Proposed Evidence Review Group to review the cardiotoxicity of quinoline antimalarial medicines

Dr Andrea Bosman, WHO Global Malaria Programme
Dr Shanthi Pal, WHO Essential Medicines and Health Products
August 2016, Geneva, Switzerland

Background

A prolonged QTc interval is a risk factor for ventricular tachyarrhythmias, such as torsades de pointes (TdP), which can cause sudden cardiac death, particularly when the QTc interval is over 500 msec. However, the relation between QTc prolongation and TdP is not entirely clear, as only some patients with prolonged QTc intervals develop life-threatening ventricular tachyarrhythmias. This could be related to genetic disorders, pathological conditions, or drug interactions with concomitant medications that prolong the QTc interval.

As a drug side effect, TdP has been a major liability, causing the withdrawal of medications from the marketplace. Yet, the relations between the drug-induced prolongation of QTc intervals and predictors of ventricular tachyarrhythmias that can cause sudden cardiac death are not well understood. Compounds that have been linked to clinical observations of TdP include amiodarone, fluoroquinolones, methadone, lithium, chloroquine, erythromycin, amphetamine, ephedrine, pseudoephedrine, methylphenidate and phenothiazines. Some antiarrhythmic medications, such as sotalol, procainamide and quinidine, may induce TdP as a side effect. The following factors have been associated with an increased risk of TdP: hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, heart failure, left ventricular hypertrophy, hypothermia, subarachnoid hemorrhage and hypothyroidism.

The US-FDA is investing in a research programme designed to identify better predictors of drug-induced TdP, with the aim of progressively moving away from Thorough QT (TQT) study requirements for registration. This programme is expected to be completed over the next two years, and involves in vitro studies assessing the effects of drugs on multiple ion channels, as well as early clinical studies with exposure–response analysis using detailed ECG collection. The programme also includes ECG studies of multichannel block by multiple drugs in order to differentiate a pure hERG potassium channel block associated with a high torsade risk, and a combined hERG potassium channel and inward current block (calcium or late sodium) that may lower torsade risk (1).

The case of antimalarial medicines

Several quinoline antimalarial medicines are associated with a prolonged QTc interval, namely chloroquine, quinine, mefloquine and piperaquine (in fixed-dose combination with dihydroartemisinin). WHO recommends all of these medicines for the treatment of malaria. Quinidine is associated with higher levels of cardiotoxicity and is no longer used for malaria
treatment. Halofantrine causes a marked increase in QTc prolongation and has been associated with over 30 reports of sudden cardiac death. As a result, WHO does not recommend halofantrine for the treatment of malaria.

Many studies on the effects of antimalarials on prolonged QT intervals may systematically overestimate drug-induced effects when comparing pre- and post-treatment ECGs, as the resolution of fever and fasting (which influence the heart rate) are associated with the prolongation of the QTc interval. The QT should be corrected according to the heart rate, preferably using the Fridericia correction (QTcF), in order to improve the detection of patients at increased risk of ventricular arrhythmia.

Chloroquine belongs to the 4-aminoquinoline group and has been the most widely used antimalarial over the last 60 years. Several hundred tons have been dispensed for treatment and prophylaxis; in the past, it was even distributed as medicated salt. At higher doses, often in combination with other agents, it has also been used for the treatment of rheumatoid arthritis, systemic lupus erythematosus and other chronic conditions.

Piperaquine is a bisquinoline compound, also of the 4-aminoquinoline group. In the 1960s, it was deployed on a large scale in China, where an estimated 140 million adult doses were deployed for large-scale malaria prophylaxis, treatment and mass drug administration. In view of increasing levels of drug resistance and in line with WHO recommendations, dihydroartemisinin-piperaquine in fixed-dose combination is increasingly being deployed in malaria-endemic countries, including for mass drug administration.1

In 2011, based on findings from Thorough QT (TQT) studies, the European Medicine Authority gave marketing authorization to Eurartesim™, outlining a series of contraindications and requirements for ECG monitoring (SmPC available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001199/WC500118113.pdf)

Plan for WHO review of the cardiotoxicity of antimalarial medicines

In collaboration with the WHO Department of Essential Medicines and Health Products, and following the EMA’s and US-FDA’s recommendations for experts, the WHO Global Malaria Programme consulted a small group of expert cardiologists and QTologists on how best to proceed with the review of the cardiotoxicity of antimalarial medicines.

