorptions 
(not significant at higher 
dose level) (composition: 
77.4% DeBDE, 21.8% 
NoBDE, 0.8% OcBDE; 
gestation days 6–15) 
(Norris et al., 1973 / 1974 / 
1975a / Hanley, 1985 / 
USEPA, 1989) 
[Additional studies: Norris et 
al., 1975c / Schwetz et al., 
1975] 

DNA, deoxyribonucleic acid; LC50, median lethal concentration; LD50, median lethal dose; LOEL, lowest-observed-effect level; LOEC, lowest-observed-effect concentration; NOEL, no-
observed-effect level. 
a Notes:  

 NOELs were reported only when LOELs were unavailable. 
 ComDeBDE and DeBDE were not separated owing to the lack of reporting of purity and the high purity of the current commercial product. 
 Lower effect levels identified that did not indicate a dose–response relationship, statistical significance and/or toxicological relevance were not included in the summary table. 
 / used between studies suspected to be the same study.  
 ; used between studies suspected to be different studies. 

 
 

33 


	1. CONSIDERING THE NEED FOR A FRAMEWORK ANALYSIS  
	2. PURPOSE AND FOCUS OF THE ASSESSMENT 
	3. THE FRAMEWORK ANALYSIS 
	3.1 Tier 0 
	3.1.1 Exposure assessment  
	3.1.2 Hazard assessment  
	3.1.3 Risk characterization/analysis of uncertainties  

	3.2 Tier 1 
	3.2.1 Exposure assessment 
	3.2.2 Hazard assessment  
	3.2.3 Risk characterization/analysis of uncertainties  

	 4. REFERENCES 
	Appendix to case-study A on PBDEs: Supporting data 
	 



