IVERMECTIN

(IVERMECTINUM)

DRAFT MONOGRAPH FOR INCLUSION IN

The International Pharmacopoeia

(May 2018)

DRAFT FOR COMMENTS

Should you have any comments on this draft, please send these to Dr Herbert Schmidt,
Medicines Quality Assurance Programme, Technologies, Standards and Norms, Department of
Essential Medicines and Health Products, World Health Organization, 1211 Geneva 27,
Switzerland; fax: (+41 22) 791 4730 or email: schmidt@who.int by 31 July 2018.

In order to speed up the process for receiving draft monographs and for sending
comments, please let us have your email address (to bonnyw@who.int) and we will add it
to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2016

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft.
The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part
or in whole, in any form or by any means outside these individuals and organizations (including the
organizations’ concerned staff and member organizations) without the permission of the World Health Organization.
The draft should not be displayed on any website.

Please send any request for permission to:
Dr Sabine Kopp, Group Lead, Medicines Quality Assurance Programme, Technologies Standards and Norms,
Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27,
Switzerland. Fax: (41-22) 791 4730; email: kopp@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any
opinion whatsoever on the part of the World Health Organization concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines
on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or
recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in
this draft. However, the printed material is being distributed without warranty of any kind, either expressed or
implied. The responsibility for the interpretation and use of the material lies with the reader. In no event, shall the
World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/16.691:

Ivermectin

(Ivermectinum)

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monograph drafted</td>
<td>December 2016</td>
</tr>
<tr>
<td>Discussion at consultation on specifications for medicines</td>
<td>2–4 May 2018</td>
</tr>
<tr>
<td>Laboratory investigations to develop, optimize, verify, or validate the proposed analytical tests and specifications</td>
<td>May 2017–March 2018</td>
</tr>
<tr>
<td>Draft revision sent out for public consultation</td>
<td>June–August 2018</td>
</tr>
<tr>
<td>Presentation to WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>October 2018</td>
</tr>
<tr>
<td>Further follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>
IVERMECTIN
(IVERMECTINUM)

[Note from the Secretariat. The draft monograph is proposed for inclusion in The International Pharmacopoeia. It was elaborated based on laboratory investigations performed by a collaborating laboratory and on information provided by the manufacturer and found in other pharmacopoeias.]

Molecular formula

<table>
<thead>
<tr>
<th>Component</th>
<th>R</th>
<th>Molecular formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂B₁a</td>
<td>CH₂-CH₃</td>
<td>C₄₈H₇₄O₁₄</td>
</tr>
<tr>
<td>H₂B₁b</td>
<td>CH₃</td>
<td>C₄₇H₇₂O₁₄</td>
</tr>
</tbody>
</table>

Relative molecular mass. Component H₂B₁a 875.09; Component H₂B₁b 861.07.

Graphic formula

Chemical name. Mixture of
5-\(O\)-demethyl-22,23-dihydroavermectin \(\text{A}_{1a}\) (component \(\text{H}_{2}\text{B}_{1a}\)) and \\
(2\(aE,4E,5'S,6S,6'R,7S,8E,11R,13R,15S,17aR,20R,20aR,20bS\)-7-\([2,6\text{-dideoxy-}4-\(O\)-(2, \\
6-dideoxy-3-\(O\)-methyl-\(\alpha\)-L-arabino-hexopyranosyl)-3-\(O\)-methyl-\(\alpha\)-L-arabino-hexopy \\
ranosyl]oxy\)-20,20b-dihydroxy-5',6,8,19-tetramethyl-6'-\((1\text{-methylthethyl})-3',4',5',6',6',7 \\
10,11,14,15,17a,20,20a,20b\text{-tetradeahydrospiro[11,15-methano-2}\text{H},13\text{H},17\text{H}\text{-furo[4, \\
3,2-pq]}[2,6\text{-benzodioxacyclooctadecene-13,2'-[2}\text{H}\text{-pyran}-17\text{-one (or} \\
5-\(O\)-demethyl-25-de\((1\text{-methylpropyl})-25-(1\text{-methylthethyl)-22,23-dihydroavermectin} \\
\text{A}_{1a}\) (component \(\text{H}_{2}\text{B}_{1b}\)); CAS Reg. No. Ivermectin \(\text{B}_{1a}\): 71827-03-7; Ivermectin \(\text{B}_{1b}\): \\
70209-81-3.

