GOOD MANUFACTURING PRACTICES FOR HEATING, VENTILATION AND AIR-CONDITIONING SYSTEMS FOR NON-STERILE PHARMACEUTICAL DOSAGE FORMS: PART 2

INTERPRETATION OF PART 1 – GMP FOR HVAC SYSTEMS

(Febmber 2018)

DRAFT FOR COMMENT

Should you have any comments on the attached text, please send these to Dr S. Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms (kopps@who.int) with a copy to Mrs Xenia Finnerty (finnertyk@who.int) by 26 April 2018.

Medicines Quality Assurance working documents will be sent out electronically only and will also be placed on the Medicines website for comment under “Current projects”. If you do not already receive our draft working documents please let us have your email address (to bonnyw@who.int) and we will add it to our electronic mailing list.

© World Health Organization 2018

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations’ concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

Dr Sabine Kopp, Group Lead, Medicines Quality Assurance, Technologies Standards and Norms, Department of Essential Medicines and Health Products, World Health Organization, CH-1211 Geneva 27, Switzerland. Fax: (41-22) 791 4730; email: kopps@who.int

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT QAS/18.757:
GOOD MANUFACTURING PRACTICES FOR HEATING, VENTILATION AND AIR-
CONDITIONING SYSTEMS FOR NON-STERILE PHARMACEUTICAL DOSAGE FORMS: PART 2

INTERPRETATION OF PART 1 – GMP FOR HVAC SYSTEMS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of document by Dr A. J. van Zyl, consultant</td>
<td>January–February 2018</td>
</tr>
<tr>
<td>Circulation of working document for public consultation</td>
<td>February 2018</td>
</tr>
<tr>
<td>Consolidation of comments received and review of feedback</td>
<td>May 2018</td>
</tr>
<tr>
<td>Discussion during the informal consultation on GXPs for medicines and inspection tools</td>
<td>July 2018</td>
</tr>
<tr>
<td>Circulation of working document for public consultation</td>
<td>August 2018</td>
</tr>
<tr>
<td>Consolidation of comments received and review of feedback</td>
<td>September 2018</td>
</tr>
<tr>
<td>Presentation to the 53rd meeting of the WHO Expert Committee on Specifications for Pharmaceutical Preparations</td>
<td>22–26 October 2018</td>
</tr>
<tr>
<td>Any further action …</td>
<td></td>
</tr>
</tbody>
</table>
BACKGROUND

Having considered various comments and the recommendations through public consultation over several years, the WHO Expert Committee on Specifications for Pharmaceutical Preparations (ECSPP) agreed during its 51st meeting held in October 2017, that the Good manufacturing practices for heating, ventilation and air-conditioning systems for non-sterile pharmaceutical dosage forms guidelines, as amended, be adopted as Part 1.

It was agreed that Part 1 consists of guidelines that contain good manufacturing practices (GMP) recommendations for heating, ventilation and air-conditioning (HVAC) systems for non-sterile products, and further agreed that Part 1 be supported by an additional document that reflects the interpretation of the recommendations in Part 1.

This document is Part 2 and will be considered for adoption as such after consultation.
Section 1 and 2. Introduction and Scope

3. Glossary

4. Premises

5. Design of HVAC systems and components

6. Full fresh air and recirculation systems

7. Air filtration, airflow direction and pressure differentials

8. Temperature and relative humidity

9. Dust, vapour and fume control

10. Protection of the environment

11. Commissioning

12. Qualification

13. Maintenance
Section 1 and 2: Introduction and Scope

This document represents Part 2 of the HVAC systems guidelines. It contains non-binding examples, drawings, technical representations and interpretation in support of Part 1 of the HVAC systems guidelines.

It is intended to be a basic and explanatory guide for use by pharmaceutical manufacturers and GMP inspectors. It is not intended to be prescriptive in specifying requirements and design parameters but it attempts to facilitate a harmonized understanding of expectations for HVAC systems for manufacturers of non-sterile products.

