GANCICLOVIRUM
GANCICLOVIR
Draft proposal for The International Pharmacopoeia
(July 2017)
DRAFT FOR COMMENT

Should you have any comments on this draft, please send these to Dr Herbert Schmidt, Medicines Quality Assurance Programme, Technologies, Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, 1211 Geneva 27, Switzerland; fax: (+41 22) 791 4730 or email: schmidt@who.int by 31 August 2017.

In order to speed up the process for receiving draft monographs and for sending comments, please let us have your email address (to bonnyw@who.int) and we will add it to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2017

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:
Dr Sabine Kopp, Manager, Medicines Quality Assurance Programme, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4730; email: kopp@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/16.652: GANCICLOVIR (GANCICLOVIRUM)

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drafting of the monograph by a WHO Collaborating Centre</td>
<td>October 2015–January 2016</td>
</tr>
<tr>
<td>Discussion at the informal consultation on quality control laboratory tools and specifications for medicines</td>
<td>9–11 May 2016</td>
</tr>
<tr>
<td>Discussion at the meeting of the Expert Committee on Specification for Pharmaceutical Preparations</td>
<td>17–21 October 2016</td>
</tr>
<tr>
<td>Draft revision sent out for public consultation</td>
<td>January–March 2017</td>
</tr>
<tr>
<td>Discussion at the informal consultation on quality control laboratory tools and specifications for medicines</td>
<td>2–4 May 2017</td>
</tr>
<tr>
<td>Draft revision 1 sent out for public consultation</td>
<td>July–August 2017</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>October 2017</td>
</tr>
<tr>
<td>Further follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>
GANCICLOVIRUM
GANCICLOVIR

Molecular formula. $C_9H_{13}N_5O_4$

Relative molecular mass. 255.23

Graphic formula

\[
\begin{align*}
\text{H} & \text{N} \\
\text{N} & \text{N} \\
\text{H}_2\text{N} & \text{O} \\
\text{O} & \text{O} \\
\text{O} & \text{OH} \\
\text{HO} &
\end{align*}
\]

Chemical name
2-Amino-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]-1,9-dihydro-6H-purin-6-one.
CAS Reg. No. 82410-32-0.

Description. White or almost white, crystalline powder.

Solubility. Slightly soluble in water or glacial acetic acid, very slightly soluble in dehydrated ethanol, practically insoluble in methanol and dichloromethane. It dissolves in dilute solutions of mineral acids and alkali hydroxides.

Category. Antiviral (Purine nucleoside analogue).

Storage. Preserve in well-closed containers. Protect from light and moisture.

Additional information. Ganciclovir is hygroscopic and may exhibit polymorphism. Caution: Ganciclovir is a potent cytotoxic agent and suspected carcinogen. It must be handled with care, avoiding contact with the skin and inhalation of airborne particles.

Requirements

Definition. Ganciclovir contains not less than 99.0% and not more than 101.0% of
C$_9$H$_{13}$N$_5$O$_4$, calculated with reference to the anhydrous substance.

Identity tests

Either test A alone, or tests B and D or tests C and D may be applied.

A. Carry out the test as described under 1.7 Spectrophotometry in the infrared region.

The infrared absorption spectrum is concordant with the spectrum obtained from ganciclovir RS or with the reference spectrum of ganciclovir.

If the spectra thus obtained are not concordant, repeat the test using the residues obtained by separately dissolving the test substance and ganciclovir RS in a small amount of hot water R (80 °C), allowing to cool in an ice-bath, filtering and drying the precipitate at 105 °C for 3 hours. The infrared absorption spectrum is concordant with the spectrum obtained from ganciclovir RS.

