CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES

DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA

(AUGUST 2015)

DRAFT FOR COMMENT

Should you have any comments on the attached text, please send these to Dr Herbert Schmidt, Medicines Quality Assurance, Technologies, Standards and Norms, World Health Organization, 1211 Geneva 27, Switzerland; email: schmidt@who.int; fax: (+41 22) 791 4730) by 9 October 2015.

In order to speed up the process for receiving draft monographs and for sending comments, please let us have your email address (to bonnyw@who.int) and we will add it to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2015

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:
Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies, Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland.
Fax: (+41 22) 791 4730; email: kopp@who.int

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/15.637

Draft proposal for The International Pharmacopoeia:

Cycloserini capsulae - Cycloserine capsules

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2015</td>
<td>First draft revision received from collaborating laboratory</td>
</tr>
<tr>
<td>August–October 2015</td>
<td>Draft revision sent out for public consultation</td>
</tr>
<tr>
<td>October 2015</td>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations for adoption</td>
</tr>
<tr>
<td></td>
<td>Further follow-up action as required</td>
</tr>
</tbody>
</table>
Draft proposal for The International Pharmacopoeia:
Cycloserini capsulae - Cycloserine capsules

[Note from the Secretariat. Following up on information received from a customer of The International Pharmacopoeia it is proposed to revise the monograph on Cycloserine.

Changes from the current monograph are indicated in the text by insert or delete.]

Category. Antibacterial drug; antituberculosis drug.

Storage. Cycloserine capsules should be kept in a tightly closed container.

Requirements

Comply with the monograph for Capsules.

Definition. Cycloserine capsules contain Cycloserine. They contain not less than 90.0% and not more than 110.0% of the amount of cycloserine \((C_3H_6N_2O_2)\) stated on the label.

Manufacture. The manufacturing process and the product packaging are designed and controlled so as to minimize the moisture content of the capsules. They ensure that, if tested, the contents of the capsules would comply with a loss on drying limit of not more than 20 mg/g when determined by drying a suitable quantity of the contents of the capsules for 3 hours under reduced pressure (not exceeding 0.6 kPa or about 5 mm of mercury) at 60 °C.

Identity tests

- Either tests A and B or tests B and C may be applied.

A. Carry out test A.1 or, where UV detection is not available, test A.2.

A.1 Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R6 as the coating substance and a mixture of 4 volumes of 1-butanol R, 1 volume of glacial acetic acid R and 2 volumes of water R as the mobile phase. Apply separately to the plate 10 µL of each of the following two solutions. For solution (A) shake a quantity of the contents of the capsules equivalent to 40 mg of cycloserine with 1 mL of water R, add 9 mL of methanol R, shake again, filter and use the filtrate. For solution (B) dissolve 20 mg of cycloserine RS in 0.5 mL of water R, add 4.5 mL of methanol R and shake. After removing the plate from the chromatographic chamber allow it to dry exhaustively in a current of air. Examine the chromatogram in ultraviolet light (254 nm).
The principal spot obtained with solution A corresponds in position, appearance and intensity with that obtained with solution B.

A.2 Carry out the test as described under 1.14.1 Thin-layer chromatography using the conditions described above under test A.1, but using silica gel R5 as the coating substance. After removing the plate from the chromatographic chamber allow it to dry in a current of air and place the plate in a chamber with iodine vapours. Examine the chromatogram in daylight.

The principal spot obtained with solution A corresponds in position, appearance and intensity with that obtained with solution B.

B. Shake a quantity of the contents of the capsules containing 10 mg of cycloserine with 100 mL of sodium hydroxide (~40 g/L) TS and filter. To 1 mL of the filtrate add 3 mL of acetic acid (~60 g/L) TS and 1 mL of a recently prepared mixture of equal volumes of a 40 mg/mL solution of sodium nitroprusside R and sodium hydroxide (~200 g/L) TS; a blue colour gradually develops.

C. See the test described under “Assay”, Method A. The retention time of the principal peak in the chromatogram obtained with solution (1) is similar to that in the chromatogram obtained with solution (2).

Related substances

Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”, Method A.

Prepare the following solutions in mobile phase A. For solution (1) transfer a quantity of the contents of the capsules containing about 100–50 mg of cycloserine into a 100 mL volumetric flask. Add about 70 mL, shake for 5 minutes, make up to volume and filter. For solution (2) dilute a suitable volume of solution (1) to obtain a concentration containing 5.0 ± 0.5 µg of cycloserine per mL. For solution (3) dilute a suitable volume of solution (1) to obtain a concentration of 25 µg of cycloserine per mL. Heat carefully in a boiling water-bath for 30 minutes. For solution (4) use a solution containing 2.0 µg of D-serine R per mL.