Part 1 and Part 2 focus on good practices for HVAC systems for non-sterile products. Where applicable, some of the principles referred to may be considered in the HVAC design and approach for other dosage forms. These two documents are, however, not intended to be used as enforceable criteria for the design or review of HVAC systems for, e.g. APIs or sterile products.

Other relevant national and international standards, as applicable, should be considered when Part 1 and Part 2 are used. These include, but are not limited to, the current publications such as ISO 14644 and ASHRAE standards.

In general, HVAC systems can play an important role in facilitating a suitable environment for the manufacture of quality pharmaceutical products. Therefore careful consideration should be given to the design of the HVAC system. When designing an HVAC system, careful consideration should also be given to the building design and layout of areas as these may influence the decision and design relating to, for example, the number of air handling units (AHUs), components in AHUs, room pressure, pressure differentials, pressure cascades, levels of filtration, humidification, dehumidification, heating and cooling of air. These may in turn have an impact on the quality of materials and products as well as the functioning of equipment and instruments.

The conditions of areas should be defined and should be appropriate for the storage, manufacturing and use, as appropriate, for equipment, instruments, materials and products. It should further ensure that comfortable conditions are maintained for operators.

Risk assessment

In line with the current approach in GMP, risk identification should be done for utilities such as HVAC systems. A science-based, comprehensive exercise of risk assessment should be used to determine risks related to possible failure of the HVAC system and AHUs (including their components and subcomponents). An appropriate risk assessment tool such as failure modes and effects analysis (FMEA) or fault tree analysis (FTA) should be selected. Controls should be identified to eliminate the risks, or minimize the risk to an acceptable level. For example, the effect of the failure of one or more AHUs in the HVAC system; the failure of
dust extraction systems; the failure of AHU components such as filters, heating coils, cooling coils and fans should be assessed and appropriate controls should be identified and implemented.

For more information on risk assessment, refer the current WHO guidelines on Quality risk management.

Design parameters

Manufacturers should define the design parameters of the HVAC system to ensure appropriate operation and functioning of the system that is needed for all the areas. Special consideration should be given to the required conditions for storage and handling of materials and products, equipment and instrument functioning, personnel requirements and contamination control.

Section 3. Glossary

For definitions and abbreviations, see Part 1.
Section 4. Premises

Premises design

Both the architectural design of the building and that of the HVAC system should be carefully considered when attempting to achieve the general objectives of preventing contamination, cross-contamination and ensuring an appropriate environment for the production and control of pharmaceutical products. The layout of the premises should facilitate unidirectional flow of material and personnel; building finishes should not result in contamination (e.g. through shedding of particles) and should ensure that the required environmental conditions, cleanliness and containment are achieved and maintained.

Air infiltration of unfiltered air into production areas should be prevented. Manufacturing facilities should normally be maintained at a positive pressure relative to the outside, to limit the ingress of contaminants. Where facilities are to be maintained at negative pressures relative to the ambient pressure, special precautions should be taken.

Where necessary, air locks, change rooms and pass-through hatches may be considered and provided with effective ventilation and filtered air. Special attention should be given to door design as gaps between doors and floors, doors opening into low pressure areas and sliding doors can result in changes in pressure differential between areas. An interlocking system and a visual and/or audible warning system may be used to prevent the opening of more than one door at a time where required.

In addition to the design of the premises, general controls should be in place to ensure protection of materials, products and personnel. The HVAC system can play a role in achieving this objective. Where identified, areas should be maintained within defined limits for temperature, relative humidity, viable and non-viable particles. In such cases, the areas are considered to be “clean areas” (also referred to as “zones, rooms”, etc.). To ensure that the clean area is maintained at the defined limits, areas are normally classified. When classifying the area, the manufacturer should state whether the classification is for the “as built”, “at rest” or “in operation” condition. For details including definitions, see ISO 14644.

The following describes approaches (and illustrations by means of diagrams) of different room arrangements and room pressures.

