When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background
Where has this been done?
Indicators to Measure
Impact of Precision and Bias
Values of Malaria Indicators
Limitations
Recommendations

Joshua Yukich1,2, Nakul Chitnis3,4 and Abraham Mnzava5

1Center for Applied Malaria Research and Evaluation
2Tulane University School of Public Health and Tropical Medicine
3Swiss Tropical and Public Health Institute
4Universität Basel
5Global Malaria Program, World Health Organization

16 September 2015
Background

Universal coverage with vector control a costly (but effective) activity.

Can transmission and burden reductions be maintained, even in the absence, or reduction, of vector control?

Consultations during Global Technical Strategy development made clear the need for guidance to countries.
Questions

1. Are there situations in which reduction in coverage of vector control activities will *not* result in resurgent transmission?

2. What set of indicators is necessary to identify locations and times this might be safely undertaken?

3. What is the impact of the precision and bias associated with these measurements on estimates of the risk of resurgence?

4. What sets of measurements of these indicators would indicate that reductions in malaria vector control could be safely undertaken?
Methods

Overarching Literature Review
Precision and Bias Monte Carlo Simulation
Malaria Transmission OpenMalaria
Emulation Logistic Regression

Background
Where has this been done?
Indicators to Measure
Impact of Precision and Bias
Values of Malaria Indicators
Limitations
Recommendations
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Literature Review

- Searched Published and gray literature electronically for vector control “graduation” — “withdraw”, “consolidation phase”, “resurgence” and other related topics.
- Many observational studies on “resurgence”
- Few controlled studies
- No randomized control trials completed but one currently underway, in South Africa (Pers. com., Immo Kleinschmidt).
Resurgence reviewed in Cohen et al. systematic review of the published and gray literature to identify events of malaria resurgence.

Reductions in funding most common cited reason for weakening of control program in question (49%). They state that:

Reasons for funding reductions or cessation were not clear for all events, but in several, donors appear to have reallocated funding specifically because successful reductions in malaria burden had occurred (Emphasis Ours)
Other studies e.g., Zambia and Benin shown that withdraw or relaxation of vector control efforts can lead, over short time periods, to resurgences in malaria prevalence, clinical incidence and transmission.

- Cohen et al. review is basically a case series
- Unfortunately few "controls" were found
- Best examples come from elimination settings
One controlled study of withdrawal of vector control.

Low transmission area – zoophilic vectors,

Indoor residual spraying (IRS) with deltamethrin for 3 years at high intensity

Withdrawn after annual parasite index (API) fell by nearly 90% to below one per 10,000 per year and follow-up studies were conducted over a period of 10 years.

API & sporozoite positive rate (SPR) returned to levels comparable to an unsprayed control area by the end of study

Nearly ten years of follow up.
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

During the Global Malaria Eradication Program (GMEP), transition from the “attack” to “consolidation” program phases.

Initially, local API < 5 per 10,000 per annum and human (annual) blood examination rate (H(A)BER) > 10%

Later revised to < 1 per 10,000 per annum.
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

- Infection Importation Rate
- Annual Blood Examination Rate
- EIR (pre-intervention)
- Annual Parasite Incidence
Simulation of Precision and Bias

When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background
Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

- **Infection Importation Rate (IIR)**
 - Number of importations weekly: $N \sim \text{Poisson}$(True IIR)
 - Observation $\sim \text{Binomial}(N, p)$
 - One year period (52 weeks) for 10,000 iterations
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

- Varied true IIRs (from 1 per 1,000 persons per annum to 5 per 1,000 persons per annum) and detection rates (from 20% to 80%).
- Tested a threshold of 2 per 1,000 per annum exact Poisson test with $\geq 90\%$ confidence.
- Applied logistic regression to estimate the predicted probability of concluding that IIR (based on the measurement) was below the threshold.
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

- Better detection implies that bias in determining IIR is low will be very conservative
- Danger of concluding this is low due to a poor surveillance system and misclassification

IIR Results

![Graph showing the probability of detecting an imported infection versus the probability of concluding IIR below 2 per 1,000 per annum for different importation rates (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8).](image)
Simulation of Precision and Bias

- **Annual Blood Examination Rate**
 - Divergence between ABER and the total proportion of a population tested
 - Simulated a cohort with either independent probabilities of being tested in each round or without independence
 - Non-independent probability: \(p_i \sim \text{Beta}(\alpha, \beta) \)
 - Testing in one round: \(p_{ij} \sim \text{Bernoulli}(p_i) \)
Simulation of Precision and Bias

- The annual blood examination rate was calculated as
 \[\text{ABER} = \frac{\text{Number of Tests Conducted}}{\text{Person-Years}} \] (1)

- The proportion of the population actually tested was calculated as
 \[\text{PT} = \frac{\text{Number of Individuals Tested}}{\text{Person-Years}} \] (2)
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background
Where has this been done?
Indicators to Measure
Impact of Precision and Bias
Values of Malaria Indicators
Limitations
Recommendations

Figure: Simulation Results for Measurement of the Annual Blood Examination Rate

- ABER and the proportion tested by a surveillance system diverge at high values.
- At low levels, ABER is likely to be a reliable metric for the monitoring surveillance system coverage.
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: Schematic of the malaria transmission model
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: Schematic of mosquito feeding cycle dynamics including the effects of interventions.
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background
Where has this been done?

Indicators to Measure

Precision and Bias Values of Malaria Indicators

Limitations

Recommendations

Baseline parameterizations for Western Kenya and Solomon Islands

- Human demographic profile
- Health systems settings
- Vector bionomics
- Seasonality
- Human population size of 10,000.