Inject 50 µL of solution (3). The test is not valid unless the resolution between the principal peak corresponding to cycloserine (retention time about 14 minutes) and the large degradation peak with a relative retention time of about 0.23 is not less than 20.

Inject alternatively 50 µL each of solutions (1), (2) and (4).

In the chromatogram obtained with solution (1) the following impurities, if present, are eluted at the following relative retention with reference to cycloserine (retention time about 14 minutes): impurity B (D-serine) about 0.23, impurity C about 0.35 and impurity A about 1.8.

In the chromatogram obtained with solution (1):

• the area of any peak corresponding to impurity B (D-serine) is not greater than twice the area of the principal peak in the chromatogram obtained with solution (4) (0.4%);
the area of any other peak, other than the principal peak, is not greater than twice the area of the principal peak in the chromatogram obtained with solution (2) (1.0%);

• the sum of the areas of all peaks, other than the principal peak and any peak corresponding to impurity B (D-serine), is not greater than six times the area of the principal peak in the chromatogram obtained with solution (2) (3.0%). Disregard any peak with an area less than 0.5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.05%).

In the chromatogram obtained with solution (1) the area of any peak, other than the principal peak, is not greater than four times the area of the principal peak in the chromatogram obtained with solution (2) (0.4%). The sum of the areas of all peaks, other than the principal peak, is not greater than ten times the area of the principal peak in the chromatogram obtained with solution (2) (1.0%). Disregard any peak with an area less than 0.5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.05%).

Assay

• Either method A or method B may be applied.

A. Carry out the assay as described under 1.14.4 High-performance liquid chromatography using a stainless steel column (25 cm x 4.6 mm) packed with base deactivated particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 µm).

The mobile phases for gradient elution consist of a mixture of Mobile phase A and Mobile phase B, using the following conditions:

Mobile phase A: 4 volumes of acetonitrile R, 70 volumes of a 0.02 mol/L sodium octanesulfonate R solution, 10 volumes of phosphate buffer pH 2.8 and 16 volumes of water R.

Mobile phase B: 17 volumes of acetonitrile R, 70 volumes of a 0.02 mol/L sodium octanesulfonate R solution, 10 volumes of phosphate buffer pH 2.8 and 3 volumes of water R.

Prepare the sodium octanesulfonate solution by dissolving 4.7 g of sodium octanesulfonate R in 1000 mL of water R.

Prepare the phosphate buffer pH 2.8 by dissolving 27.2 g of potassium dihydrogen phosphate R in 800 mL of water R, adjust the pH to 2.8 by adding phosphoric acid (~20 g/L) TS and dilute to 1000 mL with water R.
Prepare the following three solutions in mobile phase A. For solution (1) weigh and mix the contents of 20 capsules and transfer a quantity of the contents containing about 10 mg of cycloserine, accurately weighed, into a 100 mL volumetric flask. Add about 70 mL, shake for 5 minutes, make up to volume and filter. For solution (2) use 0.1 mg of cycloserine RS per mL. For solution (3) dilute a suitable volume of solution (1) to obtain a concentration of 25 µg of cycloserine per mL. Heat carefully in a boiling water-bath for 30 minutes.

Operate with a flow rate of 1.0 mL per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of 195–219 nm.

Maintain the column temperature at 45 °C.

Inject 50 µL of solution (3). The test is not valid unless the resolution between the principal peak corresponding to cycloserine (retention time about 14 minutes) and the large degradation peak with a relative retention time of about 0.23 is not less than 20.

Inject alternatively 50 µL each of solutions (1) and (2).

Measure the areas of the peaks responses obtained in the chromatograms from solutions (1) and (2) and calculate the content of cycloserine (C₃H₆N₂O₂) in the capsules, using the declared content of C₃H₆N₂O₂ in cycloserine RS.

B. Weigh and mix the contents of 20 capsules and transfer a quantity of the contents containing 0.250 g of cycloserine, accurately weighed, into a 200 mL volumetric flask. Add hydrochloric acid (0.1mol/L) VS to volume, shake for 10 minutes and filter. Dilute 2 mL of the filtrate to 100 mL with hydrochloric acid (0.1mol/L) VS.

Measure the absorbance (1.6) of this solution in a 1 cm layer at the maximum at about 219 nm against a solvent cell containing hydrochloric acid (0.1mol/L) VS.

Calculate the content of cycloserine (C₃H₆N₂O₂) in the capsules, using an absorptivity value of 34.3 (Å Å⁻¹cm⁻¹ = 343).
Impurities

The impurities limited by the requirements of this monograph include those listed in the monograph for Cycloserine.