Weighing/dispensing and sampling areas

A room for weighing (e.g. dispensing of materials), should be of appropriate design. It is often advantageous to have several rooms associated with the weighing activity. These may include a pre-weighing staging area, personnel airlock, material airlock, weighing area with a containment booth, post-weighing staging area, washing area and provision for waste removal. The HVAC system for such areas should ensure that the areas have at least the same area classification as other production areas where materials and products are exposed to the environment, logical flow of material and personnel, appropriate number of AHUs, pressure
differentials, containment, dust control, and air exchange rate.

The objective of having a booth in a weighing room is to provide dust containment and operator protection. For example, the dust generated at the weighing location should be extracted through a perforated worktop, thus protecting the operator from dust inhalation, but at the same time protecting the product from contamination by the operator by means of the vertical airflow stream. The airflow velocity should be such that it does not disrupt the sensitivity of balances. The operator should neither obstruct the airflow nor become a source of contamination of the materials or products.
Similar aspects may be considered when designing a sampling area, as materials and primary components may be exposed to the environment during sampling. Sampling of materials such as starting materials, primary packaging materials and products, should be carried out in the same environmental conditions that are required for the further processing of the product.
A clean corridor concept is usually recommended for non-sterile oral solid dosage form production areas where there is then a higher pressure in the corridor compared to airlocks or production rooms. This is to facilitate containment of dust and contaminants that may have been generated in production rooms (see also the principles mentioned in the section on sampling and dispensing).

To further support containment, consideration may also be given to have material airlocks (MAL) and personnel airlocks (PAL), where needed, for entry and exiting processing areas. Appropriately designed airlocks can assist in ensuring containment. Additional controls such as pressure differentials between areas, an appropriate number of air changes in an area and sufficient filtration of air should be in place.
Figure 5. Example of a change room and some production areas

Figure 6. Example of a compression cubicle with MAL and PAL (also used as an area to change garments)
Washing areas should be designed and used in such a manner that equipment and components will not be re-contaminated after cleaning. The system supplying and extracting air from the area(s) should be suitably designed to ensure that this objective is achieved. Principles that may be considered include (but are not limited to) filtration of air, pressure differentials between areas and airflow directions.

Figure 7. Example of a washing area

Section 5. Design of HVAC systems and components

The HVAC system should be appropriately designed, taking into consideration the design of the facility with various rooms or areas for the storage of materials and in-process materials or products, processing, movement of materials, products and personnel. The required cleanliness classification should be achieved, as well as other parameters such as airflow direction, air filtration, air exchange rate, airflow velocity, air volumes, pressure differentials, temperature and relative humidity, viable and non-viable particle counts and containment.

Conditions and limits should be specified based on need. Manufacturers should determine and define limits for these. These should be realistic, appropriate and scientifically justifiable. In determining these, relevant factors and risks should be considered including but not limited to possible failures of AHUs, seasonal variations, properties and types of materials and products, number of personnel and risks of cross-contamination.

Other aspects such as the number of AHUs, dust collecting or dust extraction systems, the need for recirculation of air, percentage of fresh air (in the case of recirculated air) and the level of filtration of air should be defined by the manufacturer when considering the design of the facility and activities in different areas and rooms.

Manufacturers should maintain schematic drawings of the HVAC system, AHUs and components. These should reflect the initial design and installation, as well as the current situation. Changes made during the life cycle of the system should be reflected in change
control records and qualification protocols and reports as appropriate.

The components selected in an HVAC system should be of sufficient capacity to ensure that the design objectives are met (e.g. for heating, cooling, humidification, dehumidification, airflow volumes), taking impacting factors into consideration such as loss of air due to leakage and seasonal variations. Materials of construction for components and their placement should be such that these do not become the source of contamination. For example, components should not shed particles and the sequence of components should be logical, e.g. filters should be placed in such a manner that any possible contaminants generated in the system can be retained by filters and not be introduced into the production area.

To prevent contamination of areas, access to components such as ventilation dampers, filters and other services should be accessible from outside the manufacturing areas (such as service corridors).

The overall design should be such that there is no possibility of undesired, unfiltered air or contaminants entering into manufacturing areas.