VC: Vector control
AS: Active surveillance
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Base Scenario and variants

<table>
<thead>
<tr>
<th>Start Simulation</th>
<th>Begin Monitoring</th>
<th>Start VC</th>
<th>End VC and start AS</th>
<th>Stop Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(~100 years)</td>
<td>0 (3 years)</td>
<td>3 (9 years)</td>
<td>12 (20 years)</td>
<td>32</td>
</tr>
</tbody>
</table>

VC: Vector control
AS: Active surveillance

- Pre-intervention annual EIR of \{0.1, 0.5, 1, 2, 5\}.
- Coverage (proportion of population sleeping under) of LLINs of \{0, 0.2, 0.5, 0.8\}.
- IIR of \{0.1, 1, 10\} per 1000 people per annum
 \[\sim \text{Poisson}(\text{IIR})\]
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background
Where has this been done?

Indicators to Measure
Impact of Precision and Bias
Values of Malaria Indicators

Limitations

Recommendations

Base Scenario and variants

- **Start Simulation**: (≈100 years)
- **Begin Monitoring**: 0 (3 years)
- **Start VC**: 3 (9 years)
- **End VC and start AS**: 12 (20 years)
- **Stop Simulation**: 32

VC: Vector control
AS: Active surveillance

- Effective case management coverage of \{0.2, 0.5, 0.8\}.
- AS coverage of \{0, 0.025, 0.1, 0.2\} 4 times a year using rapid diagnostic tests (RDTs).
- 14 model variants
- 10 random seeds
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: OpenMalaria simulation results for API per 1,000 per annum with an annual input EIR of 0.1, case management coverage of 80%, and ITN coverage of 80% during the period of Vector Control implementation. Each chart shows simulations results for varied levels of Infection Importations Rate and Active Surveillance (Quarterly Mass Screening and Treatment (MSAT) coverage)
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: OpenMalaria simulation results for API per 1,000 per annum with an annual input EIR of 0.1, case management coverage of 80%, and ITN coverage of 80% during the period of Vector Control implementation. Each chart shows simulations results for varied levels of Infection Importations Rate and Active Surveillance (Quarterly Mass Screening and Treatment (MSAT) coverage)
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Figure: OpenMalaria simulation results for ABER with an annual input EIR of 0.1, case management coverage of 80%, and ITN coverage of 80% during the period of vector control implementation. Each chart shows simulations results for varied levels of infection importations rate (IIR) and active surveillance (quarterly mass screening and treatment (MSAT) coverage).
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: OpenMalaria simulation results for ABER with an annual input EIR of 0.1, case management coverage of 80%, and ITN coverage of 80% during the period of vector control implementation. Each chart shows simulations results for varied levels of infection importations rate (IIR) and active surveillance (quarterly mass screening and treatment (MSAT) coverage).
When is it safe for malaria control and elimination programs to scale back vector control?

Yukich, Chitnis and Mnzava

Background

Where has this been done?

Indicators to Measure

Impact of Precision and Bias

Values of Malaria Indicators

Limitations

Recommendations

Figure: OpenMalaria simulation results for force of infection (FOI) per 1,000 per annum with an annual input EIR of 1, case management coverage of 80%, and ITN coverage of 80% during the period of Vector Control implementation. Each chart shows simulations results for varied levels of Infection Importations Rate and Active Surveillance (Quarterly Mass Screening and Treatment (MSAT) coverage).
When is it safe for malaria control and elimination programs to scale back vector control?
Yukich, Chitnis and Mnzava

Background
Where has this been done?
Indicators to Measure
Impact of Precision and Bias
Values of Malaria Indicators
Limitations
Recommendations

Figure: OpenMalaria simulation results for force of infection (FOI) per 1,000 per annum with an annual input EIR of 1, case management coverage of 80%, and ITN coverage of 80% during the period of Vector Control implementation. Each chart shows simulations results for varied levels of Infection Importations Rate and Active Surveillance (Quarterly Mass Screening and Treatment (MSAT) coverage).
Figure: Predicted probabilities of resurgence based on logistic regression results. Darker lines represent increasing EIR (0.1, 1, 2), while grey lines represent Active surveillance coverage of 1% per quarter and red lines represent Active surveillance coverage of 10% per quarter. All slopes here are for ITN coverage of 80%.
Figure: Predicted probabilities of resurgence based on logistic regression results. Darker lines represent increasing EIR (0.1, 1, 2), while grey lines represent Active surveillance coverage of 1% per quarter and red lines represent Active surveillance coverage of 10% per quarter. All slopes here are for ITN coverage of 80%.
Limitations

- Did not include vivax malaria
- Did not model spatially or temporally responsive strategies.
- Assumed stable receptivity
On the basis of this evidence, WHO recommends the following:

*In areas*¹ with ongoing local malaria transmission (irrespective of both the pre-intervention and the current level of transmission), the scale-back of vector control is not recommended. Universal coverage with effective malaria vector control of all persons at risk of malaria in such areas should therefore be pursued and maintained.

¹The minimum size of an area is determined by availability of reliable disaggregated disease surveillance data and feasibility for decisions on vector-control implementation.
On the basis of this evidence, WHO recommends the following:

In areas\(^2\) where transmission has been interrupted, the scale-back of vector control should be based on a detailed analysis that includes assessment of receptivity\(^3\), vulnerability and disease surveillance coverage, and capacity for case management and vector-control response.

\(^2\)The minimum size of an area is determined by availability of reliable disaggregated disease surveillance data and feasibility for decisions on vector-control implementation.

\(^3\)The abundant presence of human-biting competent anopheline vectors and the existence of other ecological factors favouring malaria transmission.
On the basis of this evidence, WHO recommends the following:

Countries and partners are therefore requested to invest in health systems particularly in the strengthening of disease and entomological surveillance, as identification of such areas and the subsequent response, depends on the availability of this capacity.