Description. A white or yellowish-white, crystalline powder.

Solubility. Practically insoluble in water, freely soluble in dichloromethane \(\text{R}\), soluble \\
in dehydrated ethanol \(\text{R}\).

Category. Antifilarial.

Storage. Ivermectin should be kept in tightly closed containers, protected from light. \\
It should be stored between 2° and 8°. Where the use of an antioxidant is allowed, \\
store at 25°. Excursions are permitted between 15° and 30°.

Additional information. Ivermectin is slightly hygroscopic. It is a semisynthetic \\
product derived from a fermentation product.

Requirements

Definition. Ivermectin contains not less than 95.0% and not more than 102.0% of the \\
sum of the Ivermectin components \(\text{H}_{2}\text{B}_{1a}\) \((\text{C}_{48}\text{H}_{74}\text{O}_{14})\) and \(\text{H}_{2}\text{B}_{1b}\) \((\text{C}_{47}\text{H}_{72}\text{O}_{14})\), \\
calculated with reference to the anhydrous and solvent-free substance. The ratio of the \\
area percentages of component \(\text{H}_{2}\text{B}_{1a}\) / \((\text{H}_{2}\text{B}_{1a} + \text{H}_{2}\text{B}_{1b})\) is not less than 90.0%.
104

Identity tests

105

- Either test A alone or tests B or C together with test D may be applied.

106

A. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from ivermectin RS or with the reference spectrum of ivermectin.

108

B. Carry out the test as described under 1.14.4 High-performance liquid chromatography using the conditions given under “Assay”. The retention time of the principal peaks in the chromatogram obtained with solution (1) corresponds to the retention time of the peaks due to ivermectin in the chromatogram obtained with solution (2).

110

C. Carry out the test as described under 1.14.1 Thin-layer chromatography using silica gel R4 or R2 as the coating substance and a mixture of 90 volumes of dichloromethane R, 8 volumes of methanol R and 0.8 volume of ammonia (~260 g/L) TS as the mobile phase. Apply separately to the plate 30 μL of each of the following 2 solutions in methanol R containing (A) 7 mg of the test substance per mL and (B) 7 mg of ivermectin RS per mL. Develop the plate. After removing the plate from the chromatographic chamber allow it to dry in air or in a current of air. Examine the chromatogram under ultraviolet light (254 nm).

119

The two partly separated spots in the chromatogram obtained with solution (A) correspond in position, appearance, and intensity with the two partly separated principal spots due to ivermectin in the chromatogram obtained with solution (B).
Specific optical rotation (1.4). Dissolve 0.250 g of the test substance in methanol R and dilute to 10.0 mL with the same solvent; $\left[\alpha\right]_D^0 = -20$ to -17 with reference to the anhydrous and solvent-free substance.

Heavy metals. Use 1.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 3; determine the heavy metals content according to Method A; not more than 20 μg/g.

Sulfated ash (2.3). Not more than 1.0 mg/g, using about 1.0 g of the substance.

Clarity and colour of solution. Dissolve 1.0 g in 50 mL toluene R. This solution is clear and not more intensely coloured than reference solution BY5, when compared as described under 1.11.2 Degree of coloration of liquids, Method II.

Water. Determine as described under 2.8 Determination of water by the Karl Fischer method, method A, using 0.500 g of the substance; the water content is not more than 10 mg/g.

Related substances. Carry out the test as described under 1.14.4 High-performance liquid chromatography, using the conditions given below under “Assay”.

Prepare the following solutions in methanol R. For solution (1) dissolve 40.0 mg of the test substance and dilute to 50.0 mL. For solution (2) dilute 1.0 mL of solution (1) to 100.0 mL. For solution (3) dilute 5.0 mL of solution (2) to 100.0 mL.