Containment

Manufacturers should ensure that appropriate measures are taken to contain product dust in a manufacturing area, thus preventing or minimizing the risk of contamination of other areas and possible cross-contamination. In some cases, it may be advisable to have airlocks or pass through hatches between rooms or areas. In addition, sufficient dilution, pressure differentials (recommended minimum values of 5 to 15 Pa) and airflow directions can further support containment in an area.

Cleanliness

Areas should be maintained at the defined levels of cleanliness and classifications. The HVAC system can support this through, e.g. appropriate levels of filtration of air, airflow directions, dilution, dust removal and air exchange rate. Equipment, containers, personnel and other related components should be appropriately located or placed in areas so as not to obstruct airflow and effectiveness of the HVAC system.

Recontamination should be prevented by ensuring that material and personnel movement is within the same area classification and not back and forth between areas of different classification. Where such back-and-forth movement is unavoidable, appropriate controls should be identified and implemented to ensure that moving from a higher class to a lower classified area and back to a higher classified area will not result in contaminants being brought into the cleaner classified area.

Automated monitoring systems
The performance of the HVAC system achieving and maintaining the desired results for parameters such as temperature, relative humidity, airflow and pressure differential should be carefully controlled and monitored. This is to ensure that there is no departure from these limits during manufacturing. Monitoring systems should be in place to ensure that the system operates within its design limits. Manual or automated (computerized) systems may be used.

Manual systems of monitoring may not always provide sufficient proof that the system is able to maintain all conditions throughout the manufacturing period.

Automated monitoring systems may provide ongoing monitoring possibilities with better assurance of compliance with the defined limits. Where these automated systems are considered to be GXP systems, these should be appropriately validated. The scope and extent of validation of the computerized system should be determined, be justifiable and appropriately executed. This includes, but is not limited to, access and privileges to the software, setting of limits, monitoring and acknowledging alarms, audit trails, controls, monitoring and reporting.

Switching off of AHUs

It is recommended that the HVAC system be operational on an ongoing basis. Where a manufacturer decides to use energy saving modes or switch some selected AHUs off at specified intervals such as overnight, weekends or extended periods of time, care should be taken to ensure that materials and products are not affected. In such cases, the decision, procedures and records should be sufficiently documented and should include risk assessment, standard operating procedures (SOPs), records and validation. This includes procedures and records for the start-up and shut-down sequence of air handling units.

Section 6. Full fresh air and recirculation systems

Manufacturers may select to have full fresh air systems or recirculate treated air supplied to production areas (In a full fresh air system, no air is recirculated. In recirculation systems, a defined percentage of the air is recirculated.). In both cases, the air supplied to the production areas should be appropriately treated to ensure that the environmental conditions specified are met and that the risks for contamination and cross-contamination are controlled.

Manufacturers using recirculation systems should determine the percentage of fresh air to be supplied to the relevant manufacturing areas, as required by national and international standards. This volume of air should be verified during qualification.

In both scenarios, appropriate levels of filtration should be applied to prevent contamination and cross-contamination. Manufacturers should ensure that when HEPA filters are used that these are appropriately installed, not damaged and thus suitable for the intended use (see tests described below under the section of qualification).
Section 7. Air filtration, airflow direction and pressure differentials

Effective ventilation and appropriate levels of filtration are recommended in basic GMP guidelines. Manufacturers should determine which classes of filters should be used in ensuring that contaminants from outside are not introduced into manufacturing areas and that where recirculation systems are used, filtration of recirculated air should be effectively treated to ensure that there is no risk of cross-contamination. Where different products are manufactured in different rooms in the same facility at the same time, appropriate controls should be in place to ensure containment and the prevention of contamination and cross-contamination.

Filters selected for air filtration, air changes and airflow direction should be determined and specified. When a manufacturer chooses to install high efficiency particulate air (HEPA) filters to achieve the desired degree of filtration of air, these filters may be placed in the AHU or may be installed terminally near the supply grille.