B. Carry out test B.1 or, where UV detection is not available, test B.2 choice to be kept

B.1 Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R6 as the coating substance and a mixture of 4 volumes of ammonia (260 g/L) TS, 40 volumes of methanol R and 60 volumes of dichloromethane R as the mobile phase. Apply separately to the plate 5 μL of each of the following three solutions. For solution (A) dissolve 10 mg of the substance to be examined in 2 mL of sodium hydroxide (~0.8 g/L) TS and dilute to 10 mL with methanol R. For solution (B) dissolve 10 mg of ganciclovir RS in 2 mL of sodium hydroxide (~0.8 g/L) TS and dilute to 10 mL with methanol R. For solution (C) dissolve 10 mg of ganciclovir RS and 10 mg of aciclovir R in 2 mL of sodium hydroxide (~0.8 g/L) TS and dilute to 10 mL with methanol R. After removing the plate from the chromatographic chamber allow it to dry exhaustively in air and examine the chromatogram under ultraviolet light (254 nm). The test is not valid unless the chromatogram obtained with solution (C) shows two clearly separated spots. The principal spot in the chromatogram obtained with solution (A) corresponds in position, appearance and intensity with the spot due to ganciclovir in the chromatogram obtained with solution (B).
B.2 Carry out the test as described under 1.14.1 Thin-layer chromatography using
the conditions described above under test B.1 but using silica gel R5 as the
coating substance. After removing the plate from the chromatographic chamber
allow it to dry exhaustively in air or heat the plate for five minutes at 120 °C.
Spray the plate with Dragendorff reagent TS and allow it to dry exhaustively in
air. Then spray the plate with a mixture of sulfuric acid (~1760 g/L) TS and
dehydrated ethanol R (1:1). Examine the chromatogram in daylight. The test is
not valid unless the chromatogram obtained with solution (C) shows two clearly
separated spots. The principal spot in the chromatogram obtained with solution
(A) corresponds in position, appearance and intensity with the spot due to
ganciclovir in the chromatogram obtained with solution (B).

C. Carry out the test as described under 1.14.4 High-performance liquid
chromatography using the conditions given under “Related substances”. The
retention time of the principal peak in the chromatogram obtained with solution (1)
corresponds to the retention time of the ganciclovir peak in the chromatogram
obtained with solution (3).

D. Dissolve about 5 mg of the sample in 500 mL of water R. The absorption spectrum
(1.6) of this solution, when observed between 200 nm and 300 nm, exhibits a
minimum at about 222 nm and a maximum at about 252 nm with a shoulder at about
275 nm.

Clarity and colour of solution. Dissolve 1.25 g in sodium hydroxide (~40 g/L) TS and
dilute to 25 mL. This solution is clear and not more intensely coloured than reference
solution Y₅, when compared as described under 1.11.2 Degree of coloration of liquids,
Method II. [Note from the Secretariat. The chapter 1.11 Colour of liquids is currently
under revision. Reference is already made to a new test procedure to be added under the
section 1.11.2 Degree of colouration of liquids in the 7th Edition of The International
Pharmacopoeia.]
Heavy metals. Use 1.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 3; determine the content of heavy metals according to Method A; not more than 10 μg/g.

Sulfated ash (2.3). Not more than 1.0 mg/g.

Water. Determine as described under 2.8 Determination of water by the Karl Fischer method, Method A, using 0.300 g of the substance and methanol as solvent. The substance to be examined has a limited solubility in methanol and will appear as a slurry. Replace the solvent after each titration. The water content is not more than 40 mg/g.

Related substances. Carry out the test as described under 1.14.4 High performance liquid chromatography using a stainless steel column (25 cm × 4.6 mm) packed with particles of silica gel, the surface of which has been modified with chemically-bonded strong acidic cation-exchange groups (3–10 μm).¹

Use the following mobile phase: Dilute 0.5 mL of trifluoroacetic acid R to 1000 mL with water R. Mix 500 volumes of this solution with 500 volumes of acetonitrile R.

Operate with a flow rate of 1.5 mL per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of 254 nm. Maintain the column at 40 °C.

Prepare the following solutions using mobile phase as a diluent. For solution (1) dissolve about 30 mg of the test substance using sonication and dilute to 50.0 mL. For solution (2) dilute 1 volume of solution (1) to 1000 volumes. For solution (3) dissolve 3.0 mg of ganciclovir RS using sonication and dilute to 5.0 mL. For solution (4) dissolve the content of a vial of ganciclovir for system suitability RS (containing the impurities A, B, C, D, E and F) in 1.0 mL of solution (3).

Inject alternately 20 μL each of solutions (1), (2), (3) and (4). Record the chromatograms

¹ A Thermo BioBasic SCX column (4.6 mm × 250 mm, 5 μm) has been found suitable.
for about 2.5 times the retention time of ganciclovir (retention time about 14 minutes).

