CYCLOSERINE
Proposal for revision of The International Pharmacopoeia
(August 2012)

Draft for comment

This document was provided by a quality control expert. Should you have any comments thereon, please send these to Dr Herbert Schmidt, Medicines Quality Assurance Programme, Quality Assurance and Safety: Medicines, World Health Organization, 1211 Geneva 27, Switzerland; fax: (+41 22) 791 4730 or e-mail: schmidt@who.int with a copy to gaspardsm@who.int by 17 September 2012.

In order to speed up the process for receiving draft monographs and for sending comments, please let us have your e-mail address (to bonnyw@who.int) and we will add it to our electronic mailing list. Please specify if you wish to receive monographs.

© World Health Organization 2012
All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations’ concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any web site.

Please send any request for permission to:
Dr Sabine Kopp, Medicines Quality Assurance Programme, Quality Assurance and Safety: Medicines, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4730; e-mail: kopp@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
<table>
<thead>
<tr>
<th>Date Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion of preliminary draft revision at consultation on specifications for</td>
<td>29-31 May 2012</td>
</tr>
<tr>
<td>medicines and quality control laboratory issues</td>
<td></td>
</tr>
<tr>
<td>Draft sent out for comments following discussion at consultation on specifications</td>
<td>August 2012</td>
</tr>
<tr>
<td>for medicines and quality control laboratory issues</td>
<td></td>
</tr>
<tr>
<td>Collation of comments received</td>
<td>August-September 2012</td>
</tr>
<tr>
<td>Discussion at forty-seventh meeting of the WHO Expert Committee on Specifications</td>
<td>9-12 October 2012</td>
</tr>
<tr>
<td>for Pharmaceutical Preparations</td>
<td></td>
</tr>
<tr>
<td>Further follow-up action as required</td>
<td></td>
</tr>
</tbody>
</table>
[Note from the Secretariat. The following change to the system suitability criterion of the test for related substances is proposed. Changes from the current monograph are indicated in the text by insert or delete.]

CYCLOSERINE

\[
\begin{align*}
\text{C}_3\text{H}_6\text{N}_2\text{O}_2
\end{align*}
\]

Relative molecular mass. 102.1

Chemical name. (4R)-4-aminoisoaxazolidin-3-one; (4R)-4-amino-1,2-oxazolidin-3-one; (+)-4-amino-3-isoxazolidinone; CAS Reg. N° 68-41-7.

Description. A white or pale yellow, crystalline powder.

Solubility. Freely soluble in water; slightly soluble in methanol R and propylene glycol R; very slightly soluble in ethanol (~750 g/l) TS; practically insoluble in dichloromethane R.

Category. Antibacterial drug; antituberculosis drug.

Storage. Cycloserine should be kept in a tightly closed container.

Additional information. Cycloserine is slightly hygroscopic and degrades upon exposure to a humid atmosphere; decomposition being faster at higher temperatures.

Requirements

Definition. Cycloserine is an analogue of the amino acid d-alanine with broad-spectrum antibiotic and glycineric activities produced by Streptomyces garyphalus and Streptomyces orchidaceus or obtained by synthesis.

Cycloserine contains not less than 98.5% and not more than 101.5% of cycloserine (C\(_3\)H\(_6\)N\(_2\)O\(_2\)), calculated with reference to the dried substance.

Identity tests

- Either tests A and C, or tests B and C, or test D alone may be applied.

A. Carry out test A.1. or, where UV detection is not available, test A.2.

A.1 Carry out the test as described under 1.14.1 Thin-layer chromatography, using silica gel R6 as the coating substance and a mixture of 4 volumes of 1-butanol R, 1 volume of glacial acetic acid R and 2 volumes of water R as the mobile phase. Apply
separately to the plate 10 µl of each of the following two solutions. For solution (A), dissolve 20 mg of the test substance in 0.5 ml of water R, add 4.5 ml of methanol R and shake. For solution (B), use 20 mg of cycloserine RS prepared in the same manner. After removing the plate from the chromatographic chamber, allow it to dry exhaustively in a current of air. Examine the chromatogram in ultraviolet light (254 nm).

The principal spot obtained with solution A corresponds in position, appearance, and intensity with that obtained with solution B.

A.2 Carry out the test as described under 1.14.1 Thin-layer chromatography, using the conditions described above under test A.1., but using silica gel R5 as the coating substance. After removing the plate from the chromatographic chamber, allow it to dry in a current of air and place the plate in a chamber with iodine vapours. Examine the chromatogram in daylight.

The principal spot obtained with solution A corresponds in position, appearance, and intensity with that obtained with solution B.

B. Dissolve about 1 mg in 10 ml of sodium hydroxide (0.1 mol/l) VS. To 1 ml of the resulting solution add 3 ml of acetic acid (~60 g/l) TS and 1 ml of a recently prepared mixture of equal volumes of a 40 mg/ml solution of sodium nitroprusside R and sodium hydroxide (~200 g/l) TS; a blue colour gradually develops.