The number of air changes or air exchange rates should be sufficient. A guidance value is between 6 and 20 air changes per hour. Manufacturers should also establish how much time it takes for a room, which is out of its classification, to return within the specified class. This is often referred to as clean-up or recovery time. A guidance time period for clean-up or recovery is about 15 to 20 minutes.

Airflow directions should be specified and proven to promote containment and not be adversely affected or obstructed by equipment, utilities, containers or personnel. The location of supply and return or exhaust air grilles should facilitate appropriate airflow directions in an area.

Figure 9 is a schematic diagram of air-handling system serving rooms with horizontal directional flow, vertical directional flow and turbulent flow, for rooms 3, 4 and 5, respectively. In these room, the HEPA filters are indicate to have been placed terminally.
mounted at the rooms and not in the AHU. Terminally-mounted HEPA filters can assist with preventing cross-contamination from room to room in the event of a fan failure condition.

Figure 9. Example of horizontal airflow, vertical flow and turbulent flow

The pressure differential should be of sufficient magnitude to ensure containment and prevention of flow reversal, but should not be so high as to create turbulence problems. It is suggested that pressure differentials of between 5 Pa and 20 Pa be considered. Where the design pressure differential is too low and tolerances are at opposite extremities a flow reversal can take place. There should be no risk of overlap in the acceptable operating range, e.g. 5 Pa to 15 Pa in one room and 15 Pa to 30 Pa in an adjacent room, resulting in the failure of the pressure cascade. The upper and lower limits for pressure differentials between areas in a facility should be defined by the manufacturer. Where there are interleading rooms the limits should be appropriate to ensure that there is no overlap in actual values as this may result in loss in pressure differential between areas and even reversal of air flow.

The pressure control and monitoring devices used should be calibrated and where possible, be linked to an alarm system set according to the determined levels.

Figure 10: Examples of pressure cascades
Airlocks

Airlocks with different pressure cascade regimes include the cascade airlock, sink airlock and bubble airlock:

- cascade airlock: higher pressure on one side of the airlock and lower pressure on the other;
- sink airlock: lower pressure inside the airlock and higher pressure on both outer sides;
- bubble airlock: higher pressure inside the airlock and lower pressure on both outer sides.

Figure 11: Example of cascade airlock

(In most cases the internal pressure of the airlock is not critical. The pressure differential between the two outer sides is the important criteria.)
Figure 12: Example of sink airlock

![Sink Airlock Diagram]

Figure 13: Example of bubble airlock

![Bubble Airlock Diagram]

Note: The diagrams above and the differential pressures shown here are for illustration purposes only. Pressures indicated in these examples are absolute pressures, whereas the local pressure indication would most likely be pressure differential from room to room.

Additional controls should be identified through risk identification and risk assessment. For example, where possible, personnel should not move between different areas during production (such as compression rooms and in process control laboratories) unless there is no risk of contamination of other areas. Personnel often become sources of contamination as they may carry dust from one area to another. Controls may include airlocks or gowning procedures.

Section 8: Temperature and relative humidity

Manufacturers should set appropriate upper and lower limits for temperature and relative humidity for different areas. The required storage conditions specified for the materials and products should be considered when the limits are defined. The HVAC system should be designed in such a manner that these limits can be achieved and be maintained through all seasons.
Systems for dehumidification or humidification require special considerations due to their contamination risk (e.g. condensate formation, bacterial and fungal contamination, contaminated steam and risks when using mobile systems between different areas). Chemicals such as corrosion inhibitors or chelating agents, which could have a detrimental effect on the product, should not be added to the boiler system. Humidification systems should be well drained. No condensate should accumulate in air-handling systems. Other humidification appliances such as evaporative systems, atomizers and water mist sprays, should not be used because of the potential risk of microbial contamination. Air filters should not be installed immediately downstream of humidifiers as moisture on the filters could lead to bacterial growth. Cold surfaces should be insulated to prevent condensation within the clean area or on air-handling components. Chemical driers using silica gel or lithium chloride are acceptable provided that they do not become sources of contamination.