Inject alternately 20 μL each of solution (1), (2) and (3). Record the chromatograms for about 2 times the retention time of the principal peak.
The test is not valid unless in the chromatogram obtained with solution (1) the resolution between the peak due to component H$_2$B$_{1b}$ (with a relative retention time of about 0.74 with reference to component H$_2$B$_{1a}$) and the peak due to component H$_2$B$_{1a}$ (retention time about 34 minutes) is at least 3.0, and the symmetry factor of the peak due to component H$_2$B$_{1b}$ is not greater than 2.5. In the chromatogram obtained with solution (3) the signal-to-noise ratio of the principal peak is at least 10.

In the chromatogram obtained with solution (1):

- the area of any impurity peak with a relative retention of 1.3 to 1.5 with reference to the principal peak is not greater than 2.5 times the area of the principal peak in the chromatogram obtained with solution (2) (2.5%);
- the area of any other impurity peak is not greater than the area of the principal peak in the chromatogram obtained with solution (2) (1%);
- the sum of the areas of all impurity peaks is not greater than 5 times the area of the principal peak in the chromatogram obtained with solution (2) (5%). Disregard any peak with an area less than the area of the principal peak in the chromatogram obtained with solution (3) (0.05%).

Ethanol and formamide. Carry out the test as described under 1.14.5 *Gas chromatography*, using a fused-silica capillary column 30 m long and 0.53 mm in internal diameter coated with macrogol 20 000 R (film thickness: 1 µm).

As a detector use a flame ionization detector. Keep the detector at 250° C. Use nitrogen for chromatography R as the carrier gas at a flow rate of 7.5 mL per minute. Use as split injection ratio of 1:10. Keep the injection port at 200° C.

Use the gradient conditions described below.
Prepare the following solutions:

Internal standard solution: Dilute 0.5 mL of propanol R to 100.0 mL with water R.

For solution (1) transfer 120 mg of the test substance to a centrifuge tube, dissolve in 2.0 mL of m-xylene R (if the solution is hazy, heat slightly to 30–40 °C while mixing), add 2.0 mL of water R, mix thoroughly and centrifuge. Keeping the aqueous layer, remove the upper m-xylene layer and extract it with an additional 2.0 mL of water. Discard the m-xylene layer and combine the two aqueous layers. Add 1.0 mL of the internal standard solution. Centrifuge and discard any remaining m-xylene.

For solution (2) dilute 3.0 g of dehydrated ethanol R to 100.0 mL with water R.

For solution (3) dilute 1.0 g of formamide R to 100.0 mL with water R.

For solution (4) dilute 5.0 mL of solution (2) and 5.0 mL of solution (3) to 50.0 mL with water R. Transfer 2.0 mL of this solution to a centrifuge tube, add 2.0 mL of m-xylene R, mix thoroughly and centrifuge. Remove the upper layer and extract it with 2.0 mL of water R. Discard the upper layer and combine the aqueous layers. Add 1.0 mL of the internal standard solution. Centrifuge and discard any remaining m-xylene.

For solution (5) dilute 10.0 mL of solution (2) and 10.0 mL of solution (3) to 50.0 mL...
with water R. Transfer 2.0 mL of this solution to a centrifuge tube, add 2.0 mL of m-xylene R, mix thoroughly and centrifuge. Remove the upper layer and extract it with 2.0 mL of water R. Discard the upper layer and combine the aqueous layers. Add 1.0 mL of the internal standard solution. Centrifuge and discard any remaining m-xylene.

Inject alternately 1 µL each of solutions (1), (4) and (5). Prepare calibration plots for ethanol and formamide by plotting the ratios of peak responses of any peak due to ethanol or formamide to the area of the corresponding peak due to the internal standard versus the concentrations of solutions (4) and (5). Determine the concentration of ethanol and formamide in solution (1), if present. In the event the peak response is significantly outside the range found with solutions (4) and (5), additional dilutions of solutions (2) and (3) should be prepared and injected to obtain peak responses framing those found for solution (1); not more than 50 mg/g of ethanol and not more than 30 mg/g of formamide.

Assay. Carry out the test as described under 1.14.4 *High-performance liquid chromatography*, using a stainless-steel column (25 cm × 4.6 mm) packed with particles of silica gel, the surface of which has been modified with chemically-bonded octadecylsilyl groups (5 µm).¹

As the mobile phase use a mixture of 13 volumes of water R, 35 volumes of methanol R and 53 volumes of acetonitrile R. Operate with a flow rate of 1.5 mL per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of 245 nm.