Although more research is needed to identify the predictors of drug-induced TdP, the experts recommended that WHO analyse a large individual patient data series to document sudden cardiac death following drug exposure. Documented TdP in ECG recordings, even in a single case, should be taken as a strong indicator of the mechanisms of drug-induced death. The analysis should include not only the quinoline antimalarial medicines, but also concomitant medicines able to prolong the QTc interval. There was general consensus that the search and analysis of drug-associated “syncope” was unnecessary, as it would be influenced by too many confounders.

The WHO secretariat presented the rationale, objectives and proposed methods of the Evidence Review Group (ERG) at the Thirteenth Meeting of the WHO Advisory Committee on Safety of Medicinal Products (ACSoMP), held in June 2016 in Geneva. The advisory committee endorsed the objectives and proposed list of studies, and experts recommended the findings be presented at the next annual meeting in 2017.

1 Administration of antimalarial treatment to every member of a defined population or every person living in a defined geographical area (except those for whom the medicine is contraindicated) at approximately the same time and often at repeated intervals. Mass drug administration is usually performed in order to reduce the parasite reservoir of infection radically and thus reduce transmission in a population.
The specific objectives of the ERG meeting will be the following:

- To evaluate the risk of sudden unexplained death following exposure to quinoline antimalarials (from data available to Vigibase, WWARN, Liverpool STM, and pharmaceutical companies);
- To assess the dose-response effect and risk factors of QTc prolongation from pharmacokinetic/pharmacodynamic (PK/PD) studies of the main ACTs used in Africa, i.e., artemether-lumefantrine, artesunate-amodiaquine and dihydroartemisinin-piperaquine.
- To analyse the PK/PD effect of piperaquine in healthy volunteers compared to malaria patients, based on comparative clinical trials of dihydroartemisinin-piperaquine, arteolane-piperaquine and artefenomel-piperaquine.
- To identify evidence gaps and provide recommendations for additional studies, including meta-analyses of individual patient dose-response effects and risk factors for QTc prolongation following exposure to different antimalarial medicines.

WHO will review data from the global database (Vigibase™) of suspected drug safety reports maintained at the Uppsala Monitoring Center in Sweden. The database contains approximately 13 million reports of suspected adverse drug reactions (ADRs), so-called Individual Case Safety Reports (ICSRs), collected by the national drug authorities of 124 countries for more than 100,000 different medicinal products. In addition to this review, in consultation with malaria research, a list of possible studies and reviews was compiled with timelines for completion for consideration and review by the WHO Evidence Review Group on cardiotoxicity of antimalarials in October 2016 (see Annex 1).

The conclusions of the ERG and draft recommendations will be presented to the Malaria Policy Advisory Committee (MPAC) in March 2017 and to the WHO Advisory Committee on Safety of Medicinal Products (ACSoMP) in April 2017.