Section 9. Dust, vapour and fume control

Manufacturers should ensure that dust-generated vapours and fumes are effectively removed from the manufacturing areas. Extraction or collecting systems should be designed and qualified to demonstrate this. Sufficient air velocity should be maintained in such systems to effectively remove dust and vapours.

A dust extractor should normally not serve different rooms where different products can be processed at the same time due to the risks such as backflow or flow from room to room resulting in possible contamination and cross-contamination.

Wherever possible, dust or vapour contamination should be removed at source, i.e. as close as possible to the point where the dust is generated. Dust extraction ducting should be designed with sufficient transfer velocity (determined by the manufacturer depending on materials and products processed) to ensure that dust is carried away, and does not settle in the ducting (a guidance value is 15–20 m/s). As vapours can be problematic, extraction may be supported by directional airflow to assist in the removal. The density of the vapour should be taken into consideration with extract grilles at a high level or possibly at both high and low levels.

Section 10. Protection of the environment

Manufacturers should have controls in place to ensure that air from production areas, including contaminated air from equipment such as fluid bed driers, is passed through appropriate levels of filtration to ensure that the environment is not polluted. Manufacturers should consult national and international environmental legislation.

Section 11. Commissioning

Where manufacturers perform commissioning, this should be clearly documented.

Section 12. Qualification
Manufacturers should consider all stages of qualification for their HVAC systems. This includes, where appropriate, user requirement specification, design qualification, factory acceptance test, site acceptance test, installation qualification, operational qualification and performance qualification. Qualification to be done over the life cycle of the HVAC system should be described and executed including, e.g. when changes are made to the system.

Validation master plan(s), protocols, reports and source data for tests should be available. The scope and extent of qualification should be determined based on risk assessment. Parameters with limits included in qualification (such as temperature test, airflow direction, viable and non-viable particle counts) should be justified by manufacturers. The procedures followed for the performance of the tests should generally be in line with the standard as described in ISO 14644

Some of the typical HVAC system parameters that should be included in the tests during qualification are listed below. It is recommended that the tests be done at defined intervals. The tests typically cover:

- temperature;
- relative humidity;
- supply air quantities;
- return air or exhaust air quantities;
- room air-change rates;
- pressure differentials;
- airflow direction test;
- installed filter leakage tests;
- particle counts;
- clean-up or recovery rates;
- microbiological counts;
- warning/alarm systems.

Table 1. Considerations in testing

<table>
<thead>
<tr>
<th>Test parameter</th>
<th>Test procedure</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>ISO 14644 and WHO Technical Report Series, No. 961</td>
<td>Consider the temperature mapping test as described in WHO Technical Report Series</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>ISO 14644 and WHO Technical Report Series, No. 961</td>
<td>See Temperature mapping test for principles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pressure differential</td>
<td>ISO 14644</td>
<td></td>
</tr>
<tr>
<td>Airflow volumes</td>
<td>ISO 14644</td>
<td></td>
</tr>
<tr>
<td>Installed filter leakage</td>
<td>ISO 14644</td>
<td></td>
</tr>
<tr>
<td>Particle counts</td>
<td>ISO 14644</td>
<td></td>
</tr>
<tr>
<td>Airflow direction</td>
<td>ISO 14644 or</td>
<td>Where a smoke test is performed, ensure a continuous capture of</td>
</tr>
<tr>
<td></td>
<td>company procedure</td>
<td>the process, e.g. video, with correct angles to demonstrate</td>
</tr>
<tr>
<td></td>
<td>(smoke test)</td>
<td>flow direction and identification of date, time and area filmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and recorded in a traceable manner</td>
</tr>
<tr>
<td>Air flow velocity</td>
<td>ISO 14644</td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 13. Maintenance

Manufacturers should maintain current documentation for HVAC systems which include operation and maintenance manuals, schematic drawings, procedures and records.

Repairs, maintenance and preventive maintenance (including cleaning, replacement of components, changes, qualification) should be executed in accordance with procedures. Records for these should be maintained for an appropriate time.