Use the chromatogram supplied with ganciclovir for system suitability RS and the chromatograms obtained with reference solution (3) and (4) to identify the peaks due to ganciclovir and the impurities A, B, C, D, E and F. The following peaks are eluted at the following relative retention with reference to the peak of ganciclovir: impurity A about 0.6; impurity B about 0.67; impurity C about 0.71; impurity D about 0.8; impurity E about 0.9; impurity F about 2.0.

The test is not valid unless in the chromatogram obtained with solution (4) the peak-to-valley ratio (H_p/H_v) is at least 5, where H_p is the height above the baseline of the peak due to impurity E and H_v is the height above the baseline of the lowest point of the curve separating this peak from the peak due to ganciclovir.

In the chromatogram obtained with solution (1):

- the area of any peak corresponding to impurity A, C, D or E is not greater than 1.5 times the area of the peak due to ganciclovir in the chromatogram obtained with solution (2) (0.15%);
- the area of any peak corresponding to impurity B, when multiplied by a correction factor of 1.3, is not greater than twice the area of the peak due to ganciclovir in the chromatogram obtained with solution (2) (0.2%);
- the area of any peak corresponding to impurity F, when multiplied by a correction factor of 0.7, is not greater than 4 times the area of the peak due to ganciclovir in the chromatogram obtained with solution (2) (0.4%);
- the area of any other impurity peak is not greater than 0.5 times the area of the peak due to ganciclovir in the chromatogram obtained with solution (2) (0.05%);
- the sum of the corrected areas of the peaks corresponding to impurity B and impurity F and the areas of all other impurity peaks is not greater than 6 times the area of the peak due to ganciclovir in the chromatogram obtained with solution (2) (0.6%). Disregard any peak with an area less than 0.3 times the area.
of the principal peak obtained with solution (2) (0.03%).

Assay. Dissolve about 0.200 g, accurately weighed, in 10 mL of anhydrous formic acid R and dilute to 60 mL with anhydrous glacial acetic acid R. Titrate with perchloric acid (0.1 mol/L) VS, determining the end-point potentiometrically as described under 2.6 Non-aqueous titrations. Carry out a blank titration. Each mL of perchloric acid (0.1 mol/L) VS is equivalent to 25.52 mg of ganciclovir (C₉H₁₃N₅O₄).

Additional requirements for Ganciclovir for parenteral use

Complies with the monograph for Parenteral preparations.

Bacterial endotoxins. If intended for use in the manufacture of a parenteral dosage form without a further appropriate procedure for the removal of bacterial endotoxins, carry out the test as described under 3.4 Test for bacterial endotoxins; contains not more than 0.84 IU of endotoxin RS per mg of ganciclovir.

Impurities

([Note from the Secretariat. The impurities will be brought into alphabetical order at a later stage of the monograph development.]

A. R = CH₂-O-CH₂-CCl=CH₂:2-amino-9-[[2-chloroprop-2-en-1-yl]oxy] methyl]-1,9-dihydro-6H-purin-6-one (synthesis-related impurity),

D. R = CH₂-O-CH₂-O-CH(CH₂OH)₂:2-amino-9-[[2-hydroxy-1-(hydroxymethyl) ethoxy]methoxy]methyl]-1,9-dihydro-6H-purin-6-one(synthesis-related impurity),

F. R = H: 2-amino-1,9-dihydro-6H-purin-6-one (guanine) (synthesis-related impurity, degradation product),
B. R = O-CO-CH₂-CH₃:(2RS)-2-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl) methoxy]-3-hydroxypropyl propionate (synthesis-related impurity),

C. R = Cl:2-amino-9-[[1RS)-2-chloro-1-(hydroxymethyl)ethoxy]methyl]-1,9-dihydro-6H-purin-6-one (synthesis-related impurity),

E. 2-amino-9-[[2RS)-2,3-dihydroxypropoxy]methyl]-1,9-dihydro-6H-purin-6-one (synthesis-related impurity),

H. 2-amino-7-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]-1,7-dihydro-6H-purin-6-one (synthesis-related impurity),

I. R = H: 2-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methoxy]propane-1,3-diyl dipropanoate (synthesis-related impurity),

New reference substances

Ganciclovir RS
Ganciclovir for system suitability RS (containing the impurities A, B, C, D, E and F)

New reagent

Aciclovir R
Aciclovir of a suitable quality should be used.