References

ANNEX 1 - List of studies on cardiotoxicity antimalarials with timelines

<table>
<thead>
<tr>
<th>Actions</th>
<th>Responsible group (contact person)</th>
<th>Objectives</th>
<th>Status</th>
<th>Timeline</th>
<th>WHO ERG presentation (Oct 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vigibase analysis of reports of serious adverse events</td>
<td>Shanti Pal</td>
<td>1. Define risk of sudden death and torsade de pointes associated with halofantrine</td>
<td>Completed</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Define risk of cardiac SAEs associated with DHA-PPQ</td>
<td>Ongoing</td>
<td>Mid-August</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Analysis of risk of unexplained sudden death following any antimalarial</td>
<td>Ongoing</td>
<td>End of August</td>
</tr>
<tr>
<td>2</td>
<td>Literature reviews</td>
<td>Nick White</td>
<td>Meta-analyses of: 1. Cardiac safety reports, and 2. Sudden deaths reported with targeted antimalarial drugs: quinine; chloroquine; piperaquine; mefloquine; lumefantrine; amodiaquine; sulfadoxine-pyrimethamine; halofantrine; primaquine</td>
<td>Publication in preparation</td>
<td>End of September</td>
</tr>
<tr>
<td>3</td>
<td>SAE Liverpool safety database</td>
<td>Cheryl Pace</td>
<td>To analyse serious adverse events and their relationship with antimalarial drugs and doses</td>
<td>Ongoing</td>
<td>End of September</td>
</tr>
<tr>
<td>4</td>
<td>DHA-piperaquine population PK/PD analysis</td>
<td>Joel Tarning</td>
<td>To assess the piperaquine exposure–QT relationship, and the effects of confounders including malaria disease severity, using PK/PD data from the following studies: 1. INESS multicenter Phase IV study PK/PD data</td>
<td>Ongoing</td>
<td>End of September</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Healthy volunteer study (n=16), Thailand</td>
<td>Completed</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. ADJUST study, Malawi</td>
<td>Ongoing</td>
<td>Preliminary ADJUST analysis Sept. 2016</td>
</tr>
<tr>
<td>5</td>
<td>Review of cardiotoxicity safety data from pharmaceutical companies</td>
<td>GSK, Novartis, Roche, Sanofi, Shing Poon, Sigma Tau, SunPharma</td>
<td>To review available proprietary data on antimalarial cardiotoxicity to determine any association with drug, dose or confounders To encourage pharma to contribute raw data to a pooled analysis of all pharma PK/PD data</td>
<td>Completed</td>
<td>WHO to request pharma companies to present their data</td>
</tr>
</tbody>
</table>
ANNEX 1 - List of studies on cardiotoxicity antimalarials with timelines

<table>
<thead>
<tr>
<th>Actions</th>
<th>Responsible group (contact person)</th>
<th>Objectives</th>
<th>Status</th>
<th>Timeline</th>
<th>WHO ERG presentation (Oct 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>OZ439+piperaquine</td>
<td>MMV</td>
<td>To evaluate the effect of OZ439+piperaquine on QTc intervals 1. In healthy volunteers 2. Phase IIb study 3. Comparison between healthy volunteers and malaria patients</td>
<td>Completed (Darpo et al.) Ongoing Not started</td>
<td>Yes Yes TBC</td>
</tr>
<tr>
<td>7</td>
<td>Electrophysiology cardiotoxicity study</td>
<td>Xin Hui Chan</td>
<td>To evaluate alternative approaches to assessing cardiotoxicity</td>
<td>Ongoing</td>
<td>Preliminary result end of September Yes</td>
</tr>
<tr>
<td>8</td>
<td>START-IPT</td>
<td>Eva Maria, Sarah Staedke</td>
<td>To evaluate the safety of IPT with DHA-piperaquine in school children in Uganda</td>
<td>Ongoing</td>
<td>End of September Yes</td>
</tr>
<tr>
<td>9</td>
<td>STOPMIP</td>
<td>Feiko ter Kuile</td>
<td>To evaluate the safety of IST or IPT with DHA-piperaquine in pregnant women in Indonesia</td>
<td>Ongoing (EMH doing the PK/PD safety analysis)</td>
<td>End Q1 2017 No</td>
</tr>
<tr>
<td>10</td>
<td>Pooled DP PK/PD analysis</td>
<td>Anja / Joel / Cheryl & Piperaquine safety study group</td>
<td>To assess the relationships between antimalarial exposure and ECG/cardiac safety, adjusting for the effects of confounders (including malaria disease severity, age, dose intake), using pooled PK/PD data from healthy volunteers, those given preventive treatment, and uncomplicated malaria patients, with an initial focus on 1. Cardiac safety of DP; 2. ARV-ACT drug interactions; and 3. Other adverse events associated with antimalarials, if resources are available</td>
<td>Ongoing Invitations sent</td>
<td>Preliminary analysis by March 2017 Yes, only summary of data invited / contributed & statistical analysis plan</td>
</tr>
<tr>
<td>11</td>
<td>Other analyses</td>
<td>Cardiabase</td>
<td>To assess through pooled data analysis the relationships between antimalarial exposure and QTc prolongation in relation to multiple covariates for studies available to Cardiabase, pending the agreement of sponsors/PI of individual studies</td>
<td>Ongoing Request to sponsors/PI sent</td>
<td>End of September Yes</td>
</tr>
</tbody>
</table>