Prepare the following solutions in methanol R. For solution (1) dissolve 25.0 mg of the test substance and dilute to 100.0 mL. For solution (2) dissolve 25.0 mg of ivermectin RS and dilute to 100.0 mL.

¹ A Restek or Agilent PoroShell column or a Zorbax SB C₁₈ column were found suitable.
Inject alternately 10 μL each of solution (1) and (2). Record the chromatograms for about 2 times the retention time of the principal peak.

The test is not valid unless in the chromatogram obtained with solution (2) the resolution between the peaks due to component \(\text{H}_2\text{B}_{1\text{b}} \) (with a relative retention of about 0.74 with reference to component \(\text{H}_2\text{B}_{1\text{a}} \)) and due to component \(\text{H}_2\text{B}_{1\text{a}} \) (retention time about 34 minutes) is at least 3.0 and the symmetry factor of the peak due to component \(\text{H}_2\text{B}_{1\text{b}} \) is not greater than 2.5.

Measure the areas of the peaks corresponding to the components \(\text{H}_2\text{B}_{1\text{a}} \) and \(\text{H}_2\text{B}_{1\text{b}} \) obtained in the chromatograms of solution (1) and (2) and calculate the percentage content of ivermectin (component \(\text{H}_2\text{B}_{1\text{a}} \) and component \(\text{H}_2\text{B}_{1\text{b}} \)), considering the assigned contents of component \(\text{H}_2\text{B}_{1\text{a}} \) and component \(\text{H}_2\text{B}_{1\text{b}} \) in ivermectin RS, and the ratio \(\text{H}_2\text{B}_{1\text{a}} / (\text{H}_2\text{B}_{1\text{a}} + \text{H}_2\text{B}_{1\text{b}}) \).

Impurities

![Chemical structure of 5-O-demethylavermectin A_{1a} (avermectin B_{1a}), synthesis-related impurity]
B. 5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl) avermectin A\textsubscript{1a} (avermectin B\textsubscript{1b}), (synthesis-related impurity)

C. (23S)-5-O-demethyl-23-hydroxy-22,23-dihydroavermectin A\textsubscript{1a} (avermectin B\textsubscript{2a}), (synthesis-related impurity)

D. 5-O-demethyl-28-oxo-22,23-dihydroavermectin A\textsubscript{1a} (28-oxoH\textsubscript{2}B\textsubscript{1a}), (degradation product)
E. 5-\O\-12-didemethyl-12-ethyl-22,23-dihydroavermectin A_{1a} (12-demethyl-12-ethyl-H_{2}B_{1a}), (degradation product)

F. 5-\O\-12-didemethyl-25-de(1-methylpropyl)-12-ethyl-25-(1-methylethyl)-22,23-dihydroavermectin A_{1a} (12-demethyl-12-ethyl-H_{2}B_{1b}), (degradation product)

pyl]milbemycin B (H$_2$B$_{1a}$ aglycone), (degradation product)

H.

4’-O-de(2,6-dideoxy-3-O-methyl-α-L-arabino-hexopyranosyl)-5-O-demethyl-22,23-dihydroavermectin A$_{1a}$, (degradation product)

and epimer at C*

I. 2,3-didehydro-5-O-demethyl-3,4,22,23-tetrahydroavermectin A$_{1a}$ (Δ2,3H$_2$B$_{1a}$), (degradation product)

and epimer at C*

J.
2,3-didehydro-5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl)-3,4,22,23-tetrahydroavermectin A₁ₐ (Δ²,³H₂B₁b), (degradation product)

K. (4R) and (4S)-5-O-demethyl-3,4,22,23-tetrahydroavermectin A₁ₐ (H₄B₁a isomers) (synthesis-related impurity).

New reagents

m-xylene R

1,2-Dimethylbenzene; C₈H₁₀.

Description. Clear, colourless, flammable liquid, practically insoluble in water, miscible with ethanol (~750 g/L) TS

Relative density ρ_{20}^2 = 0.881.

Refractive index n_{20}^D =1.505.

Boiling point. About 144°C.

Reference substance to be established

Ivermectin RS