C. The absorption spectrum (1.6) of a freshly prepared 25 µg/ml solution in hydrochloric acid (0.1mol/l) VS, when observed between 215 nm and 360 nm, exhibits a maximum at about 219 nm; the specific absorbance (A \(_{1\%}\)) is between 327 and 361.

D. Carry out the examination as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from cycloserine RS or with the reference spectrum of cycloserine.

**Specific optical rotation (1.4).** Use a 50 mg/ml solution in sodium hydroxide (~80 g/l) TS and calculate with reference to the dried substance; \([\alpha]_{D}^{20^\circ} = +108^\circ\) to +114°.

**Heavy metals.** Use 2.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 3; determine the heavy metals content according to Method A; not more than 10 µg/g.

**Sulfated ash (2.3).** Not more than 5.0 mg/g.

**Loss on drying.** Dry at 60 °C under reduced pressure (not exceeding 0.6 kPa or about 5 mm of mercury) for 3 hours; it loses not more than 10 mg/g.

**pH value (1.13).** pH of a 100 mg/ml solution in carbon-dioxide-free water R, 5.5 to 6.5.

**Related substances**

Prepare fresh solutions and perform the tests without delay. Carry out the test as described under 1.14.4 High-performance liquid chromatography, using a stainless steel column (25 cm x 4.6 mm) packed with base deactivated particles of silica gel the surface of which has been modified with chemically bonded octadecylsilyl groups (5 µm).
The mobile phases for gradient elution consist of a mixture of mobile phase A and mobile phase B, using the following conditions:

Mobile phase A: 4 volumes of acetonitrile R, 70 volumes of 0.02 mol/l sodium octanesulfonate R solution, 10 volumes of phosphate buffer pH 2.8 and 16 volumes of water R.

Mobile phase B: 17 volumes of acetonitrile R, 70 volumes of 0.02 mol/l sodium octanesulfonate R solution, 10 volumes of phosphate buffer pH 2.8 and 3 volumes of water R.

Prepare the sodium octanesulfonate solution by dissolving 4.7 g of sodium octanesulfonate R in 1000 ml of water R.

Prepare the phosphate buffer pH 2.8 by dissolving 27.2 g of potassium dihydrogen phosphate R in 800 ml of water R, adjust the pH to 2.8 by adding phosphoric acid (~20 g/l) TS and dilute to 1000 ml with water R.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Mobile phase A (% v/v)</th>
<th>Mobile phase B (% v/v)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 16</td>
<td>100</td>
<td>0</td>
<td>Isocratic</td>
</tr>
<tr>
<td>16 – 18</td>
<td>100 to 0</td>
<td>0 to 100</td>
<td>Linear gradient</td>
</tr>
<tr>
<td>18 – 22</td>
<td>0</td>
<td>100</td>
<td>Isocratic</td>
</tr>
<tr>
<td>22 – 24</td>
<td>0 to 100</td>
<td>100 to 0</td>
<td>Return to initial composition</td>
</tr>
<tr>
<td>24 – 30</td>
<td>100</td>
<td>0</td>
<td>Re-equilibration</td>
</tr>
</tbody>
</table>

Prepare the following solutions in mobile phase A. For solution (1) use 0.5 mg of the test substance per ml. For solution (2) dilute a suitable volume of solution (1) to obtain a concentration equivalent to 0.5 µg of cycloserine per ml. For solution (3) dilute a suitable volume of solution (1) to obtain a concentration equivalent to 25 µg of cycloserine per ml. Heat carefully in a boiling water-bath for 30 minutes.

Operate with a flow rate of 1.0 ml per minute. As a detector use an ultraviolet spectrophotometer set at a wavelength of 219 nm.

Maintain the column temperature at 45 °C.

Inject 50 µl of solution (3). The test is not valid unless the resolution between the principal peak and the large degradation peak with a retention time of about 3 minutes is not less than 35 20. If necessary adjust the amount of acetonitrile in mobile phase A.

Inject alternatively 50 µl each of solutions (1) and (2).

In the chromatogram obtained with solution (1), the area of any peak, other than the principal peak, is not greater than twice the area of the principal peak in the chromatogram obtained
with solution (2) (0.2%). The sum of the areas of all peaks, other than the principal peak, is not greater than five times the area of the principal peak in the chromatogram obtained with solution (2) (0.5%). Disregard any peak with an area less than 0.5 times the area of the principal peak in the chromatogram obtained with solution (2) (0.05%).

Assay

Dissolve about 0.1 g, accurately weighed, in 5 ml of water R. Add 75 ml of 2-propanol R and titrate with carbonate-free sodium hydroxide (0.1 mol/l) VS using thymolphthalein/ethanol TS as indicator. Perform a blank determination and make any necessary correction.

Each ml of sodium hydroxide (0.1 mol/l) VS is equivalent to 10.21 mg of C$_3$H$_6$N$_2$O$_2$.

Impurities

A. (3R,6R)-3,6-bis[(aminooxy)methyl]piperazine-2,5-dione (cycloserine dimer),

B. (2R)-2-amino-3-hydroxypropanoic acid (D-serine),

C. condensation product with unknown structure.